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Boundary logic is unary rather than binary;  it uses one enclosing iconic

form {O}, rather than two symbolic forms {0,1}.

Inside One

The way this is accomplished is absolutely simple, although the idea is both

innovative and unfamiliar.  Envision the number One:

1

Our viewpoint stands outside of the printed page, and outside of the symbol

1.  Although it has an outside, the symbol 1 does not have an inside.  Iconic

forms do have an inside, they are two dimensional.  We have simply given One

an inside by representing it as an enclosure, or container:

1 = ( )

The inside of One is completely empty, no new properties have been added

other than insideness.  

The inside of One is not the outside.  In binary computation, the symbol Zero

0 represents that which is not One.  In unary computation, the empty inside

of One acts as Zero, it is not-One.  However, there is nothing recorded

inside One, the idea of zero consists of leaving the inside of One empty.

Absence, of course, is not a representation and does not occur as a data-

structure.  Thus Zero has no representation, it is accessed indirectly by

looking inside One.  Thus we have One and Nothing-Inside-of-One instead of 1

and 0.  The token 0 is not needed during computation, it occurs only at

output, in order to transcribe unary logic back into binary logic

1 is            .  (  .  )

               /       \

has an outside          has an inside

 

Outside, we see ( ) and we see 1.  Both exist as objects.

Inside, we see nothing and we infer it is 0.  Zero only exists as a symbol.

Even though the iconic One is empty inside, that void (like the imaginary

rabbit Harvey) can be used to make things easier.
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Filling One

What happens when there is something inside an iconic One?  What can be

inside One?

Thus far, the iconic One is the only representation we have.  (We do not yet

have a rabbit to put inside.)  At this early stage, the inside of One can

either be empty, or it can have another One inside it:

1  =  (  ) nothing inside

2  =  (()) One inside

As a number, the iconic boundary can be seen to double its contents.  Iconic

forms have a place notation also.  Rather than keeping track of "spaces to

the left" as we do for binary string power notation, we simply count depth of

nesting to find out the power.  The rule of iconic depth notation is that

deeper is larger.

In the case of logic, the ideas of Two and Double do not exist.  When we fill

an iconic logic enclosure with a replicate of itself, we change from True to

False:

True  = (  )

False = (()) = <void>

Unary to Binary

Current computers are binary.  How do we accomplish unary computation on

binary machines?  The map is again simple:

1 = ( < ( seen from outside

0 = ) < ) seen from inside

Each "side" of the linearized parens enclosure is encoded as in binary.  The

cost is that the spatial, parallel nature of enclosures is forced into a

linear string representation.  An example:

Parens form: (()(()))

Binary form: 11011000

Each parens form expresses a unique logical configuration.  The accompanying

binary string is also unique.  As well, the string has a parity, since 1s and

0s are balanced in well-formed parens configurations.


