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Boundary Logic

[This memo contains all of my class notes for my Formal Foundations of Mathematics graduate

class in Computer Science and Software engineering that pertain to Boundary Mathematics.]

Chal lenge

Computation and logic (Boolean algebra) are universally built on binary representations.

0 1 True False Yes No

Is there a simpler approach?  Can logic be expressed in a unary notation?

Boundary Mathematics

The use of delimiting tokens, or containers, as both constants and functions.

Pure math example: Common boundaries cancel.

                                        =      <void>

                                        =

Concepts

Boundary token an enclosure

Representational Space the bounded space

The Simplest Virtual World

<this space is intentionally left blank>

<the above contradicts itself>

Two Voids

Absolute void: that which cannot be referred to without contradiction

Relative void: emptiness enclosed within a boundary
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Constructing a Distinction

A UUniversal Distinction is first boundary we agree upon.  In forming a universal

distinction, we construct three things simultaneously:

a formal space (inside)

an interpretative context (outside)

a token representing the distinction (boundary)

                  <------  token for the
                             universal distinction

                      interpretative context
                        of the token

Ca l l i n g

Focus your attention on the outside,

where you see the mark (the usual viewing point).

Call the boundary that you see a “boundary”.

To call is to maintain perspective.

=

Calling is the rule of iinvariance.  It is also is the rule of nnaming.  Thus the relationship

between an object and its name is invariant.

Cross ing

Focus your attention on the inside,

where you cannot see a mark (there is no mark inside).

Cross the boundary to the outside.  Now you can see a mark.

To cross is to change perspective.

    <void>    ==>

Crossing is the rule of vvariance.  It is also a process of changing.

    newly
    created
    formal
    space
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The Arithmetic of Boundaries

CALLING ( ) ( )  =  ( )

CROSSING ( ( ) )  =   

Moving to Algebra

The ground, or carrier set, of boundary logic is one token { ( ) } and one absence of that token.

If an equation holds for all ground values, it holds in general.  Using this, we can construct

algebraic truths from the cases of the arithmetic:

DOMINION INVOLUTION PERVASION

( ) ( ) = ( ) (( ( ) )) = ( ) ( ( ) ) ( ) = ( )
( )     = ( ) ((     )) = (     )     = ( )

thus
( )  A  = ( ) ((  A  )) =  A (  A  )  A  = ( )

Boundary Logic Algebraic Axioms

The transformation axioms of boundary logic:

Dominion  (the halting condition, when to stop)

( ) A = ( ) REIFY   <==>  ABSORB

Involution  (double negation, how to remove excess boundaries)

((A)) = A ENFOLD  <==>  CLARIFY

Pervasion  (how to remove excess structure)

A (A B) = A (B) INSERT  <==>  EXTRACT

Each axiom suggests a definite reduction strategy:

erase irrelevant structure

to convert the left side of the equation to the right side.

Algebra provides the useful tool of ssubstitution independence.   Any transform can be

applied at any time and at any place in the expression without changing the value of the

expression.  Thus, all transformation paths do not change the value of an expression.  It doesn’t

matter how you get to a simpler expression (an answer).  Some paths may be longer and less

efficient, but all lead to equivalent results.
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Boundary Techniques

Boundary Logic

Boundary logic uses a spatial representation of the logical connectives.  Because boundaries

delineate both objects and processes, boundary forms can be evaluated using either an algebraic

(match and substitute) process or a functional (input converted to output) process.

Representation of logic and proof in spatial boundaries is new, and quite unfamiliar.  Boundary

logic is not based on language or on typographical strings, nor is it based on sequential steps.

Boundary techniques are inherently parallel and positional.  The meaning, or

interpretation,  of a boundary form depends on where the observer is situated.  From the

outside, boundaries are objects.  From the inside, you cross a boundary to get to the outside;

boundaries then are processes.  This dramatically different approach (that is, permitting the

observer to be an operator in the system) does not change the logical consequences or the

deductive validity of a logical process.

