
TEACHING FOR INNOVATION

A Workshop with Dr. William Bricken

presented for the

Software Engineering Institute

East China Normal University

March 2007

TOPICS

 1) Teaching Practices
 2) Learning Styles

 3) Teaching Styles and Methods
 4) Thesis Preparation and Guidance

 5) Curriculum Design
 6) Structuring Content

 7) Projects and Assignments
 8) Small Group Activities

 9) Challenging the Students
10) Testing and Evaluation

TEACHING FOR INNOVATION

A Workshop with Dr. William Bricken

We have the opportunity to meet together for ten one hour sessions. Each

session will consist of about one-third presentation, one-third discussion, and

one-third exercises and activities. Content will be selected dynamically from

these possibilities ("TP:" refers to articles from Tomorrow's Professors

website:

1) TEACHING PRACTICES

Best Practices in Teaching and Learning

TP: Good Teaching: The Top Ten Requirements

TP: Seven Principles of Good Practice in Undergraduate Education

Teaching Styles

TP: Just-in-Time Teaching

TP: Problem-based Learning

TP: Learning by Doing

Instructor Control vs. Learner Control

TP: Silence and Structure in the Classroom

TP: Minimizing the Distances Between Teacher and Student

2) LEARNING STYLES

TP: Major Learning Theories of the Twentieth Century

TP: The Nature of Learning

TP: How Students Learn, How Teachers Teach, and What Goes Wrong

How People Learn

Learning Styles

Types of Learners

Meyers-Briggs Type Indicator

Multiple Intelligences

Talkers and Listeners

Teaching Examples (Bricken):

Management: Classification

3) TEACHING STYLES AND METHODS

TP: New Technologies in Teaching and Learning: Evolution of Lectures

TP: Powerpoint Debate

Teaching Large Classes: Strategies for Improving Student Learning

Activity Breaks: A Push for Participation

TP: Problem Solving Through Design

TP: Asking the Right Questions in Class

TP: Keeping Discussion Going Though Questioning, Listening, Responding

TP: Tactics for Effective Questioning

1

4) THESIS PREPARATION AND GUIDANCE

Small Piddly Projects, and Big Time Undertakings

TP: The Roles and Phases of Mentorship

TP: Combining Undergraduate Research and Learning

Teaching Examples (Bricken):

HCI: Project Ideas and Refinement

HCI: Design a Software Toolkit

Ethics: Local Expert

5) CURRICULUM DESIGN

Teaching and Facilitating Learning Syllabus

TP: The Function of the Course Syllabus

TP: The Value of Writing a Course Portfolio

Syllabus Elements

Course Structuring

Cognitive Taxonomy

Affective Domain Taxonomy

Psychomotor Domain Taxonomy

TP: 101 Things You Can Do the First Three Weeks of Class

Teaching Examples (Bricken):

Situated Curriculum

Curriculum Exercises

Just What is VR Anyway?

Wonderful Computer Science Books

6) STRUCTURING CONTENT

Lesson Plan Outline

How to Write Clear Objectives

Matching Objectives to Learning Styles

Teaching Examples (Bricken):

Formal: Proof Techniques, An Extended Example

Programming: A Small Interpreted Language

Programming: Pseudocode Assignment Package

7) PROJECTS AND ASSIGNMENTS

Teaching Examples (Bricken):

HCI: HCI Assignments

HCI: Interface Design Simulation

AI: LISP Program Modification Exercises

Management: Formal Model: Card Games

HCI: Complete Window System

VR: 3D Interactive Virtual Worlds

VR: Expandable Virtual Cube World

2

DS&A: Exam Package

8) SMALL GROUP ACTIVITIES

Managing Learner-Instructor Interaction and Feedback

TP: Group Presentations

TP: Establishing Ground Rules for Groups

TP: Integrating Team Exercises with Other Course Work

TP: Peer Instruction

TP: Difference Between Cooperative and Collaborative Learning

Teaching Examples (Bricken):

Management: simulation game

Management: archeologist, telephone drawing, consensus

9) CHALLENGING THE STUDENTS

Contests Motivate Top Students in Large Classes

Teaching Examples (Bricken):

Foundations: Chapter 0 and responses

DS&A: Versions of Factorial

Management: Measurement

Management: Critical Incidents

Formal: Formal Cube, Algebraic Specification

AI: Streams with Delayed Evaluation

AI: Knowledge Engineering

Ethics: Six Dilemmas

Applications to Teaching Mathematics (Bricken):

Foundations: Timeline

Foundations: Functions

Formal: Combinatorial Circuit Minimization

Spatial Math

10) TESTING AND EVALUATION

Nine Principles of Good Practice for Assessing Students

Assessment and Outcomes

Evaluating a Course

Teaching Examples (Bricken):

Foundations: Map of the territory

Ethics: Questions and text answers, course summary, content evaluation

Management: What you have learned

3

TEACHING FOR INNOVATION

TOPIC 1. TEACHING PRACTICES

 Best Practices in Teaching and Learning

 TP: Good Teaching: The Top Ten Requirements

 TP: Seven Principles of Good Practice in Undergraduate Education

 Teaching Styles

 TP: Just-in-Time Teaching

 TP: Problem-based Learning

 TP: Learning by Doing

 Instructor Control vs. Learner Control

 TP: Silence and Structure in the Classroom

 TP: Minimizing the Distances Between Teacher and Student

4

Best Practices in Teaching and Learning

The increasing focus on student learning as the central indicator of
institutional excellence challenges many tacit assumptions about the respective
roles of college students and faculty. In student-centered education, faculty
take on less responsibility for being sources of knowledge, and take on greater
responsibility as facilitators of a broad range of learning experiences. For
their part, students are called on to take on more responsibility for their own
learning.

As shown in the following table, the responsibilities of students and faculty
and the relationships between them are quite different in the two models:

Domain
 Teacher-centered Learner-centered

Knowledge
 Transmitted from instructor Constructed by students
Student participation
 Passive Active
Role of professor
 Leader/authority Facilitator/partner in learning
Role of Assessment
 Few tests, mainly for grading Many tests, for ongoing feedback
Emphasis
 Learning correct answers Developing deeper understanding
Assessment method
 Unidimensional testing Multidimensional products
Academic culture
 Competitive, individualistic Collaborative, supportive

Most lists of important "best practices" include the following:

 * Engage students in active learning experiences
 * Set high, meaningful expectations
 * Provide, receive, and use regular, timely, and specific feedback
 * Become aware of values, beliefs, preconceptions; unlearn if necessary
 * Recognize and stretch student styles and developmental levels
 * Seek and present real-world applications
 * Understand and value criteria and methods for student assessment
 * Create opportunities for student-faculty interactions
 * Create opportunities for student-student interactions
 * Promote student involvement through engaged time and quality effort

5

GOOD TEACHING: THE TOP TEN REQUIREMENTS

 By Richard Leblanc, York University, Ontario
 This article appeared in The Teaching Professor after Professor Leblanc won
a Seymous Schulich Award for Teaching Excellence including a $10,000 cash award.
Reprinted here with permission of Professor Leblanc, October 8, 1998.

One. Good teaching is as much about passion as it is about reason. It's about
not only motivating students to learn, but teaching them how to learn, and doing
so in a manner that is relevant, meaningful, and memorable. It's about caring
for your craft, having a passion for it, and conveying that passion to everyone,
most importantly to your students.

Two. Good teaching is about substance and treating students as consumers of
knowledge. It's about doing your best to keep on top of your field, reading
sources, inside and outside of your areas of expertise, and being at the leading
edge as often as possible. But knowledge is not confined to scholarly journals.
Good teaching is also about bridging the gap between theory and practice. It's
about leaving the ivory tower and immersing oneself in the field, talking to,
consulting with, and assisting practitioners, and liaisoning with their
communities.

Three. Good teaching is about listening, questioning, being responsive, and
remembering that each student and class is different. It's about eliciting
responses and developing the oral communication skills of the quiet students.
It's about pushing students to excel; at the same time, it's about being human,
respecting others, and being professional at all times.

