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The James Imaginary

Introductory Comments

The quintessential imaginary number is i, the square root of minus one.

i = sqrt[-1]

i is the solution to the quadratic equation

i^2 = -1

Expressed as a self-referential equation,

i = -1/i = - (i^-1)

The imaginariness of i comes from the composition of two inverse operations, subtraction and

division.  When the quadratic is equated to positive rather than negative unity, i represents a

standard unity:

i^2 = 1

i = {-1, 1}

In the self-referential equation, removal of the additive inverse expresses the same result:

i = + (i^-1) = 1/i

When the self-referential equation does not implicate the reciprocal of i, i becomes equal to

minus i, a role traditionally reserved for zero.

i = - (i^+1) = -i

Thus it appears that both the additive and the multiplicative inverses are required to identify

the imaginary unity.

The Boolean analog to the numerical i is the "square root of NOT" [Shoup], N.  What Boolean

value, when composed with itself, is equal to the negation of itself?

N op N = not N

Self-referentially
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N = N and not N

N = ((N)((N))) = ((N) N)

with the solution (the Kauffman-Varela imaginary)

N = not N

N = (N)

The Boolean imaginary oscillates with a cycle of two.  The numerical i has a cycle of four:

i^0 = 1
i^1 = i
i^2 = -1
i^3 = -i
i^4 = 1

Strictly, this cycle is defined through successive multiplications, i, we might say, is the

multiplicative imaginary.  Addition does not shift i through imaginary and real numerical

domains.  Thus a complex number can be expressed as a sum of a real and an imaginary

component, with zero acting in its usual multiplicative role to orthogonalize the complex in

either domain:

1*1 + 0*i = 1
0*1 + 1*i = i

i is, in fact, a complex imaginary, a numerical composition of a simpler imaginary, the additive

imaginary, which we will label using J:

J = -J

J is not equal to zero, it is imaginary.  We are restricted not to divide each side of the above

equation by 2 since the operation of division undermines the imaginary property of J.

What are the characteristics of this new imaginary?  We will relate it to i, showing that i is a

particular combination of two Js; we will relate it to standard numerical operations, showing

that

J = ln -1

Accepting the above as a definition, we see that

e^J = e^(ln -1) = -1

That is,

i^2 = e^J

i = e^(J/2)



3

J = ln i^2 = 2 ln i

Some properties of J are proved below.  The most interesting and fundamental of these is that J
does not equal 0, however it is its own additive inverse.

J = -J

That is,

J + J = 0

In the additive domain, J has a cycle of two:

J +  0 = J
J +  J = 0
J + -0 = J
J + -J = 0

We can now see that i is composed of two J cycles:

i^0 = (e^(J/2))^0 = e^0         = 1
i^1 = (e^(J/2))^1 = e^(J^2) = i
i^2 = (e^(J/2))^2 = e^J          = -1
i^3 = (e^(J/2))^3 = e^(3J/2) = e^(J + (J/2)) = e^J * e^(J/2) = -1 i
i^4 = (e^(J/2))^4 = e^2J = e^0 = 1

J , Ln(-1)

Logarithms are defined for positive numbers only, since ln 0 = -infinity.  Euler, in 1751,

defined logarithms of negative numbers as belonging to the complex domain.  The exact

relationship is given by Euler's equation:

e^ib =     cos b + i*sin b

  ib = ln (cos b + i*sin b)

When b = PI we get

     iPI = ln (-1 + i*0) = ln -1

The meaning of logarithms of negative numbers was widely discussed in the eighteenth century.

However, Euler's result seemed to resolve the questions:  logs of negative numbers were

complex numbers.

The James imaginary, J, also addresses the logarithm of a negative number, but without

introducing complex numbers.  When the angle b in Euler's equation rotates through 360
degrees, or 2PI radians, it returns to its origin.  A rotation of PI radians, 180 degrees, exactly

reverses the direction of the complex vector.  Since sin 180 = 0, there is no i-imaginary

component to this rotation, thus no reference to i is necessary in this case.  J represents this

specific rotation.  Let
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J = [<()>] = ln -1

A logarithm can be partitioned into a real and a J-imaginary part, the imaginary part carrying

the impact of a negative number on a logarithm:

ln -n = ln(n*-1) = ln n + ln -1 = ln n + J

Demonstration:

ln -5 = ln (5*-1) = ln 5 + ln -1 = (ln 5) + J

In boundary notation:

[<n>] = [([n][<()>])] = [n][<()>] = [n] J

Some properties of J are proved below using the same axioms as non-imaginaries.  The most

interesting and fundamental of these is that J does not equal 0, however it is its own additive

inverse.

J = -J

That is,

J + J = 0

I l legal Transforms

Here is a simple demonstration of the generation of J from standard transforms:

0 = ln 1 = ln(-1*-1) = ln-1 + ln-1 = J + J = 0

Compare this to a similar transformation of the imaginary i:

1 = sqrt 1 = sqrt(-1*-1) = sqrt-1 * sqrt-1 = i*i = -1

Conventionally, we put a restriction on splitting 1 into -1 squared.  There is no particular logic

to this other than if we allow it, then we can generate contradiction.  Somehow, our

conceptualization of the imaginary i does not work as smoothly as it should.

The imaginary J manages this potential contradiction without restriction.  For example:

ln(sqrt 1) = ln 1^(1/2) = (1/2)*ln 1 = (1/2)*ln(-1*-1)

     = (1/2)*(J+J) = 0

Inverting the ln function by raising e to the power of the result (i.e. 0) restores the correct

answer of 1.



5

Due to the self-inverse property of J, care must be taken in using J, since the normal algebraic

operations do not remain consistent.  For example,

J + J = 2J = 0

The problem is

2J = 0   does not imply   J = 0/2 = 0

In general, J cannot be partitioned, or divided in pieces, as can the non-imaginary numbers.  J
is an additive concept, with non-standard behavior for multiplication.  Basically,  J acts as a

parity mechanism.  All even counts of J reduce to zero.  For division, J will stand in relation to

any denominator (such as J/5).  All numerators reduce either to zero (in the case of an even

numerator) or to one (in the case of an odd numerator).