Spatial representations have built-in associativity and commutativity.  The base case is no

representation at all, that is, the void has meaning in boundary logic.  Logical expressions

are simplified by  erasure of irrelevancies rather than by accumulation of facts.

Boundary Logic Representation

log i c boundary comments

False <void> no representation.  Note:  (( )) = <void>

True ( ) the empty boundary

A   A forms are labeled by tokens

not A  (A) bounding negates

A or B  A  B disjunction is sharing the same space

A and B          ((A)(B))
if A then B  (A) B implication is separation by a boundary

A iff B         (A B)((A)(B))

In the above map from conventional logic to boundaries, the many textual forms of logical

connectives condense into one boundary form.  Note that the parens, ( ), is a linear, or one-

dimensional, representation of a boundary.  Circles and spheres are expressions of boundaries

in higher dimensional representations, as is any structure which surrounds and disconnects.

Nested parens define a parital ordering relation.  Nested parens are easily converted into

graphs, maps and paths. What is containment for parens is link connectivity for graphs, shared

borders for maps, and decision points for paths.  Thus, using different but equivalent

representations, logic can be fully expressed by any of these conceptual systems:

    logic == partial ordering == nesting == connectivity == shared border == decision point

This richness of representation leads to many new notations for logic and deduction.
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Multiple Readings of the Same Form

A single expression in the simpler notation of boundary logic can express (infinitely) many

different forms in a more complex notation.  For example:

( (A) (B) ) A and B
(not ((not A) or (not B)))
(not (A implies (not B)))
((not A) or (not B)) implies False

A proof of DeMorgan’s Law:

(A and B)  iff  (not ((not A) or (not B)))

Transcribe:   ((A)(B)) = ((A)(B)) equal by identity

Boundary Logic Algebraic Process

The transformation axioms of boundary logic:

Dominion  (the halting condition, when to stop)

( ) A = ( )

Involution  (how to remove redundant boundaries)

((A)) = A

Pervasion  (how to remove redundant logic)

A (A B) = A (B)

Each axiom suggests a definite reduction strategy:  eerasing irrelevant structure to convert

the left side of the equation to the right side.  That is to say, the axioms of boundary logic

identify void-equivalents.  The right-hand-side of each equation is generated by recognizing

void-equivalent forms within the context defined by the left-hand-side.

Comparative Axiomatic Basis

An axiomatic basis is a minimal set of transformations from which all other transforms can

be derived.  The basis of conventional logic:

P -> (Q -> P) isTrue

((P -> False) -> False) -> P isTrue

(P -> (Q -> R)) -> ((P -> Q) -> (P -> R)) isTrue

Transcribing the conventional basis of logic to boundary logic:
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(P) (Q) P   =  ( )
(((P))) P  =  ( )
((P) (Q) R) ((P) Q) (P) R  =  ( )

The basis of boundary logic is (mathematically) beautiful:

( )  A  =  ( )
((A))   =   A
A (A B) =  A (B)

The functional basis of boundary logic is a single recursive equation:

(( ) A) = <void> Base case
A (''(A B)) = A (''(B)) Inductive case

where '' stands for any depth and any intervening structure, including none.

The base case identifies a void-equivalent:  any boundary containing an empty boundary is void-

equivalent.  Void-equivalence identifies forms which are independent of and invisible to the

meaning of a logical configuration.

The inductive case identifies cases in which boundaries are transparent:  inner boundaries are

transparent to any outer form.  Transparency allows any form to be replicated or deleted

anywhere within the space it is in, including inside boundaries within that space.

Boundary Logic Examples of Proof

To Prove: T r ansc r i be Steps

A implies A (A) A ( ) A
( )

not not A = A ((A)) = A  A = A

A or A = A A A = A A ((A)) = A
A (( )) = A
A       = A

A and B = ((A)(B)) = identity
not (not A or not B))   ((A)(B))

(and (A implies B) A) implies B (( (A) ((A) B) ))  B

(( (A) ((A) B) ))  B
   (A) ((A) B)     B involution
   (A) ((A)  )     B pervasion of B
   (A) (     )     B pervasion of (A)
       (     ) dominion
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A Constructive Proof

SUBSUME A and  (A or B)  =  A

( (A) (    A B) )  =  A transcribe
( (A) ((A) A B) )  =  A insert (A)
( (A) (( ) A B) )  =  A extract A
( (A) (( )    ) )  =  A absorb A B
( (A)           )  =  A clarify
   A               =  A identity, qed.