Four. Good teaching is about not always having a fixed agenda and being rigid,
but being flexible, fluid, experimenting, and having the confidence to react and
adjust to changing circumstances. It's about getting only 10 percent of what you
wanted to do in a class done and still feeling good. It's about deviating from
the course syllabus or lecture schedule easily when there is more and better
learning elsewhere. Good teaching is about the creative balance between being an
authoritarian dictator on the one hand and a pushover on the other.

Five. Good teaching is also about style. Should good teaching be entertaining?
You bet! Does this mean that it lacks in substance? Not a chance! Effective
teaching is not about being locked with both hands glued to a podium or having
your eyes fixated on a slide projector while you drone on. Good teachers work
the room and every student in it. They realize that they are the conductors and
the class is the orchestra. All students play different instruments and at
varying proficiencies.

6

Six. This is very important -- good teaching is about humor. It's about being
self-deprecating and not taking yourself too seriously. It's often about making
innocuous jokes, mostly at your own expense, so that the ice breaks and students
learn in a more relaxed atmosphere where you, like them, are human with your own
share of faults and shortcomings.

Seven. Good teaching is about caring, nurturing, and developing minds and
talents. It's about devoting time, often invisible, to every student. It's also
about the thankless hours of grading, designing or redesigning courses, and
preparing materials to still further enhance instruction.

Eight. Good teaching is supported by strong and visionary leadership, and very
tangible institutional support -- resources, personnel, and funds. Good teaching
is continually reinforced by an overarching vision that transcends the entire
organization -- from full professors to part-time instructors -- and is
reflected in what is said, but more importantly by what is done.

Nine. Good teaching is about mentoring between senior and junior faculty,
teamwork, and being recognized and promoted by one's peers. Effective teaching
should also be rewarded, and poor teaching needs to be remediated through
training and development programs.

Ten. At the end of the day, good teaching is about having fun, experiencing
pleasure and intrinsic rewards ... like locking eyes with a student in the back
row and seeing the synapses and neurons connecting, thoughts being formed, the
person becoming better, and a smile cracking across a face as learning all of a
sudden happens. Good teachers practice their craft not for the money or because
they have to, but because they truly enjoy it and because they want to. Good
teachers couldn't imagine doing anything else.

7

STRATEGIES THAT IMPROVE UNDERGRADUATE EDUCATION

A variety of well-researched scholarly publications (for example, Association of
American Colleges Task Group on General Education, 1988; Donovan, Bransford, &
Pellegrino, 1999; Engelkemeyer & Brown, 1998; Study Group on the Conditions of
Excellence in American Higher Education, 1984) spanning over fifteen years
provide both faculty and academic administrators with a clear, consistent, and
comprehensive description of instructional strategies for enhanced student
learning. For illustrative purposes here, the findings and recommendations of
three such reports will be mentioned briefly.

Seven Principles of Good Practice in Undergraduate Education

The single best known description of teaching practices that promote student
learning is Chickering and Gamon's (1987, 1991, 1999) "Seven Principles of Good
Practice in Undergraduate Education." First published in an article in the March
1987 AAHE Bulletin, the authors' provocative and pithy review of the research
literature was later reproduced by the Johnson Foundation and over 150,000
copies were distributed. Subsequently, several articles and texts based on this
landmark document, along with helpful instruments to assess instructor and
institutional effectiveness in each of these seven areas, have been created
(Gamson & Poulsen, 1989). These assessment inventories can be found in
Chickering and Gamson (1991) and Hatfield (1995). The seven principles of good
practice are these:

1. Encourages contact between students and faculty. Frequent student-faculty
contact in and out of class is the most important factor in student motivation
and involvement.

2. Develops reciprocity and cooperation among students. Learning is enhanced
when it resembles a team effort rather than a solo race.

3. Encourages active learning. Learning is not a spectator sport. Students must
talk about what they are learning, write about it, relate it to past
experiences, and apply it to their daily lives. They must make what they learn
part of themselves.

4. Gives prompt feedback. Knowing what you do and do not know focuses learning.
Students need appropriate feedback on performance to benefit from courses.

5. Emphasizes time on task. Time plus energy equals learning. There is no
substitute for time on task.

6. Communicates high expectations. If teachers expect more they will get more.

8

7. Respects diverse talents and ways of learning. There are many roads to
learning. Students need the opportunity to show their talents and learn in ways
that work for them.

Other Best Practices

Angelo (1993) similarly articulated for faculty and administrators a well-
supported list "fourteen general research-based principles for improving higher
learning."

1. Active learning is more effective than passive learning.

2. Learning is more effective and efficient when learners have explicit,
reasonable, positive goals, and when their goals fit well with teachers' goals.

3. High expectations encourage high achievement.

4. Motivation to learn is alterable; it can be positively or negatively affected
by the task, the environment, the teacher, and the learner.

5. Learning requires focused attention and awareness of the importance of what
is to be learned.

6. To be remembered, new information must be meaningfully connected to prior
knowledge, and it must first be remembered in order to be learned.

7. Unlearning what is already known is often more difficult than learning new
information.

8. Information that is organized in personally meaningful ways is more likely to
be remembered, learned, and used.

9. To be most effective, teachers need to balance levels of intellectual
challenge and instructional support.

10. Mastering a complex skill or body of knowledge takes great amounts of time
and effort.

11. Learning to transfer, to apply previous knowledge and skills to new
contexts, requires a great deal of directed practice.

12. The ways in which learners are assessed and evaluated powerfully affect the
ways they study and learn.

13. Interaction between teachers and learners is one of the most powerful
factors in promoting learning; interaction among learners is another.

9

14. Learners need feedback on their learning, early and often, to learn well; to
become independent learners, they need to become self-assessing and self-
correcting.

Among the more recent analyses of how instructors can be most helpful in
facilitating student learning is the report of the Joint Task Force on Student
Learning, created by the American Association of Higher Education, the American
College Personnel Association, and the National Association of Student Personnel
Administrators. This document articulated ten principles of learning and
identified a large number of actions and initiatives that have been used on
various campuses to implement these principles (Engelkemeyer & Brown, 1998). The
ten principles of learning are these:

1. Learning is fundamentally about making and maintaining connections:
biologically through neural networks; mentally among concepts, ideas, and
meanings; and experientially through interaction between the mind and the
environment, self and other, generality and context, deliberation and action.

2. Learning is enhanced by taking place in the context of a compelling situation
that balances challenge and opportunity, stimulating and using the brain's
ability to conceptualize quickly ant its capacity and need for contemplation and
reflection upon experiences.

3. Learning is an active search for meaning by the learner = constructing
knowledge rather than passively receiving it, shaping as well as being shaped by
experiences.

4. Learning is developmental, a cumulative process involving the whole person,
relating past and present, integrating the new with the old, starting from but
transcending personal concerns and interests.

5. Learning is done by individuals who are intrinsically tied to others as
social beings, interacting as competitors or collaborators, constraining or
supporting the learning process, and able to enhance learning through
cooperation and sharing.

6. Learning is strongly affected by the educational climate in which it takes
place; the settings and surroundings, the influences of others, and the values
accorded to the life of the mind and to learning achievements.

7. Learning requires frequent feedback if it is to be sustained, practice if it
is to be nourished, and opportunities to use what has been learned.

8. Much learning takes place informally and incidentally, beyond explicit
teaching or the classroom, in contacts with faculty and staff, peers, campus

10

life, active social and community involvement, and unplanned but interesting,
complex situations.

9. Learning is grounded in particular contexts and individual experiences,
requiring effort to transfer specific knowledge and skills to other
circumstances or to more general understandings and ability of individuals to
monitor their own learning, to understand how knowledge is acquired to develop
strategies for learning based on discerning their capacities and limitations,
and to be aware of their own ways of knowing in approaching new bodies of
knowledge and disciplinary frameworks.