J Theorems

Def i n i t i on

 J  = [<( )>]
(J) =  <( )>

void = ( ) <( )> = ( ) (J)

Independence

[<(A)>] = A [<()>] = A J

Imaginary Cancellation

[<()>] [<()>] = J J = void

Own Inverse (only 0 has this property in conventional number systems)

J = <J>

J abstract (converts all <>-forms into J-forms)

 (A)  = <(J   A  )> (A) (J   A  ) = void
<(A)> =  (J   A  )

  A   = <(J  [A] )>  A  (J  [A] ) = void
 <A>  =  (J  [A] )

 [A]  = <(J [[A]])> [A] (J [[A]]) = void
<[A]> =  (J [[A]])
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J invert

(  A  [J]) = <( A [J])>
([<A>][J]) =  ([A][J])

Proofs:

[<(A)>] = A [<()>] = A J

[<(A)>] =    [<(A)>][ () ] involution

  = [ ([<(A)>][ () ]) ] involution

  = [<([ (A) ][ () ])>] promote

  = [ ([ (A) ][<()>]) ] promote

  =       A   [<()>]  involution

[<()>] [<()>] = J J = void

[<()>][<()>] = [  ([<()>][<()>])  ] involution

 = [<<([ () ][ () ])>>] promote

 = [<<(            )>>] involution

 = [  (            )  ] cancel

 = void involution

J = <J>

J = J <> add 0

  = J <J J> J cancel

  = J <J><J> collect

  = <J> inversion

A (J [A]) = void

A  ([<()>][A]) substitute

A <([ () ][A])> promote

A <(      [A])> involution

A <        A  > involution

void inversion

(A [J]) = <(A [J])>

(A [J]) lhs

(A [<J>]) J inverse

<(A [J])> promote
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Inverse Operations as J  Operations

J is intimately connected with the act of inversion.  Its definition contains -1;  as well, it is

implicated in the definition of a reciprocal since 1/A = A^(-1), and in the definition of a root

since A^(1/n) = A^(n^-1).  All occurrences of the generalized inverse can be converted to J
forms:

Operat ion Interpretat ion J  form

subtraction A-B     A    <B>     =     A   (J   [B] )

reciprocal 1/B  (      <[B]> )  =  (      (J  [[B]]) )

division A/B  ( [A]  <[B]> )  =  ( [A]  (J  [[B]]) )

root A^(1/B) (([[A]] <[B]> )) = (([[A]] (J  [[B]]) ))

negative power A^-B (([[A]] [<B>] )) = (([[A]]  J   [B]   ))

log base A logA B  ([[A]]<[[B]]>)  =  ([[A]] (J [[[B]]] ))

The exchange of <>-forms for J-forms mimics process/object confounding.  Converting a

container, <>, into an object, J, simplifies pattern matching but renders the form more

difficult to read.

J  in Action

J provides an alternative technique for numerical computation.  Consider the two versions of

this proof:

(-1)*(-1) = 1   ([<()>][<()>])
 <([ () ][<()>])> promote

<<([ () ][ () ])>> promote

  ([ () ][ () ]) cancel

  (            ) involution

(-1)*(-1) = 1   ([<()>][<()>])
  (  J     J   ) J

  (            ) J cancel

Finding and creating Js in a form can offer a short cut for reduction.  The primary substitution

is -1 = (J).  Some other examples:

(-1)/(-1) = 1   ([(J)] <[(J)]>) =?= ( )
  (  J   <  J  >) involution

  (             ) inversion
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A^(-1) = 1/A (([[A]] [<()>])) =?= (<[A]>)
(([[A]]   J   )) substitute

( <[A]>        ) J abstract

1/(1/A) = (A^-1)^-1 = A

(<[   (   <[A]> )  ]>)
(<[   ((J [[A]]))  ]>) J abstract

((J [[((J [[A]]))]] )) J abstract

((J     J [[A]]     )) involution

((        [[A]]     )) J cancel

            A         involution

(a+1)(a-1) = a^2 - 1

([a ()][a <()>])
([a ()][a (J)]) substitute

([a ()][a]) ([a ()][(J)]) distribution

([a ()][a]) ([a ()]  J  ) involution

([a][a]) ([()][a]) ([a] J) ([()] J) distribution

([a][a])       a   ([a] J) (     J) involution

([a][a])       a    <a>    (     J) J abstract

([a][a])                   (     J) inversion

(([[a]][2])) (J) cardinality

a^2 - 1 interpret

Conventional algebra is naturally much more efficient than using boundaries and J.  With

boundary numbers, we are working closer to the foundations of computation.  That is, with

fewer types of steps and with more steps taken, BN resembles a RISC architecture for

numerical computation.

Dot as -1

A notational tool helps keep track of when the imaginary J is used.  Whenever the value -1 is

converted to J, call it •.

J = [•]

• = (J) = -1

i = •^(1/2) = •^(2^•)

- A = A*• Ae^J

1/A = A^• A^e^J
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n^(1/A) = n^A^• n^A^e^J

Some computations using •:

a^• + b^• = (a+b)*(ab)^•

(([[a]][•])) (([[b]][•])) =?= ([a b][ (([[([a][b])]][•])) ])

  ([a b] ([[a][b]][•]) ) rhs

  ([a b] ([[a]][•]) ([[b]][•]) ) distribution

  ([a] ([[a]][•]) ([[b]][•]) ) ([b] ([[a]][•]) ([[b]][•]) ) distribution

  (               ([[b]][•]) ) (    ([[a]][•])            ) J abstract

(a^•)^• = a

      (([[a]][•]))^• hybrid

  (([[(([[a]][•]))]][•])) substitute

  ((    [[a]][•]    [•])) involution

  ((    [[a]]          )) J cancel

          a involution

Base - f r ee

In going through imaginary logarithmic space and then returning, the base can be arbitrary.

We demonstrate this:

Let J' = logb -1

J' = logb -1 = (ln -1)/(ln b) = ([J]<[[b]]>)

b^J' = -1 = b^(logb -1)

b^J' = b^([J]<[[b]]>) hybrid

 (([[b]] [([J] <[[b]]>)])) substitute

 (([[b]]   [J] <[[b]]>  )) involution

 ((        [J]         )) inversion

 (          J           ) involution

 e^J interpret

 -1 interpret

We have demonstrated independence of base:

b^(logb -1) = e^(ln -1)

Since the choice of base is arbitrary (given that it is consistent throughout a form), we can

abstract it:
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J = log# -1 where # is any number.