Truth Table Example in Boundary Logic

Example: if (P and Q) then (R iff (not S))

Transcribe into boundaries:

(P  and  Q) ((P) (Q))
(R iff (not S)) (R (S)) ((R)((S)))  =  (R (S)) ((R) S)
if... then... (((P) (Q))) (R (S)) ((R) S) = (P) (Q) (R (S)) ((R) S)

The expression is True whenever Dominion applies.  Erasing variables sets them to False:

When P is False, it is erased:    ( ) (Q) (R (S)) ((R) S)  =  ( )     dominion

When Q is False:    (P) ( ) (R (S)) ((R) S)  =  ( )     dominion

Note that the form  (X (Y)) (Y (X))  is True when  X is not the same as Y.  Substituting:

(P) (Q) ( (( ))) (( ) ( ))  =  (P) (Q)  ( )        =  ( )

and when R is True and S is False

(P) (Q) (( ) ( )) ( (( )))  =  (P) (Q)        ( )  =  ( )

These four cases identify all the True forms of the expression:

1.  P is False

2.  Q is False

3a.  R is False and R =/= S  (ie S is True)

3b.  S is False and R =/= S  (ie R is True)

Conversely, the expression is False only when everything vanishes, that is, when

(P is True)  and  (Q is True)  and ((R is True, S is free) or (S is True, R is free))

  (( ))          (( ))    ( ( ) (( ))) ((( )) ( ))      (( )) (( ))
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Natural Deduction Example in Boundary Logic

Premise 1: If  A  then  (if  (not  P)  C) the Fruit problem

Premise 2: If  C  then  (if  (O  or  not  K) then P)

Premise 3: Not (if  B  then  P)

Conclusion: Not (A and O)

Encode the logical connectives as boundaries, and simplify:

P1: (A)  ((P)) C = (A)  P  C involution

P2: (C)  (O (K)) P
P3: ( (B) P )
C: ( ((A) (O)) ) = (A)  (O) involution

Join all premises and conclusions into one form, using the logical structure:

(P1 and P2 and P3) ->  C

The proof structure of "conjunction of premises imply the conclusion" as boundaries:

( ((P1) (P2) (P3)) ) C =>  (P1) (P2) (P3)  C involution

Substituting the forms of the premises and conclusion, and reducing:

    ( (A) P C )  ( (C) (O (K)) P )  ( ((B) P) )  (A) (O)
    ( (A) P C )  ( (C) (O (K)) P )     (B) P     (A) (O) involution

    ( (A)   C )  ( (C) (O (K))   )     (B) P     (A) (O) pervasion of P

    (       C )  ( (C) (O (K))   )     (B) P     (A) (O) pervasion of (A)

    (       C )  (     (O (K))   )     (B) P     (A) (O) pervasion of (C)

    (       C )         O (K)          (B) P     (A) (O) involution

    (       C )         O (K)          (B) P     (A) ( ) pervasion of O

                                                     ( ) dominion

Interpret the final form: (  )  =  True

Boundary Quantification

All x.  P(x)   (x)  Px x -> Px  isTrue

Exists x. P(x) ( (x) (Px) ) x and Px  isTrue

Quantifier relations:

        All x. P(x)   iff   (not (Exists x. (not P(x))))  (x) Px    = (( (x) ((Px)) ))

        All x. (not P(x))   iff   (not (Exists x. P(x)))  (x)(Px)   = (( (x)  (Px)  ))

      (not (All x. P(x)))   iff   Exists x. (not P(x)) ((x) Px )  =  ( (x) ((Px)) )

      (not (All x. (not P(x))))   iff   Exists x. P(x) ((x)(Px))  =  ( (x)  (Px)  )