10. Learning involves the ability of individuals to monitor their own learning,
to understand how knowledge is acquired to develop strategies for learning based
on discerning their capacities and limitations, and to be aware of their own
ways of knowing in approaching new bodies of knowledge and disciplinary
framework.

11

Teaching Styles

Felder & Soloman, 1992 – "When planning and developing instructional material,
strive for a balance of teaching styles to match the various learning styles."
Rationale

Students will gain more knowledge, retain more information, and perform far
better when teaching styles match learning styles (Lage, Platt, & Treglia,
2000). However, it is recognized that it is difficult to match with every
learning style and therefore, a portfolio of teaching styles is recommended
(Moallem, 2001).

Four Basic Teaching Styles

 1. Formal Authority: A instructor-centered approach where the instructor
feels responsible for providing and controlling the flow of content which the
student is to receive and assimilate. The formal authority figure does not
concern himself with creating a relationship with the student nor is it
important if the students build relationships with each other.

 2. Demonstrator or Personal Model: A instructor-centered approach where the
instructor demonstrates and models what is expected (skills and processes) and
then acts as a coach or guide to assist the students in applying the knowledge.
This style encourages student participation and utilizes various learning
styles.

 3. Facilitator: A student centered approach where the instructor facilitates
and focuses on activities. Responsibility is placed on the students to take
initiative to achieve results for the various tasks. Students who are
independent, active, collaborative learners learners thrive in this environment.
Instructors typically design group activities which necessitate active learning,
student-to-student collaboration and problem solving.

 4. Delegator: A student-centered approach whereby the instructor delegates
and places much control and responsibility for learning on individuals or groups
of students. This type of instructor will often require students to design and
implement a complex learning project and will act solely in a consultative role.
Students are often asked to work independently or in groups and must be able to
effectively work in group situations and manage various interpersonal roles.

Consider these questions on teaching style

 * What teaching style do you mainly use?
 * Does your style facilitate achievement of course goals?
 * Should you consider new styles or continuations of teaching styles?

1

12

TEACHING STYLES

Grasha's Five Teaching Styles

1. Expert

Possesses knowledge and expertise that students need. Strives to maintain status
as an expert among students by displaying detailed knowledge and by challenging
students to enhance their competence. Concerned with transmitting information
and insuring that students are well prepared.

Advantage: The information, knowledge, and skills such individuals possess.

Disadvantage: If overused, the display of knowledge can be intimidating to less
experienced students. May not always show the underlying though processes that
produced answers.

2. Formal Authority

Possesses status among students because of knowledge and role as a faculty
member. Concerned with providing positive and negative feedback, establishing
learning goals, expectations, and rules of conduct for students. Concerned with
the correct, acceptable, and standard ways to do things and with providing
students with the structure they need to learn.

Advantage: The focus on clear expectations and acceptable ways of doing things.

Disadvantages: A strong investment in this style can lead to rigid,
standardized, and less flexible ways of managing students and their concerns.

3. Personal Model

Believes in "teaching by personal example" and establishes a prototype for how
to think and behave. Oversees, guides, and directs by showing how to do things,
and encouraging students to observe and then to emulate the instructor's
approach.

Advantage: An emphasis on direct observation and following a role model.

Disadvantage: Some teachers may believe their approach is the best way leading
some students to feel inadequate if they cannot live up to such expectations and
standards.

2

13

4. Facilitator

Emphasizes the personal nature of teacher-student interactions. Guides and
directs students by asking questions, exploring options, suggesting
alternatives, and encouraging them to develop criteria to make informed choices.
Overall goal is to develop in students the capacity for independent action,
initiative, and responsibility. Works with students on projects in a
consultative fashion and tries to provide as much support and encouragement as
possible.

Advantage: The personal flexibility, the focus on students' needs and goals, and
the willingness to explore options and alternative courses of action.

Disadvantage: Style is often time consuming and is sometimes employed in a
positive and affirming manner.

5. Delegator

Concerned with developing students' capacity to function in an autonomous
fashion. Students work independently on projects or as part of autonomous teams.
The teacher is available at the request of students as a resource person.

Advantage: Helps students to perceive themselves as independent learners.

Disadvantage: May misread student's readiness for independent work. Some
students may become anxious when given autonomy.

3

14

JUST-IN-TIME TEACHING
Blending Active Learning with Web Technology

PREFACE EXCERPT

Just-in-time Teaching (JiTT) is a pedagogical strategy that succeeds
through a fusion of high-tech and low-tech elements. On the high-tech
side, we use the World Wide Web to deliver multimedia curricular
materials and to manage electronic communications among faculty and
students. On the low-tech side, we maintain a classroom environment
that emphasizes personal teacher-student and student-student
interactions. We combine these disparate elements in several ways, and
the interplay produces an educational setting that students find
engaging and instructive. The underlying method is to use feedback
between the Web and the classroom to increase interactivity and allow
rapid response to students' problems.

We have based most of the discussion in this book on physics because it
is our primary subject. However, there is nothing in our underlying
method that is specific to physics. Interactivity and responsiveness
are applicable to any instructional setting, and student achievement and
motivation are important in any subject. While any course can benefit
from JiTT, it is easy to describe those courses that can benefit the
most: any course that students consider to be of secondary importance to
their lives or their education. Courses taken to satisfy requirements
and courses taken by part-time students meet these criteria. We use
physics examples because we are familiar and experienced with. We hope
that this does not put off instructors from other fields. We encourage
others to adapt our ideas to their own subjects.

CHAPTER 1: WHAT IS JITT

Just-in-time-Teaching is a teaching and learning strategy comprised of
two elements: classroom activities that promote active learning and
World Wide Web resources that used to enhance the classroom component.
Many industries use JiTT methods; they combine high-speed communications
and rapid distribution systems to improve efficiency and flexibility.
Our use of JiTT is analogous in many ways. We combine high-speed
communications on the Web with our ability to rapidly adjust to our
students' needs. The essential element is feedback between the
Web-based and classroom activities.

WE have built the JiTT system around Web-used preparatory assignments
that are due a few hours before class. The students complete these
assignments individually, at their own pace, and submit them
electronically. In turn, we adjust and organize the classroom lessons

15

in response to the student submissions "Just-in-Time." Thus, a feedback
loop between the classroom and the Web is established. Each lecture is
preceded and informed by an assignment on the Web. This cycle occurs
several times each week, encouraging students to stay current and to do
so by studying in several sessions that are short enough to avoid
fatigue.

THE JiTT GOALS

We strive for both physics content mastery and acquisition of more
general skills. We also design our courses to provide experiences in
teamwork and opportunities to practice written and oral communication.
Our goal is to help the whole spectrum of students advance and learn,
rather than targeting the average students or either extreme. The JiTT
strategy provides appropriate levels of support and feedback. JiTT
provides remediation and encouragement to the weaker students while
providing enrichment to the stronger students.

Students Enrolled in a Course that Successfully Implements JiTT Will:
* Gain both problem-solving skills and conceptual understanding
* Connect classroom physics to real-world phenomena and to their careers
* Be in control of their own learning processes
* Develop their critical thinking ability
* Develop their ability to frame and solve problems
* Develop their teamwork and communication skills

In addition to traditional homework assignments, students taking a
JiTT-based course work in two interactive instructional environments.
They work at their own pace in a virtual, Web-based setting that
continually evolves with the progress of the class. They also
collaborate with each other and instructors in a highly interactive
classroom. Electronic communication among students and faculty provides
a bridge between these two settings.

The JiTT Strategy Specifically Target Obstacles Facing Many of Today's
Students:
* Motivation to learn physics
* Study habits and academic backgrounds
* Confidence in their ability to succeed
* Time constraints

These goals and difficulties are addressed by combining high-tech
(Web-based) and low-tech (classroom) elements, which we will discuss
throughout this book. The feedback between these elements and between
the people involved is the most fundamental asset of the JiTT method.