At times it may be advantageous to chose the base to be the same as the number being inverted,

Below, A is both the form being operated upon, and the base of transformations;  that is

J = logA -1 A^J = -1

Inverse operation Representations

- A  A*(-1) A*• = A*(A^J) = A^(J+1)

1/A A^(-1) A^• = A^A^J

A^(1/A) A^A^(-1) A^A^• = A^A^A^J

J  Self-interaction

We have seen some rules which involve reduction using J.  For example:

A (J [A]) = void J abstract

(A [J]) = <(A [J])> J  invert

J permits transformation of inverse operations through its inversion ambiguity, i.e.:

J = <J>

J also interacts with itself:

J log J

J [J] = [J]

Proof:

J [J] = [(J [J])] involution

  [   <J> ] J abstract

  [    J  ] J invert

J  Parity

The relationship between J and cardinality is non-standard.  Let n be an integer:

Parity Theorems

([J][n]) = void n even
([J][n]) = J n odd
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J ([J][n]) = J n even
     = void n odd

J ([J]<[n]>) = ([J]<[n]>) n even
 = void n odd

The last parity theorem illustrates the unusual effect of the J-imaginary on cardinality.

Interpreting the theorem yields:

J + J/n = 0                     n odd

which is to say

J + J/1 = J + J/3 = J + J/5 = ...

while
J/1 =/= J/3 =/= J/5 =/= ...

Additionally,

J + J/2 = J/2
J + J/4 = J/4
J + J/6 = J/6

while

J/2 =/= J/4 =/= J/6 =/= ...

Generalized J  parity

([J] [m] ) ([J] [n] ) = ([J][m n])

= void m+n even (m,n same parity)

= J m+n odd (m,n different parity)

([J] [m] ) ([J]<[n]>) = ([J][m (<[n]>)])

= void (m*n + 1) even (both odd)

= ([J]<[n]>) (m*n + 1) odd (either even)

([J]<[m]>) ([J]<[n]>) = ([J][m n]<[m][n]>)

= void m+n even
= ([J]<[m][n]>) m+n odd

Proof:

J ([J]<[n]>) = (  [J][()]) ([J]<[n]>  ) cardinality

   (  [J][()      (<[n]>)]) distribution
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   (  [J] [([([()][n])()]   <[n]>)]) distribution

   (  [J]   [      n  ()]   <[n]>  ) involution

   ([([J]   [      n  ()])] <[n]>  ) involution

   ([J..n+1..J]<[n]>) hybrid

if n is odd,
([J..n+1..J]<[n]>) = ([ ]<[n]>) = void

if n is even,
([J..n+1..J]<[n]>) = ([J]<[n]>)

Demonstrations:

J + J/3 = J + J/7 J/3 =/= J/7

J ([J]<[3]>) =?= J ([J]<[7]>)

    J       ([J]<[3]>) lhs

(  [J][()]) ([J]<[3]>) cardinality

(  [J][ ()  (<[3]>)]) distribution

(  [J][([4]  <[3]>)]) distribution

(  [J]  [4]  <[3]>  ) involution

([([J]  [4])]<[3]>  ) involution

([          ]<[3]>  ) J cancel

void dominion

The same steps reduce J/7 to void.

J/3 + J/7 = 0

([J]<[3]>)([J]<[7]>) =?= void

([J]<[3]>)([J]<[7]>) lhs

(  [J] [3 7]   <[3][7]>) distribution

(  [J] [ 10]   <[3][7]>) addition

([([J] [ 10])] <[3][7]>) involution

([           ] <[3][7]>) J cancel

void dominion

Whether or not the unusual relationship between J and cardinality is of computational advantage

(with infinite series, for example) is unexplored territory.
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Algebra of J

Consider how J behaves when undergoing algebraic transformation:

Operat ion Boundary form Value

J + J     J    J 0

J - J     J   <J> 0

J * J  ( [J]  [J] ) J^2

1 / J  (     <[J]>) 1/J

J / J  ( [J] <[J]>) 1

J ^ n (([[J]] [n] )) J^n

J ^ J (([[J]] [J] )) J^J

J ^ 1/J (([[J]]<[J]>)) J^(1/J)

e ^ J    (J) -1

ln J    [J] ln J

Whether or not some of these forms reduce further is an open question.

Multipl icative Forms

A * 0 ([  ][A])

A * 1 ([()][A]) = A

A * e ( () [A])

A * -1 ( J  [A])

e * 0 ([  ]())

e * 1 ([()]()) = (())

e * e ( () ())

e * -1 ( J  ())
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Cyclic Forms

If we list successive cardinalities of J, we see that it's value oscillates.

void = JJ = JJJJ = ... Period 2

Period 2 sequences:

    ->   J   ->     ->   J   ->     ->... J cancel

( ) ->  (J)  -> ( ) ->  (J)  -> ( ) ->... exponent

 1  ->  -1   ->  1  ->   -1  ->  1  ->... interpret

 A  ->  J A  ->  A  ->  J A  ->  A  ->... J cancel in context

(A) -> (J A) -> (A) -> (J A) -> (A) ->... exponent

e^A ->  -e^A -> e^A ->  -e^A -> e^A ->... interpret

If we combine 1/2 J at each step, the period is 4:

void = ([J]<[2]>)([J]<[2]>)([J]<[2]>)([J]<[2]>)

Period 4 sequences:

    ->  ([J]<[2]>)  ->  J  ->  J ([J]<[2]>)  ->     ->...

( ) -> (([J]<[2]>)) -> (J) -> (J ([J]<[2]>)) -> ( ) ->...

 1  ->      i       -> -1  ->       -i       ->  1..->...

Incrementing by J/2 generates the period 4 oscillation of i.  However, the above J/2
sequence is also degenerate, since

J ([J]<[2]>) = 3J/2 = (J+J+J)/2 = J/2

That is,

([J]<[2]>) = J ([J]<[2]>)

The difference in interpretation between i and -i depends upon whether or not the inverse

canceling effect of J is applied or not.

-i = <(([J]<[2]>))>
     (J ([J]<[2]>))

From generalized J parity, if we increment each step by 1/n J, the period is apparently n.

This will always degenerate into a period 2 sequence:

0J/n -> 1J/n -> 2J/n -> 3J/n ->...-> nJ/n ->     ->...
  0  ->  J/n ->   0  ->  J/n ->...->  0   -> J/n ->...
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The relationship between J and cardinality is unusual in that the standard arithmetic operations

are not consistent.

Demonstration:

J = 1*J       = (2/2)*J           = (2*J)/2           = 0/2       = 0

J = ([()][J]) = ([([2]<[2]>)][J]) = ([([J][2])]<[2]>) = ([]<[2]>) = void

J = 1*J       = (3/3)*J           = (3*J)/3           = J/3

J = ([()][J]) = ([([3]<[3]>)][J]) = ([([J][3])]<[3]>) = ([J]<[3]>)

The problem here is that J cannot be carved into pieces.  That is, J supports reciprocals but no

other numerators except 1.  This difficulty for the system could be addressed by a prohibition:

(n/n)*J =/= (n*J)/n

Alternatively (and more in line with boundary math techniques), we can define multiplication

by J as canceling numerators, forcing a result that is either the void or a reciprocal.

J  and i

First we determine the form of i:

i = (-1)^(1/2) (([[ -1 ]] [  1/2  ])) hybrid

(([[<()>]] [(<[2]>)])) substitute

(([  J   ] [(<[2]>)])) substitute

(([  J   ]   <[2]>  )) involution

(([  J   ](J [[2]]) )) J abstract

i = (([J](J [[2]]))) = (([J]<[2]>))

i is the multiplicative imaginary, with a phase of four {1,i,-1,-i}.  J is the additive

imaginary, with a phase of two {0,J}.  The imaginary i is the answer to the question:

x times x = -1

The imaginary J answers the question:

x plus x = 0
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Comparing the forms of i and J:

J = ln -1 i = (-1)^1/2

J = -J i = -1/i

J + J = 0 i + 1/i = 0

J = (-1)*(J^1) i = (-1)*(i^-1)

J = [<()>] i = (([J]<[2]>))

J is imaginary because it is its own inverse.  i is also imaginary, it is its own reciprocal

inverse.  From this perspective, J is a simpler, more elementary, imaginary than i.

Note that the boundary representation of i contains J within it.  We can evaluate the boundary

form of the definition of i by using J:

i + 1/i = 0

            i               (<[i]>) transcribe

([ (     [i] [i]       ) ()] <[i]>) compound distrib

([       <()>            ()] <[i]>) lemma

([                         ] <[i]>) inversion

             void dominion

lemma ([i][i]) = <()>

(     [i]     [i]     )
(([[     i      ]][2])) cardinality

(([[(([J]<[2]>))]][2])) substitute

((    [J]<[2]>    [2])) involution

((    [J]            )) inversion

(      J              ) involution

     <()> substitute

The exact relationship between J and i reflects the inverse canceling effect of J:

Conventional notation Boundary form

J*i = J/i ([J][i]) = ([J]<[i]>)

This is easy to prove:

J*i*i = -J = J

A void-based boundary proof of the same relationship follows, using the void-equivalent form:
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([J][i]) <([J]<[i]>)> = void

([J][i])  ([J]  <   [i]   >  ) J invert

([J][i])  ([J][(<   [i]   >)]) involution

([J][i         (<   [i]   >)])  distribution

([J][  ([([i][i])()]<[i]>)  ])  distribute compound

([J][  ([  <()>  ()]<[i]>)  ])  lemma

([J][  ([          ]<[i]>)  ])  inversion

([J][                       ])  dominion

           void dominion

The equations for i and J expressed in terms of each other:

i = e^(J/2) i = (( [J] <[2]>))

J = 2 ln i J =  ([[i]] [2] )

Proof:

i = (([     J      ] <[2]>) given

  = (([ ([[i]][2]) ] <[2]>)) substitute

  = ((   [[i]][2]    <[2]>)) involution

  = ((   [[i]]            )) inversion

  =        i                involution

The form of i leads to the interesting interpretation:

i = (([J]<[2]>)) = e^(J/2)

Squaring both sides:

i^2 = (e^(J/2))^2 = e^(J/2 + J/2) = e^J = -1

This can be derived directly:

i^2 = -1  (([[i]] [2]))  =  <()>
[(([[i]] [2]))] = [<()>] ln both sides

  ([[i]] [2])   =   J involution/substitute

Reading this form yields a consistent interpretation:

J = 2 ln i

e^J = e^(2 ln i) = (e^ln i)*(e^ln i) = i*i = -1
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Another common transformation of i is:

i = (1+i)/(1-i)

([() i]<[()<i>]>)

([()]<[()<i>]>) ([i]<[()<i>]>)
(    <[()<i>]>) ([i]<[()<i>]>)
([([()<i>])([i][()<i>])] <[()<i>][()<i>]>)
([  ()<i>  ([i][()<i>])] <[()<i>][()<i>]>)
([  ()<i>  ([i][()<i>])] <([2][[()<i>]])>)

%%%

Complex Numbers

The J form of i-complex numbers is:

a+ib = a ([b][        i       ])
 a ([b][(([J](J [[2]])))]) substitute

 a ([b]  ([J](J [[2]]))  ) involution

In contrast to i-complex numbers, the imaginary part of J-imaginary numbers is quite limited.

Let the representation of a J-imaginary be similar to a complex number:

a+Jb = a ([J][b])

Essentially, b can take on only two integer values, 0 or 1.

When b is an even integer,

a + Jb = a

When b is an odd integer,

a + Jb = a + J

The sign of b is irrelevant, since it can be removed by J invert.  The only fractional values

which b can express are reciprocals.

However, the comparison between i and J is faulty since the i-imaginary part, ib, is a

multiplicative component, characteristic of i but not of J.  The appropriate J-complex number

form is additive, and simpler than an i-complex number:

a + kJ k in {0,1}

In boundary notation, the k multiplier is simply the existence or absence of J:

a  J
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Euler's Formula

Euler's formula provides a cyclic, phase-oriented interpretation of i-imaginary numbers:

e^(a+ib) = (e^a)*(cos (b + 2kPI) + i*sin (b + 2kPI))

Powers of complex numbers are interpreted in the complex plane, with the angle of rotation

defined by the ratio of real and imaginary  components.  This is how PI, as a measure of rotation

in radians, becomes associated with every complex number.  At 0 and 180 degree rotations, the

imaginary component is zero.  Since k can be any integer, the complex power function is a one-

to-many mapping.