16

THE JITT ENVIRONMENT

We have been student-testing this strategy for five semesters and are
encouraged by the results, both attitudinal and cognitive. For details,
visit the JiTT Web-site: http://webphysics.iupui.edu/jitt.html

In fact, working with the JiTT strategy has convinced us that the Web,
combined with live teachers in the classroom, can humanize instruction
for all students and make a real difference to the nontraditional
student.

We have developed JiTT concurrently at three institutions: Indiana
University Purdue University at Indianapolis (IUPUI), the United States
Air Force Academy (USAFA) in Colorado Springs and Davidson College. The
JiTT strategy is effective despite numerous differences among the three
institutions (we will elaborate in Chapter 2). This suggests that JiTT
is applicable in many other settings. The generality of the JiTT
approach is also shown by our experiences with national JiTT workshops
attended by faculty from a broad spectrum of institutions. For example,
Daniel Kim-Shapiro, an assistant professor of physics at Wake Forest
University, a private four-year liberal arts institution, has
successfully employed the JiTT strategy in his calculus-based
introductory physics course taken by approximately 50 students. most of
whom were pre-med majors. His students gave the use of the strategy an
overall rating of 8 out of 10 on an end-of-course survey. It is
interesting to note that in similar surveys at IUPUI, USAFA, and
Davidson, our students also gave the JiTT strategy a score of 8 out of
10.

WHAT JITT IS NOT

Despite our best efforts to explain what JiTT is, some readers may pick
up false impressions. With this in mind, we would like to list a few
things that JiTT is not:
* JiTT is Not a way to "process" more students
* JiTT is Not "Just-in-Time Training"
* JiTT is Not distance learning
* JiTT is Not computer-aided instruction
* JiTT is Not designed from student evaluations
* JiTT is Not market research

We pay attention to our students' comments and suggestions. We agree
with some but disagree with others. The JiTT strategy was not designed
with student evaluations as the motivation for change; it was designed
to address pedagogical issues.

17

Why Problem-Based Learning?

Why Change the Way We Teach?

What worked in the classroom a decade (or two or three) ago, however, will no
longer suffice for the simple reason that past approaches fail to develop the
full battery of skills and abilities desired in a contemporary college graduate.
In June of 1994, a Wingspread Conference brought together state and federal
policymakers, and leaders from the corporate, philanthropic, higher education,
and accreditation communities to discuss quality in undergraduate education.
This conference was sponsored by the Education Commission of the States (ECS),
the Johnson Foundation, the National Governors' Association, and the National
Conference of State Legislatures. The discussion that took place was based on
the assertion that substantial improvement in American undergraduate education
is needed to prepare students to function successfully in current business and
industrial environments. The Conference developed the following list of
important characteristics of quality performance of college and university
graduates (Wingspread, 1994):

* High-level skills in communication, computation, technological literacy, and
information retrieval to enable individuals to gain and apply new knowledge and
skills as needed

* The ability to arrive at informed judgments-that is, to effectively define
problems, gather and evaluate information related to those problems, and develop
solutions

* The ability to function in a global community through the possession of a
range of attitudes and dispositions including flexibility and adaptability, ease
with diversity, motivation and persistence (for example, being a self-starter),
ethical and civil behavior, creativity and resourcefulness, and the ability to
work with others, especially in team settings

* Technical competence in a given field

* Demonstrated ability to deploy all of the previous characteristics to address
specific problems in complex, real-world settings, in which the development of
workable solutions is required

Survey results (Czujko, 1994) of all physics baccalaureates who were employed in
either the private sector or government/national labs confirmed the Wingspread
Conference conclusions. With approximately 80 percent response to the question,
"What skills have you found to be the most useful in your work?", problem-
solving, interpersonal skills, technical writing, and management skills were
cited (greater than 60 percent) over physics knowledge. More recently, the
Carnegie Foundation's report, Reinventing Undergraduate Education: A Blueprint

18

for America's Research Universities (1998) stated that "traditional lectures and
note-taking were created for a time when books were scarce and costly and
lecturing to large numbers of students was an efficient means of transferring
knowledge." Lecturing is still efficient and has persisted as the traditional
teaching method largely because it is familiar, easy, and how we learned. It
does little, however, to foster the development of process skills to complement
content knowledge.

There are teaching practices, however, that do foster such skill development
without forsaking content. Quoting John Dewey's observation that "true learning
is based on discovery guided by mentoring rather than the transmission of
knowledge," (Boyer, 1998, p. 15) the Boyer report urged universities to
Šfacilitate inquiry in such contexts as the library, the laboratory, the
computer, and the studio, with the expectation that senior learners, that is,
professors, will be students' companions and guidesŠ. The research university's
ability to create such an integrated education will produce a particular kind of
individual, one equipped with a spirit of inquiry and a zest for problem
solving; one possessed of the skill in communication that is the hallmark of
clear thinking as well as mastery of language; one informed by a rich and
diverse experience. It is that kind of individual that will provide the
scientific, technological, academic, political, and creative leadership for the
next century. (Boyer, 1998)

Student-centered, inquiry-based instruction, particularly problem-based
learning, falls right into line with this philosophy; indeed, the Boyer
Commission pointed to the PBL efforts at the University of Delaware as one
example of how to help students reach the important goals highlighted in the
report.

What is Problem-based learning?

We believe that problem-based learning (PBL) provides a forum in which these
essential skills will be developed. The basic principle supporting the concept
of PBL is older than formal education itself; namely, learning is initiated by a
posed problem, query, or puzzle that the learner wants to solve (Boud & Feletti,
1991). In the problem-based approach, complex, real-world problems are used to
motivate students to identify and research the concepts and principles they need
to know to work through those problems. Students work in small learning teams,
bringing together collective skills at acquiring, communication, and integrating
information. Problem-based instruction addresses directly many of the
recommended and desirable outcomes of an undergraduate education: specifically,
the ability to do the following:

* Think critically and be able to analyze and solve complex, real-world problems
* Find, evaluate, and use appropriate learning resources
* Work cooperatively in teams and small groups

19

* Demonstrate versatile and effective communication skills, both verbal and
written
* Use content knowledge and intellectual skills acquired at the university to
become continual learners

The PBL Cycle

PBL in the sciences traces its roots to the medical school setting where small
groups of intellectually mature, highly motivated medical students work in small
groups with a dedicated faculty tutor to learn basic science concepts in the
context of actual clinical cases. The process of problem-based instruction (Boud
& Feletti, 1997) follows:

* Students are presented with a problem (case, research paper, videotape, for
example). Students working in permanent groups organize their ideas and previous
knowledge related to the problem and attempt to define the broad nature of the
problem.

* Throughout discussion, students pose questions called "learning issues" that
delineate aspects of the problem that they do not understand. These learning
issues are recorded by the group and help generate and focus discussion.
Students are continually encourage to define what they know and-more
importantly-what they don't know.

* Students rank, in order of importance, the learning issues generated in the
session. They decide which questions will be followed up by the whole group and
which issues can be assigned to individuals, who later teach the rest of the
group. Students and instructor also discuss what resources will be needed to
research the learning issues and where they could be found.

* When students reconvene, they explore the previous learning issues,
integrating their new knowledge into the context of the problem. Students are
also encouraged to summarize their knowledge and connect new concepts to old
ones. They continue to define new learning issues as they progress through the
problem. Students soon see that learning is an ongoing process and that there
will always be (even for the teacher) learning issues to be explored.

PBL fosters the ability to identify the information needed for a particular
application, where and how to seek that information, how to organize that
information in a meaningful conceptual framework, and how to communicate that
information to others. Use of cooperative working groups fosters the development
of learning communities in all classrooms, enhancing student achievement
(Johnson, Johnson, & Smith, 1991). Students who learn concepts in the context in
which they will be used more likely to retain that knowledge and apply it
appropriately (Albanese & Mitchell, 1993). They will also recognize that

20

knowledge transcends artificial boundaries since problem-based instruction
highlights interconnections between disciplines and the integration of concepts.

References

Albanese, M.A. & Mitchell, S. (1993). Problem-based learning: A review of
literature on its outcomes and implementation issues. Academic Medicine, 68,
52-81.
Boud, D., & Feletti, G. (1997) The challenge of problem-based learning (2nd
ed.). London: Kogan Page.
Johnson, D. W., Johnson, R. T., & Smith, K. A. (1991). Cooperative learning:
Increasing college faculty instructional productivity. (ASHE-ERIC Higher
Education Report No. 4). Washington, DC: George Washington University.

21

Learning by Doing

Thanks to some excellent classroom and cognitive research in recent decades, we
know a great deal about how learning happens and how little of it happens in
lectures.1

There's no mistaking the catatonia that falls over classrooms after even just a
few minutes of it. Numbed minds can't learn. The students who decide that their
interests lie in cutting that 8 a.m. class and getting more sleep may be right
on target.

You have roughly 40 contact hours in a typical course. If all you do in them is
lecture, you might as well just hand out your notes and let the students find
something more productive to do with all that time. The only way a skill is
developed-skiing, cooking, writing, critical thinking, or solving thermodynamics
problems-is practice: trying something, seeing how well or poorly it works,
reflecting on how to do it differently, then trying it again and seeing if it
works better. Why not help students develop some skills during those contact
hours by giving them guided practice in the tasks they'll later be asked to
perform on assignments and tests? Which is to say, why not use active learning?
At several points during the class,

1. Give the students something to do (answer a question, sketch a flow chart or
diagram or plot, outline a problem solution, solve all or part of a problem,
carry out all or part of a formula derivation, predict a system response,
interpret an observation or an experimental result, critique a design,
troubleshoot, brainstorm, come up with a question,Š).

2. Tell them to work individually, in pairs, or in groups of three or four; tell
them how long they'll have (anywhere from 10 seconds to two minutes); and turn
them loose.

3. Stop them after the allotted time, call on a few individuals for responses,
ask for additional volunteered responses, provide your own response if
necessary, and continue teaching.

You may also occasionally do a think-pair-share, in which the students work on
something individually and then pair up to compare and improve their responses
before you call on them. As little as five minutes of that sort of thing in a
50-minute class session can produce a major boost in learning. For starters, it
wakes students up: we have seen some of them elbowing their sleeping neighbors
when an active learning task was assigned. Academically weak students get the
benefit of being tutored by stronger classmates, and stronger students get the
deep understanding that comes from teaching something to someone else. Students
who successfully complete a task own the knowledge in a way they never would
from just watching a lecturer do it. Students who are not successful are put on

22

notice that they don't know something they may need to know, so when the answer
is provided shortly afterwards they are likely to pay attention in a way they
never do in traditional lectures.

The number of possible active learning tasks is limitless.2 At a minimum, you
can ask the same questions you would normally ask in your lectures, only now
you'll get the whole class trying to answer them and not just the same two
students who always answer the questions. You can also use any of the activities
suggested in Item 1 of the list several paragraphs back, and you might
occasionally run a TAPPS ("thinking-aloud pair problem solving") exercise,
arguably the most powerful classroom instructional technique for promoting
understanding.3 Have the students work in pairs through a complex derivation or
worked-out problem solution in the text or on a handout, with one of them
explaining the solution step-by-step and the other questioning anything unclear
and giving hints when necessary. Periodically stop them, call on several of them
for explanations, provide your own when necessary, and have the students reverse
roles in their pairs and proceed from a common starting point. It may take most
or all of a class period to work through the entire solution, but the students
will end with a depth of understanding they would be unlikely to get any other
way.

Here are several techniques to make active learning as effective as possible.

* At the beginning of the course, announce that you'll be assigning short
exercises during class and explain why you're doing it (research shows students
learn by doing, and the exercises will give them a head start on the homework
and tests). The explanation can help defuse the resistance some students feel
toward any teaching approach but the instructor telling them just what they need
to know for the exam.

* After an active learning exercise, call on a few individuals for responses
before opening the floor to volunteers. The knowledge that you might call on
them gets active participation from students who would normally just sit
passively and let others do the work.

* Go for variety. Vary the type of activity (answering questions, solving
problems, brainstorming, etc.), the activity duration (10 seconds-2 minutes),
the interval between activities (1-15 minutes), and the size of the groups (1-4
students). Mixing things up keeps active learning from becoming as stale as
straight lecturing.

As many as half of the participants in our recent teaching workshops report
using active learning in their classes, but nonusers often have concerns about
the approach. (1) If I use active learning, will I still be able to cover my
syllabus? (2) Can I do it in a really large class? (3) What should I do if some
of my students refuse to participate?

23

We have offered detailed answers to the first two questions in another column4
and so will just give the short versions here. (1) Yes. (See Reference 5 for
details on how.) (2) Yes, and in fact, the larger the class, the more important
it is to use active learning. Try finding another way to get students actively
engaged when there are 150 of them in the room.

What about (3)-students who refuse to participate? There may indeed be several
who just sit staring straight ahead when groupwork is assigned, even after the
awkwardness of the first few times has passed. We never see more than two or
three of them in our classes, but for the sake of discussion let's say it's as
many as 10% in yours. That means that while you're doing an active learning
exercise, 90% of the students are actively engaged with the material and getting
practice in the skills you're trying to teach them, and 10% are out to lunch. On
the other hand, at any given moment in a traditional lecture, if as many as 10%
of your students are actively involved with the lecture material you're doing
very well. No instructional technique works for all students at all times: the
best you can do is reach as many as possible, and 90% is more than 10%. If some
students opt out, don't let it bother you-it's their loss, not yours.

In short, if you start using active learning in your classes, you can expect to
see some initial hesitation among the students followed by a rapidly increasing
comfort level, much higher levels of energy and participation, and above all,
greater learning. See for yourself.

References

1. (a) W.J. McKeachie, P.R. Pintrich, Y-G Lin, D.A. Smith, & R. Sharma, Teaching
and Learning in the College Classroom: A Review of the Research Literature (2nd
Ed.), Ann Arbor, University of Michigan, 1990; (b) J.D. Bransford, A.L. Brown,
and R.R. Cocking, Eds. How People Learn: Brain, Mind, Experience, and School,
Washington, National Academy Press, 2000.

2. (a) D.W. Johnson, R.T. Johnson, & K.A. Smith, Active Learning: Cooperation in
the College Classroom, 2nd Edn., Edina, MN, Interaction Book Company, 1998; (b)
R.M. Felder and R. Brent, "Cooperative Learning in Technical Courses:
Procedures, Pitfalls, and Payoffs," ERIC Document Reproduction Service, ED
377038 (1994), <www.ncsu.edu/felder-public/Papers/Coopreport.html>.

3. J. Lochhead & A. Whimbey, "Teaching Analytical Reasoning through Thinking
Aloud Pair Problem Solving," in J.E. Stice (Ed.), Developing Critical Thinking
and Problem-Solving Abilities, New Directions for Teaching and Learning, No. 30,
San Francisco, Jossey-Bass, 1987.

4. R.M. Felder and R. Brent, FAQs-II. Chem. Engr. Education, 33(4), 276-277
(1999). <http://www.ncsu.edu/felder-public/Columns/FAQs-2.html

24

Instructor Control vs. Learner Control

Learner control refers to the ability of students to choose topics, assignments,
project format or communication strategies according to their own interests and
preferences.

Reigeluth & Stein 1983, p. 362 – "... instruction generally increases in
effectiveness, efficiency, and appeal to the extent that it permits informed
learner control by motivated learners."

Marlino, M.R. – "While some learner control can be motivating, too much can be
confusing. The learner may not always be the best judge of the instruction
required for effective learning.

Rationale

 * Learner control strategies tend to increase students' involvement and
achievement (Williams, 1996).

 * "Learners given control over their instruction might be more likely to
think about what they are doing as a result of having to make choices along the
way" (Williams, 1996).