Setting the real component to zero yields:

e^(a+ib) = (e^a)*(cos (b + 2kPI) + i*sin (b + 2kPI))

e^(  ib) = (e^0)*(cos (b + 2kPI) + i*sin (b + 2kPI))

e^ib = cos (b + 2kPI) + i*sin (b + 2kPI)

Additionally setting the angle of rotation to 180 degrees (PI) leads to the simplified Euler

equation.  Ignoring the cyclic component, we get

e^ib = cos b + i*sin b

e^iPI = -1 + i*0

e^iPI = -1

This leads directly to J:

e^iPI = e^J

Let us reintroduce the cyclic component to the reduced equation:

J = i(PI + 2kPI) = iPI(2k + 1) k is an integer

This results implies that J has an infinite set of values:

J = ([     i      ][       PI        ][2k 1]) hybrid

    ([(([J]<[2]>))][([J] ([J] <[2]>))][2k 1]) substitute

    (  ([J]<[2]>)    [J] ([J] <[2]>)  [2k 1]) involution

    (    J           [J]              [2k 1]) J log J

    (                [J]              [2k 1]) distribute/J

J = J*(2k+1)

Recalling J parity, we see that this result is both necessary and consistent.

([J][n]) = void n even
([J][n]) = J n odd
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However, since J is not partitionable, the cyclic component of Euler's formula is eliminated,

replaced by J cycles of period 2.

Logar i thms

In general, the logarithm of a complex number is given by

ln (a+ib) = ln |z| + i*angle z

where |z| = (a^2 + b^2)^(1/2)

angle z = arctan(b/a)

J-imaginary numbers remove some of the complexities of working with complex numbers.

Specifically, using Euler's formula we can express PI in terms of J:

e^(i*PI) = -1 = e^J

J = i*PI

In the simple conventional case of the exp-log inverse relation:

e^ln z = z + 2kiPI

Substituting

e^ln z = z + 2kJ = z + k*0 = z

The self-canceling property of J removes the cyclic component, since all cycles return only to

zero.  The analogous Euler's formula for J-complex numbers is:

e^(a + J) = (e^a)*(e^J) = -e^a

This form does not introduce i-complexity even though it uses J-imaginary numbers which can

be expressed as i-imaginaries.  This is simply because J does not permit rotational partitions.

A J rotation is either 0 or 180 degrees.  The J-imaginary logarithm is

ln(a+J) = [a J]

Transcendental Functions

Transcendental functions are those that are not algebraic. They include the trigonometric,

exponential, logarithmic, and inverse trigonometric functions.  (Algebraic functions involve the

operators {+,-,*,/,^,root}.)  When the exponential and the logarithmic base is set to the

natural log base e, the J mechanisms address transcendental functions.
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e, the natural logarithm base

 (())  = e^(e^0) = e^1 = e

<(())>  = -e = (J ())

((())) = e^(e^(e^0)) = e^e

Since no rules reduce (()) to any other form, e is additively incommensurable with other

forms.  That is, e is transcendental.  The logarithm function coverts the transcendental e into

the integer 1:

[(())] = () ln e = 1

ln, the natural logarithm

  [] ln 0    =    []
 [[]] ln -inf = J <[]>

[[[]]] ln(J <[]>) = ln J * ln inf
       ([[J]] [<[]>])

[<[]>] ln inf = inf = <[]>

P I

J = i*PI

PI = J/i = ([J]<[       i        ]>) hybrid

     ([J]<[(([J](J [[2]])))]>) substitute

     ([J]<  ([J](J [[2]]))  >) involution

     ([J]   ([J](J [[2]]))   ) J invert

PI = ([J] ([J] (J [[2]]))) = ([J] ([J] <[2]>))

Interpreting:

PI = ([J] ([J] (J [[2]])))
     ([J] ([J] <[2]>)) J abstract

     ([J]    J/2     ) hybrid

     ([J]  [(J/2)]   ) involution

     J * e^(J/2) interpret

PI = Je^(J/2)
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Here is a different construction of PI:

PI = -1*i*i*PI

   = (J)*i*J hybrid

     ( [(J)] [(([J] (J [[2]])))] [J] ) substitute

     (   J     ([J] (J [[2]]))   [J] ) involution

     (         ([J] (J [[2]]))   [J] ) J log J

PI = ([J] ([J] (J [[2]])))

Another construction:

PI = 2i ln i

   = ([2] [(([J]<[2]>))] [[(([J]<[2]>))]]) substitute

     ([2]   ([J]<[2]>)       [J]<[2]>    ) involution

     (      ([J]<[2]>)       [J]         ) inversion

     (      ([J] (J [[2]]))  [J]         ) J abstract

PI = ([J] ([J] (J [[2]])))

cos x = (e^ix + e^-ix)/2

cos x = ([(ix)(<ix>)]<[2]>) hybrid

where  i = (([J]<[2]>))

ix = ([i][x]) = (([J]<[2]>)[x])

cos x = ([((([J]<[2]>)[x])) (<(([J]<[2]>)[x])>)] <[2]>)

let b = <[2]> = (J [[2]])

cos x = ([((([J] b)[x])) (<(([J] b)[x])>)] b)

let d = ([x] (b [J]))

cos x = (b [(d) (<d>)])
= (b [(d) ((J [d]))])

Expanding:

cos x = ([(([x] ([J]<[2]>))) ((J [x] ([J]<[2]>))] <[2]>)

cos x = ([(([x] ([J] (J [[2]])))) ((J [x] ([J] (J [[2]])))] (J [[2]]))
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sin x = (e^ix - e^-ix)/2i

sin x = ([(ix)<(<ix>)>]<[2i]>) hybrid

where  i = (([J]<[2]>))

ix = ([i][x]) = (([J]<[2]>)[x])

Substituting and simplifying:

= ([((([J]<[2]>)[x])) <(<(([J]<[2]>)[x])>)>] <[([2][(([J] <[2]>))])]>)
  ([((([J]<[2]>)[x])) <(<(([J]<[2]>)[x])>)>] <  [2]  ([J] <[2]>)    >)
  ([((([J]<[2]>)[x])) <(<(([J]<[2]>)[x])>)>] <  [2]><([J] <[2]>)    >)

let b = <[2]> = (J [[2]])

sin x = ([((([J] b)[x])) <(<(([J] b)[x])>)>] b <([J] b)>)

let c = (b [J])

sin x = ([((c [x]))<(<(c [x])>)>] b <c>)

let d = (c [x])

sin x = (b <c> [(d)<(    <d>  )>])
  (b <c> [(d)<(  (J [d]))>]) J abstract

  (b <c> [(d) (J (J [d])) ]) J abstract

  (b  c  [(d) (J (J [d])) ]) J invert

Expanding:

sin x = ([(([x] ([J]<[2]>))) (J (J [x] ([J]<[2]>)))] ([J]<[2]>) <[2]>) =

  ([(([x] ([J](J [[2]])))) (J (J [x]([J] (J [[2]]))))] ([J](J [[2]])) (J [[2]]))
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e^ix = cos x + i sin x

(([x]([J]<[2]>))) =?=

(b [(d)(<d>)]) ([(([J]<[2]>))][(b c [(d)<(<d>)>])]) substitute

(b [(d)(<d>)]) (  ([J]<[2]>)    b c [(d)<(<d>)>]  ) involution

(b [(d)(<d>)]) (      c         b c [(d)<(<d>)>]  ) substitute

(b [(d)(<d>)]) (     <c>        b c [(d)<(<d>)>]  ) J invert

(b [(d)(<d>)]) (                b   [(d)<(<d>)>]  ) inversion

(b [(d)(<d>)(d)<(<d>)>]) distribution

(b [(d)     (d)       ]) inversion

(b [([(d)][2])]  ) cardinality

(b     d  [2]    ) involution

(<[2]> d  [2]    ) substitute

(  d             ) inversion

(([x] c         )) substitute

(([x] ([J]  b  ))) substitute

(([x] ([J]<[2]>))) substitute

An Open Question

It is an open question whether or not the following structures composed of transcendental forms

are themselves transcendental:

e^e (([[ e  ]][ e  ])) hybrid

(([[(())]][(())])) substitute

((          ()  )) involution

This reduction is not a rigorous proof, but we can see that e^e is incommensurable with other

number forms, and therefore likely to be transcendental.

The following three forms, 1 raised to a irrational value, are known to have non-unitary values

in the complex plane.

1^(sqrt 2) (([[()]] [       sqrt2       ]))
(([[()]] [(([[2]] [(<[2]>)]))]))
(([    ]   ([[2]]   <[2]>  )  ))

1^e (([[()]] [(())]))
(([    ]   ()  ))

1^PI (([[()]] [          PI         ]))
(([[()]] [([J] ([J] (J [[2]])))]))
(([    ]   [J] ([J] (J [[2]]))  ))
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It is not known whether or not the following two forms reduce further.

PI^e (([[        PI        ]] [ e  ]))
(([[([J] ([J]<[[2]]>))]] [(())])) substitute

(([  [J] ([J]<[[2]]>)  ]   ()  )) involution

PI^PI (([[       PI         ]][       PI         ]))
(([[([J] ([J]<[[2]]>))]][([J] ([J]<[[2]]>))]))    substitute

(([  [J] ([J]<[[2]]>)  ]  [J] ([J]<[[2]]>)  ))    involution

Axioms of Infinity

The interaction between infinity and form requires new theorems.  These absorption rules

define when an infinite form absorbs, or renders void, other forms sharing the same space.

Negative Dominion cannot be proved, it is an axiom.  The other reduction rules for infinity are

derived from the Dominion axiom.

Negative Infinity

A [] = [] dominion, any A

([]) = void involution of negative infinity

[[]] = J <[]> log of negative infinity

Positive Infinity

A <[]> = <[]> positive dominion, A not in {[],J}

(<[]>) = <[]> infinite exponent

[<[]>] = <[]> infinite log

Proofs:

[[]] = J <[]> loglog 0

[      []    ]
[<    <[]>  >] inverse cancel

[<(J [ [] ])>] J abstract

[ (J [<[]>]) ] inverse promote

   J [<[]>]  involution

The implication from this result is that

[[]] = J <[]> =/= <[]>
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J does not absorb into positive infinity.  In using J, we are introducing a calculus of

infinities which is not completely degenerate.  That is, we can distinguish J-imaginaries

in the presence of a positive (but not a negative) infinity.  Negative dominion of J is

consistent with the Dominion axiom:

J [] = []

Theorems

<[]><[]> = <[]> positive infinity

[[]] <[]> = [[]] infinite absorption

Proofs:

<[]><[]>
<[]  []> inverse collect

<[]    > dominion

[[]] <[]>
J <[]> <[]> loglog 0

J <[]> positive infinity

[[]] loglog 0

Void Transformations

Examining the void cases of the axioms sheds light on the arithmetic of James boundaries.  We

begin by noticing that the two unit forms are empty, they contain void:

( ) e^0 = 1

[ ] ln 0 = -inf

We see that the void theorems will include operations on infinity.

Void Reduction Rules

I nvo lu t i on ([ ]) = [( )] = void

D i s t r i bu t i on (A [ ]) (A [ ]) = (A [   ])

I n v e r s i o n   < > = void
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Void Algebraic Operations

Operat ion Interpretat ion F o r m Reduced Form

Addition 0+0

Mu l t i p l i c a t i o n 0*0  ( [ ]   [ ]) void

P o w e r 0^0 (([[ ]]  [ ])) ( )

Subtract ion 0-0        <     > void

D i v i s i o n 0/0  ( [ ] < [ ] >) void

Root A^(1/0) (([[A]]< [ ] >)) <[]>

0^(1/B) (([[ ]]< [B] >)) void

0^(1/0) (([[ ]]< [ ] >)) void

Logar i thm logB 0  ([[B]]<[[ ]]>) [ ]

log0 B  ([[ ]]<[[B]]>) void

log0 0  ([[ ]]<[[ ]]>) void

The Dominion theorem,

(A  [] ) = void

(A <[]>) = (<[]>) = <[]> A not in {J,[]}

specifies the behavior of positive and negative infinity, and plays a central role in the reduction

of these infinite forms.  All reduced forms are as would be expected, including a proof that