 * "Adults desire to 'set my own learning pace,' 'use my own style of
learning,' 'keep the learning strategy flexible,' and 'put my own structure on
the learning project'." (Penland, 1979).

 * "No open arguments exist against learner control, yet there are arguments
on the degree of learner control, i.e., how much learner control should the
students have (Schulmeister, 1997).

Definition of learner control

Williams, 1996 – '"[Learner control is when] learners make their own decisions
regarding to some aspects of the 'path', 'flow', or 'events' of instruction."

In many classes, learner control can take the form of learner choice, i.e.,
alternatives that achieve the same learning objectives but give learners
opportunities to select the best way to learn and the best way to show what they
have learned. Consider the following situations:

1

25

 * Students can choose to write one 50-page paper or three 12-page papers on
3 different topics.

 * Students can choose alternative project formats (e.g. a poster,
presentation, or a short paper).

 * Students can choose to hand in a draft of the paper before it's due, it's
not graded, but you give the students feedback.

 * Students are given the option of additional practice exercises. They are
available but not required.

 * Students can choose to do an interview through video-conferencing or face-
to-face.

 * Students can choose to take a class in a traditional lecture format, an
online format or a combined ("hybrid") online and traditional format.

Degree of Learner control

The degree of learner control should depend on following variables: (Depover and
Quintin, 1992; Hannafin, 1984; Milheim & Martin, 1991; Steinberg, 1989):

 * Previous knowledge
 * Student strategy and ability
 * Learning progress
 * Complexity of material
 * Familiarity with the subject

Instructor guidance vs. Learner control

Some questions to consider:

 * Is it necessary to tell the students every step they should take?

 * Do you provide resources and let the students select from among the
resources?

 * Should you let students choose their own research topic, will you assign a
topic, or will you provide a list of topics from which they may choose?

2

26

SILENCE AND STRUCTURE IN THE CLASSROOM
From Seminar to Town Meeting via 'Post-it's

Chad M. Hanson, Ph.D.
Northcentral Tech
Wausau, WI

Like most, I started out teaching the way I was taught. My first inclination
as a faculty member was to reproduce the format of the graduate course. I
wanted my students to share the same feeling of excitement I had known as a
student. I wanted their minds to sharpen and their pulses to quicken just as
mine had in those vital forums.

Sociology is my subject so it's probably no surprise that I started teaching
by selecting a textbook and several readings from within the field. Mindful
of my students' level of preparation, I chose well-respected articles
written for a general audience, and I assigned only four of them in my
Introduction to Sociology classes. I explained to students early on in the
semester that the articles would serve as a basis for in-class discussions.

When the first discussion date rolled around I walked into class with
genuine enthusiasm. I welcomed the students, reminded them about the
discussion, then I followed in the footsteps of one of my fondest mentors by
issuing a familiar challenge. "OK," I said, "who would like to begin?" No
one began. There were no hands in the air. I did not hear the cacophony of
voices I had come to know so well in graduate school--everyone anxious to
support or refute the claims of the author now up for discussion. Instead
there was silence. This wasn't graduate school. Twenty-nine pairs of eyes
pointed in my direction. So I began.

I continued, and eventually I finished the discussion myself. Meanwhile,
students wrote in their tablets. They took what looked like detailed notes
while I talked, and that was gratifying, but not part of my plan.
Unfortunately, I repeated roughly the same series of events four more times
the same week. By Friday afternoon, I had decided the approach that worked
so well for my professors was not going to work for me.

The Pendulum Swings: Structured Cooperative Learning Activities

The first step in any process of redemption involves admitting you have a
problem, which, obviously, I did. I needed help and I sought it out. The
first place I found guidance was the literature on cooperative learning.
Years before, I ran across a copy of Ken Bruffee's Collaborative Learning
(1993). I revisited Bruffee first, because I remembered that he outlines a
theoretical foundation for collaboration in the college classroom. For
anyone experimenting with discussion leading or the grouping of students for

27

educational purposes, I recommend Bruffee's work.

For the nuts and bolts of getting students involved in conversation, I
relied on the work of David and Roger Johnson, namely Active Learning
(Johnson, Johnson, and Smith, 1991). Over the last several years I have had
a great deal of success using the procedures described by these authors.
Success with the cooperative learning approach described by Johnson and
Johnson hinges on having a clear set of guidelines for students. In the
Johnsons' model, each student must have a clearly defined role in the class.
The instructor's job is to ensure that the students' roles and the
objectives of the class are both well defined. I have found that when I take
that initiative, the procedures outlined in Active Learning provide a formal
structure for ensuring that students stay engaged with course material, and
with one another, during the class periods I set aside for cooperative work.

Although I quickly became comfortable with the Active Learning techniques, I
found that I still had a longing to create the excitement and spontaneity of
the unstructured and free-ranging discussions that took place in my graduate
courses. At the same time, I also began to feel a responsibility to create
an environment where students could interact with one another in an exchange
that would mirror that of a discussion held outside of the classroom in
places where our democratic traditions are strongest (Beckman, 1990). I had
in mind the New England town meeting as an ideal (Bellah, et al., 1985).
Consequently, I set out to create a forum where I did not personally
determine the nature of each student's contribution to in-class discussions.
I did not want to prohibit the discussions from unfolding on their own, as
they would in a town meeting or similarly democratic forum.

As I began to conceive the new format for my in-class discussions, I
realized that citizens who attend town meetings are a self-selected group.
The attendees are there because they have something to say. My students are
also a self-selected group, but the primary reason for selecting one of my
courses is that it fulfills a requirement for the degrees that they seek.
Given the lack of inherent motivation, I needed a strategy that would ensure
everyone's participation. The solution to my problem was as near as the pad
of Post-it notes lying next to my office telephone.

Finding the Middle Ground: Required Participation

Today, I use a particular format to create an environment in the classroom
that approximates a town hall meeting. The first step I take is to allow the
students to decide the topics to be discussed. I begin by having students
brainstorm a list of potential topics in small groups. After each group
generates its own list, we compile all the topics on a chalkboard and hold a
vote to determine the top ten to be discussed.

28

Once the topics are determined I select groups of two to four students, at
random, to lead the discussions. I require discussion leaders to find at
least two articles on their topic and I give them a list of things to
consider when they analyze the articles, including a set of guidelines on
how to prepare a set of talking points to use during the town hall meetings.

However, in the town hall format, the most important step is to ensure that
all of the students have both the opportunity and the incentive to
participate. In order to create that incentive I make each discussion worth
two points. To earn the points, people have to take part.

I begin town hall meetings by giving two Post-it notes to every student in
class. The Post-its are worth a point each, so I have them write their name
on each note. After the discussion leaders are given the floor, all of the
students are free to raise questions or to comment. Each time they add to
the discussion, students stick one of their Post-it notes on the front of
their desk for everyone to see. Once a person has participated twice and
placed both Post-its on the front of their desk, they can no longer earn
points but they may still contribute to the discussion.

I have found that Post-it notes, visible to all, serve two important roles
in class. First, for students who might otherwise dominate discussions, the
notes are visual reminders that they have already said their piece. I have
found this to be a subtle, but important reminder in those cases. Second,
the notes are a less than subtle reminder to those less likely to
participate. In this case the notes serve as a reminder that you do not earn
points if you do not contribute to the discussion. I realize that may seem
like undue pressure to place on students who may not wish to participate.
However, during the last three semesters I have found that students who
participate quickly and place their notes out in front right away often go
on to create opportunities for other students to answer questions or to
comment. One of the most rewarding observations I have made during town hall
meetings has been the tendency of outspoken members of class to encourage
others to add their voices to the conversations. Each semester I watch
students take steps to ensure that everyone has a chance to contribute.