0^0 = 1

which in conventional systems is taken as a definition.  Also

logB 0 = ln 0

since the log of 0 is the same regardless of base.
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Reduction proofs:

0^0 (([[]] []))
(         ) dominion

0/0 ([]<[]>)
 void dominion

0^(1/0) (([[]]  < [] >))
(([[]]        )) infinite absorption

     void      involution

0^(1/B) ([[B]]< [[]]  >)
([[B]]< J <[]>>) loglog 0

([[B]]<<J><[]>>) J inverse

([[B]]<<J  []>>) inverse collect

([[B]]  J  []  ) inverse cancel

(          []  ) dominion

     void   involution

log0 0 ([[ ]]<[[ ]]>)
(J [ ]<[[ ]]>) loglog 0

   void dominion

Infinities and Contradiction

The James calculus has a natural representation of infinity, <[]> which can be used

computationally.  However, the use of infinity leads to contradictions, just as it does in standard

approaches.  Fortunately, these contradictions can be eliminated by restricting specific

transformation rules.

Division by Zero

An initial question concerns the form of division by zero.  It is clear that

A/0 = inf ([A]<[]>)
(   <[]>) positive dominion

    <[]> inf

But what is 0 divided by 0?

0/0 ([ ]<[]>)
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The question revolves around whether or not +inf inverts -inf.  Or does Dominion apply

instead?  Here are the possibilities:

[] <[]> = void inversion

[] <[]> =  [] negative dominion

[] <[]> = <[]> positive dominion

When infinities collide, we have contradictory results, and must therefore enact a restriction.

This choice interacts with the computational use of infinity.  Specifically

0/0 = ([]<[]>) = (    ) = 1 inversion

0/0 = ([]<[]>) = ( [] ) = 0 negative dominion

0/0 = ([]<[]>) = (<[]>) = <[]> = inf positive dominion

It is appealing that the choices are the three most fundamental numerical concepts, {0,1,inf}.

However, we must choose between them so that we can freely use infinities during computation.

To resolve this contradiction, a somewhat arbitrary restriction must be placed on

transformations involving infinities.  The exact choice depends on both syntax (i.e. which yields

the most consistent results) and semantics (i.e. what is natural for the exp-log interpretation).

The relation y= ln x approaches negative infinity very rapidly, and positive infinity very

slowly.  As well, the boundary representation initially confounds the concepts of negative and

infinite.  Therefore, we will assume

Negative dominion takes precedence.

Thus,

0/0 = 0

Further clarification of the above inconsistencies is an open problem.

Inconsistent Forms

0/0 ([]<[]>)

inf/inf ([[]]<[[]]>)

0*inf ([][<[]>]) = <([][[]])>

inf - inf <[]> <<[]>> = <[]> []
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Infinite Powers

Here we can see that 0 or 1 raised to any power will not change that base.

1^inf = (([[1 ]][inf ])) hybrid

  (([[()]][<[]>])) substitute

  (([    ][<[]>])) involution

  (              ) dominion

         1 interpret

0^inf = (([[]] [<[]>]))
  (([[]]  <[]> )) inf

  ((J <[]><[]> )) loglog 0

  ((J <[]  []> )) inverse collect

  ((J <[]    > )) dominion

  (([[]]       )) loglog 0

    void involution

      0 interpret

Some other results:

1/0 = ([()] <[]>)
(     <[]>) involution

      <[]> inf

   inf interpret

0*inf =  ([][<[]>])
   void negative dominion

    0 interpret

Infinity and J

We can explore the behavior of infinity in imaginary contexts.

inf + J = <[]> J
    <[]><J> J inverse

    <[]  J> inverse collect

    <[]   > dominion

      inf interpret

inf * J = ([<[]>] [J])
    ([ [] ] [J]) J invert

    (J <[]> [J]) loglog 0

    (  <[]> [J]) J log J
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inf / J = ([<[]>]<[J]>)
    ( <[]> <[J]>) inf

    ( <[]   [J]>) inverse collect

    ( <[]      >) dominion

      <[]> inf

J / inf = ([J]<[<[]>]>)
    ([J]< <[]> >) inf

    ([J]   []   ) inverse cancel

    void dominion

inf ^ J = (([[<[]>]][J]))
    ((  <[]>  [J])) inf

J ^ inf = (([[J]][<[]>]))
    (([[J]] <[]> )) inf

Some of these transformations result in a structural relationship between J and inf:

inf * J =  (<[]> [J] )

inf ^ J = ((<[]> [J] ))

J ^ inf = ((<[]>[[J]]))

Understanding this behavior is an open question.

Here is a confirmation that even cardinality is associated with J=0.  It is reliant on negative

infinity:

([J][n]) = void n even

 ([J][n])     =  ([]) involution

[([J][n])]    = [([])] ln both sides

  [J][n]      =   [] involution

  [J][n]<[n]> =   [] <[n]> both sides

  [J]         =   [] <[n]> inversion

  [J]         =   [] dominion

 ([J])        =  ([]) exp both sides

   J          = involution

Given the constraint equation, the only value for J which will fulfill it is J=0.



32

Imaginary Logarithmic Bases

Since the form of a logarithm is defined, we can explore the values of forbidden log bases:

log1 A = ([[A]]<[[()]]>)
   ([[A]]<[    ]>) involution

   (     <[    ]>) dominion

         <[    ]> inf

       inf interpret

log0 A = ([[A]]<[[  ]]>)
   ([[A]]<<[  ]>>) substitute

   ([[A]]  [  ]  ) inverse cancel

      void dominion

       0 interpret

loginf A = ([[A]]<[[<[]>]]>)
     ([[A]]<<[  ]>>) substitute

     ([[A]]  [  ]  ) inverse cancel

      void dominion

       0 interpret

log-1 A = ([[A]]<[[<()>]]>)
    ([[A]]<[  J   ]>) substitute

    ln A / ln J interpret

Infinite Series

e is most often defined in terms of an infinite series.  Several relevant series follow.