Conclusion

During the time I've spent using Post-it notes and town hall meetings, I
have felt very close to the format of the graduate seminar I enjoyed so much
as a student. The discussions flow freely, they are full of excitement and
they serve as a model for democratic participation. As an unintended
consequence, I have also been pleased to find that Post-its have had the
effect of producing an environment where students consistently demonstrate
that they value each other's thoughts. When I use the notes in class I am

29

guaranteed not to face the silence that vexed me as a beginning teacher. At
the same time, they provide a structure that is subtle enough to allow the
freedom necessary for students to determine the nature of their own
contribution to class. Today I can say that the unassuming stack of Post-its
that sits next to my phone provides the means to create balance, equity and
a model for democracy in the classroom.

References

* Beckman, M. 1990. "Collaborative Learning: Preparation for the Workplace
and Democracy?" College Teaching 38/4: 128-133.
* Bellah, R., et al. 1985. Habits of the Heart: Individualism and Commitment
in American Life. Berkeley, CA: University of California Press.
* Bruffee, K. 1993. Collaborative Learning: Higher Education,
Interdependence and the Authority of Knowledge. Baltimore, MD: Johns Hopkins
University Press.
* Johnson, D., Johnson, R., and Smith, K. 1991. Active Learning: Cooperation
in the College Classroom. Edina, MN: Interaction Book Company.

30

MINIMIZING THE DISTANCES BETWEEN TEACHER AND STUDENT

(1) Let students know that they are not faces in an anonymous audience.
In large courses students often think that their classroom behavior
(eating, talking, sleeping, reading the newspaper, arriving late, leaving
early) goes unnoticed. Tell students that you are aware of what is
happening in class and act accordingly.

(2) Ask students to refrain from sitting in certain rows of the classroom.
For example, one math professor asks students to sit only in rows 1 ,2, 4,
5, 7 ,8 and so on. With rows 3, 6, and 9 empty, he can walk thorough the
audience between the rows, which is especially important while students are
working at their seats. Of course this suggestion is only possible if your
course is not maximally enrolled or oversubscribed and if your classroom is
large enough.

(3) Recognize students' outside accomplishments.
Read your campus newspaper, scan the dean's list, pay attention to
undergraduate awards and honors, and let students know you are aware of
their achievements.

(4) Occasionally attend lab or discussion sections. Sections give you an
opportunity to meet students and answer questions in a smaller setting.

(5) Capitalize on outside events or situations, as appropriate.
Relate major world events or events on campus both to topics in your class
and to the fabric of your students' lives outside the classroom. Consider
distributing a calendar or setting aside class time to mention community
events and resources that will enhance their understanding of the subject
matter: plays, lectures, performances, demonstrations and the like.

(6) Arrive early and chat with students.
Ask how the course is going, whether they are enjoying the readings,
whether there is anything they want you to include in the lectures. Or ask
students to walk back with you to your office after class.

(7) Read a sampling of assignments and exams.
If you have graduate student instructors who do most of the grading, let
students know you will be reading and grading some of their assignemtns and
exams.

(8) Seek out students who are doing poorly in the course.
Write "I know you can do better, see me during my office hours on all exams
graded C or below. Offer early assistance to students having difficulty.

(9) Acknowledge students who are doing well in the course.

31

Write "Good job! See me after class on all exams graded A, or above. Take
a moment after class to compliment students who are excelling. Some
teachers send "A" students a letter of congratulations at the end of the
semester.

(10) Schedule topics for office hours.
If students are reluctant to come, periodically schedule a "help session"
on a particular topic rather than a free-form office hour. See "Holding
Office Hours."

(11) Talk about questions students have asked the previous terms.
Mention specific questions former students have asked and explain why they
were excellent questions. This lets students know that you take their
questions seriously and that their questions will contribute to further
offerings of the course. (Source: Gleason, 1986).

(12) Listen attentively to all questions and answer them directly.
If they answer to a question is contained in material you will cover during
the remainder of the lecture, acknowledge the aptness of the question
directly whey you arrive at that subject. See "Fielding Students'
Questions."

(13) Try to empathize with beginners.
Remember that not all of your students are as highly motivated and
interested in the discipline as you were when you were a student. Slow
down when explaining complex ideas, and acknowledge the difficulty and
importance of certain concepts or operations. Try to recall your first
encounter with the concept - what examples, strategies, or techniques
helped clarify it for you? By describing that encounter and its resolution
to your students, you not only explain the concept but also convey the
struggle and rewards of learning.
(Source: Gleason, 1986)
[Gleason, M. "Better Communication in Large Courses,"*College Teaching*
1986, 34(1), 20-24.]

32

TEACHING FOR INNOVATION

TOPIC 2. LEARNING STYLES

 TP: Major Learning Theories of the Twentieth Century

 TP: The Nature of Learning

 TP: How Students Learn, How Teachers Teach, and What Goes Wrong

 How People Learn

 Learning Styles

 Types of Learners

 Meyers-Briggs Type Indicator

 Multiple Intelligences

 Talkers and Listeners

Teaching Examples (Bricken):

 Management: Classification

33

MAJOR LEARNING THEORIES OF THE TWENTIETH CENTURY

Pantel, C. (1997). Educational Theory. A Framework for Comparing Web-Based
Learning Environments.

Chapter 2 of Masters Thesis: Simon Fraser University.

Abstracted by Vaibhavi Gala
copyright ©1999 Board of Trustees Leland Stanford Junior University.

THE RESPONSE STRENGTHENING MODEL, which influenced the first half of this
century, lays emphasis on the role of feedback to enhance learning. Knowledge is
considered to be the associations people make between stimuli and responses.
Drill and practice was the instructional method of choice by the proponents of
this theory.

THE INFORMATION PROCESSING MODEL proposes that knowledge is a definite entity
that can be transferred from one person to another. This assumption gave rise to
didactic instruction and classical instructional design with lecturing as the
prevalent instructional technique.

CONSTRUCTIVISM came into light in the early 1980s and proposes that knowledge is
‘constructed’ individually in a person’s mind. Individuals have their own mental
framework which is a function of their beliefs, past experiences and knowledge.
When a person comes across new information, he understands and assimilates it in
the context of his existing mental structures thereby constructing new
knowledge. Hence, learning is seen as a process of internal negotiation of
meaning.

Under constructivism the goal of instruction is to help learners ‘develop
learning and thinking strategies’ and evaluation of learning outcomes consists
of ‘determining how the student structures and processes knowledge’.
Constuctivism propagates creating a learning environment that facilitates
higher-order thinking and metacognition (awareness of one’s own cognitive
abilities and the ability to apply them to the task at hand). It shifts
cognitive labor such as analysis and synthesis of information from teachers to
the learners. Constuctivists advocate that students be allowed and encouraged to
take ownership of their learning thus ensuring that learning activities are more
authentic and meaningful to them.

Within the constructivist community there seems to be agreement that
constuctivist learning environments are good for advanced knowledge acquisition.
There is no consensus however, on its appropriateness for lower levels of
education, which involve introductory knowledge acquisition

34

SOCIOCULTURAL THEORIES are rooted in Constuctivism but they focus on the role of
community and environment in the creation of knowledge as opposed to the
constructivist focus on internal negotiation of meaning. They acquiesce that
meaning can vary but contend that it is defined by the community of
practitioners which uses it. Thus, knowledge resides in communities. Meaning-
making is the result of active participation in socially, culturally,
historically, and politically situated contexts. Socioculturalism is more
extreme in its beliefs than situated learning in that it focuses on the
development of the collective knowledge of a community as opposed to the
development of individuals’ knowledge within a community.

Adherents to the sociocultural theories of learning, like constuctivists, argue
that it is important to reflect the complexity of the application domain in the
learning environment. This would contribute to the authenticity of the learning
activities.

Instructional Techniques based on the constuctivist and sociocultural theories
include:

a) Scaffolding : Teachers support a learner’s personal construction of knowledge
by offering comments, suggestions, feedback or observation

b) Fading: Once the learner progresses towards mastery, teachers remove the
supports they provided to make the learner self-sufficient.

c) Cognitive Apprenticeship: Learners learn by actually engaging in the activity
they want to learn about with the support of knowledgeable others in the field.
(similar to traditional apprenticeships: learning by doing)

d) Collaborative Learning: Learners develop their knowledge by sharing ideas,
reflecting and interacting in learning groups.