Although we cannot directly substitute infinity into a conventional formula, we are free to do so

with boundary forms, since infinity is simply another form which follows the same rules.

lim[n->inf] (ln n)/n = 0

([[n]] <[n]>) =?= void as n->inf hybrid

([[<[]>]] <[<[]>]>) substitute inf

(  <[]>   < <[]> >) inf

(  <[]>      []   ) inverse cancel

void negative dominion
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lim[n->inf] n^(1/n) = 1

(([[n]][1/n])) =?= () as n->inf hybrid

(([[<[]>]][(<[<[]>]>)])) substitute inf

(([[<[]>]]  <[<[]>]>  )) involution

((  <[]>    < <[]> >  )) inf

((  <[]>       []     )) inverse cancel

(                      ) dominion

lim[n->inf] x^(1/n) = 1 x>0

(([[x]][1/n])) =?= () as n->inf hybrid

(([[x]][(<[<[]>]>)])) substitute inf

(([[x]]  <[<[]>]>  )) involution

(([[x]]  < <[]> >  )) inf

(([[x]]     []     )) inverse cancel

(                   ) dominion

Comparing the reduction of the above two limit forms, we can readily see why the base x is

irrelevant (i.e. it is dominated in any event).

lim[n->inf] (1 + x/n)^n = e^x

(([[1 x/n]][n])) =?= (x) as n->inf hybrid

(([[() ([x]<[ n  ]>)]][ n  ])) substitute

(([[() ([x]<[<[]>]>)]][<[]>])) substitute inf

(([[() ([x]< <[]> >)]] <[]> )) inf

(([[() ([x]   []   )]] <[]> )) inverse cancel

(([[()              ]] <[]> )) dominion

(([                  ] <[]> )) involution

(                            ) dominion

               1              interpret

This result is in error, indicating that the inconsistencies in working with infinity are still

present and still an unresolved problem.

Here are some infinite sums relevant to e.

e^x = SUM[n=0->inf] (x^n)/n!

e^-x = SUM[n=0->inf] (-1)^n (x^n)/n!

ln[1+x] = SUM[n=0->inf] (-1)^n (x^n)/n

ln[1-x] = SUM[n=0->inf] -(x^n)/n
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Working with James calculus and infinite series is an open problem.

D i f fe rent iat ion

Let 'A' be dA.  The rules of differentiation in the James calculus expressed as are:

Name De r i va t i ve Interpretat ion

constant 'c' = void dc = 0

x/dx 'x' = () dx = 1

exponent '(A)' = (  A  ['A']) de^A = e^A dA

logarithm '[A]' = (<[A]>['A']) dln A = 1/A dA

inverse '<A>' = <'A'> d-A = -dA

space 'A B' = 'A' 'B' d(A+B) = dA + dB

These rules are syntactically very regular, and thus useful for algorithmic computation.

Proof of the Chain Rule of Differential Calculus

d(AB) = B dA + A dB

'([A][B])'

([A][B]['[A][B]']) exponent

([A][B]['[A]''[B]']) space

([A][B][(<[A]>['A']) (<[B]>['B'])]) logarithm

([A][B][(<[A]>['A'])]) ([A][B][(<[B]>['B'])]) distribution

([A][B]  <[A]>['A'])   ([A][B]  <[B]>['B']  ) involution

([B]['A']) ([A]['B']) inversion
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Using James differentiation, example 1:

y = e^(ax) dy = ae^(ax)

y = (([a][x]))

dy = '(([a][x]))'
   =  ([ '([a]  [x])'        ] ([a][x]))
   =  ([(['[a]  [x]'] [a][x])] ([a][x]))
   =  (  ['[a]  [x]'] [a][x]   ([a][x]))
   =  (  ['[a]''[x]'] [a][x]   ([a][x]))
   =  (  [(['a']<[a]>)(['x']<[x]>)] [a][x] ([a][x])  )
   =  (  [([   ]<[a]>)([() ]<[x]>)] [a][x] ([a][x])  )
   =  (  [            (     <[x]>)] [a][x] ([a][x])  )
   =  (                     <[x]>   [a][x] ([a][x])  )
   =  (                             [a]    ([a][x])  )

Interpreting:

dy =  ([a]  ([a][x])  )
dy =  ([a][(([a][x]))]) = ae^(ax)

Example 2:

y = x^n dy = nx^(n-1)

y = (([[x]][n])) dy = ([n][(([[x]][n <()>]))])
dy = ([n]  ([[x]][n <()>])  )

   dy ='(([[x]][n]))'
= (['([[x]][n])'             ] ([[x]][n]))
= ([(['[[x]]  [n]'] [[x]][n])] ([[x]][n]))
= (  ['[[x]]  [n]'] [[x]][n]   ([[x]][n]))
= (  ['[[x]]''[n]'] [[x]][n]   ([[x]][n]))

= (  [(['[x]'       ]<[[x]]>) (['n']<[n]>)] [[x]][n] ([[x]][n]))
= (  [([(['x']<[x]>)]<[[x]]>) (['n']<[n]>)] [[x]][n] ([[x]][n]))
= (  [(  ['x']<[x]>  <[[x]]>) (['n']<[n]>)] [[x]][n] ([[x]][n]))
= (  [(  [() ]<[x]>  <[[x]]>) ([   ]<[n]>)] [[x]][n] ([[x]][n]))
= (  [(       <[x]>  <[[x]]>)             ] [[x]][n] ([[x]][n]))
= (           <[x]>  <[[x]]>                [[x]][n] ([[x]][n]))
= (           <[x]>                              [n] ([[x]][n]))

= ([n] ([[x]][<()>]) ([[x]][n     ]))
= ([n]               ([[x]][n <()>]))

Interpreting:

dy = ([n]   ([[x]][n <()>])  )
dy = ([n] [(([[x]][n <()>]))]) = nx^(n-1)
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The next derivation illustrates the use of J:

y = J = [<()>]

dy = '[<()>]'
   = (['<()>'] <[<()>]>)
   = ([<'()'>] <[<()>]>)
   = ([<    >] <[<()>]>)
   = ([      ] <[<()>]>) = void

'<A>' = '(J [A])'
= (['J''[A]'           ] J [A])
= ([   (['A'](J [[A]]))] J [A])
= (     ['A']            J    )
=       <'A'>