RELEVANCE

The author provides a reasonable account of the contemporary educational
theories of constructivism and socioculturalism (though he has not elaborated on
situated learning, a variant of socioculturalism). Understanding the theoretical
framework which describes the meaning of knowledge and the process of learning
would enable the Learning Lab personnel to form their own informed opinions
about the models, reflect on what a learning environment should support and
articulate their reasoning for the basis of the various projects. It would also
inform the design of the framework for future endeavors.

35

THE NATURE OF LEARNING

Again, this is a huge topic. There is a great deal of research into how students
learn at the postsecondary level. We particularly recommend the report of the
National Research Council, as commissioned by the U.S. Department of Education's
Office of Educational Research and Improvement (OERI). This research is
documented in How People Learn (Donovan, Bransford, & Pellegrino, 1999). One of
the assumptions behind this work is that there is a significant gap between what
is known about learning processes and how we teach; in other words, between
research and
practice. The authors attempt, in a very practical way, to highlight just what
is going on when people learn well. We share their view that an understanding of
learning processes should inform how we teach, including how we use technology
for teaching.

We will just very briefly introduce some key concepts that need to be explained
in order to show the link between different understandings of how students learn
and the design of technology-based teaching.

There are many different theories of learning. We will look first at three main
categories of learning theory: behaviorism, cognitivism, and the social
construction of knowledge. We also discuss some issues arising from these
theories, such as cognitive development, student differences, and motivation and
engagement in learning. These themes of how students learn and what influences
their learning will, as with epistemology, recur throughout the book as we
examine the role of media and technology in teaching and learning, and the
planning, design, and delivery of technology-based courses.

Behaviorism

Behaviorist psychology arose in the 1920s and 1930s from an attempt to model the
study of human behavior on the methods of the physical sciences. Therefore it
concentrates attention on aspects of behavior that are capable of direct
observation and measurement. At the heart of behaviorism is the idea that
certain behavioral responses become associated in a mechanistic and invariant
way with specific stimuli. Hence a certain stimulus will evoke a particular
response. At its simplest, the response may be a purely physiological reflex
action, like the contraction of an iris in the eye when stimulated by bright
light.

However, most behavior is more complex. Nevertheless, according to behaviorists,
it is possible to reinforce through reward or punishment the association between
any particular stimulus or event and a particular response. The bond formed
between a stimulus and a response will depend on the existence of an appropriate
means of reinforcement at the time of association between stimulus and response.

36

Behavior therefore can be modified or controlled by appropriately reinforcing
random behavior (trial and error) as it occurs.

This is essentially the concept of operant conditioning, a principle most
clearly developed by Skinner (1969). He showed that pigeons could be trained in
quite complex behavior by rewarding
particular, desired response, randomly occurring, with appropriate stimuli, such
as the provision of food pellets. He also found that intervening stimuli to be
present, thus linking an initially remote
stimulus with a complex behavior. Furthermore, inappropriate or previously
learned behavior could be extinguished by withdrawing reinforcement. Skinner
also claimed that rewarding behavior was more effective than punishment.

Underlying this approach is the belief that learning is governed by invariant
principles, and these principles are independent of conscious control on the
part of the learner. Behaviorists attempt to maintain a high degree of
objectivity in how they view human activity, and they generally reject reference
to unobservable states, such as feelings, attitudes, and consciousness. Human
behavior is above all seen as predictable and controllable. Behaviorism stems
from a strongly objectivist epistemological position.

Skinner's theory led to the development of teaching machines, measurable
learning objectives, computer-assisted instruction, and multiple choice tests.
There was also a tendency until recently to see technology, particularly
computers, as being closely associated with behaviorist approaches to learning.
Today there has been a strong movement away from behaviorist approaches to
teaching in higher education, although its influence is still strong in
corporate and military training and in some areas of science, engineering, and
medical training.

Cognitivism

Behaviorism denies or ignores mental activity as the basis for learning.
Learning for behaviorists is determined by external environmental structures
that lead to reinforcement of behavior, rather than to mental processing or
conscious thought on the part of the learner. Cognitivists, though, insist that
there are mental processes "internal and conscious representations of the world"
that are essential for human learning. Fontana (1981) summarizes the cognitive
approach as follows:

"The cognitive approach holds that if we are to understand learning we
cannot confine ourselves to observable behavior, but must also concern
ourselves with the learner's ability mentally to reorganize his
psychological field (i.e., his inner world of concepts, memories, etc.) in
response to experience. This latter approach therefore lays stress not
only on the environment, but upon the way in which the individual

37

interprets and tries to make sense of the environment. It sees the
individual not as the somewhat mechanical product of his environment, but
as an active agent in the learning process, deliberately trying to process
and categorize the stream of information fed into him by the external
world." (p. 148)

Thus the search for rules, principles, or relationships in processing new
information, and the search for meaning and consistency in reconciling new
information with previous knowledge, are key concepts in cognitive psychology.
Cognitive psychology is concerned with identifying and describing mental
processes. In some ways, basic mental processes are often considered genetic or
hard-wired but can be programmed or modified by external factors, such as
experience.

Cognitive approaches to learning cover a very wide range. On the one hand,
attempts have been made through areas such as artificial intelligence to provide
mechanical, electronic, and physical representations of mental processes,
reflecting very much as objectivist epistemological position. On the other hand,
teachers who place a strong emphasis on learners’ developing personal meaning
through reflection, analysis, and construction of knowledge through conscious
mental processing would indicate much more of a constructivist epistemological
position. Cognitive approaches to learning "with their focus on abstraction,
generalization, and creative thinking" seem to fit much better in higher
education.

The Social Construction of Knowledge

We have pulled together different theories of learning here under the common
theme of the social construction of knowledge. Both behaviorist and some
elements of cognitive theories of learning are deterministic, in the sense that
behavior and learning are believed to be rule-based and operate under
predictable and constant conditions over which the individual learner has no or
little control.

However, the trend these days is to recognize the importance of consciousness,
free will, and social influences on learning. Although constructivism has become
the "flavor of the month" in higher education in recent years, the belief that
humans are essentially active and free and strive for meaning in personal terms
has been around for a long time. Carl Rogers (1969) stated that "every
individual exists in a continually changing world of experience in which he is
the center." The external world is interpreted within the context of that
private world.

Individuals consciously strive for meaning to make sense of their environment in
terms of past experience and their present state. It is an attempt to create
order in their minds out of disorder, resolve incongruities, and reconcile

38

external realities with prior experience. The means by which this is done are
complex and multifaceted, from engaging in personal reflection to seeking new
information to testing ideas through social contact with others. Problems are
resolved, and incongruities sorted out, through strategies such as seeking
relationships between what was known and what is new, identifying similarities
and differences, and testing hypotheses. Reality is always tentative and
dynamic.

For many educators, the social context of learning is critical. Ideals are
tested not just on the teacher but also with fellow students, friends, and
colleagues. Furthermore, knowledge is mainly acquired through social processes
or institutions that are socially constructed: schools, universities. What is
taken to be “valued” knowledge is also socially constructed. Knowledge is thus
not just about content but also about values.

One set of values comprises those around the concept of a liberal education.
According to this notion, one of the principal aims of education is to develop a
critical awareness of the values and ideologies that shape the form of received
knowledge. This aim suggests a constant probing and criticism of received
knowledge.

One consequence of theories of social construction of knowledge is that each
individual is considered unique, because the interaction of each person's
different experiences and the search for personal meaning result in each person
being different from anyone else. Behavior is thus not predictable or
deterministic, at least not at the individual level (although pollsters will
argue that patterns of group behavior is predictable).

The key point here is that learning is seen as essentially a social process,
requiring communication among learner, teacher, and others. This social process
cannot effectively be replaced by technology, although technology may facilitate
it.

References

Donovan, M., Bransford, J., & Pellegrino, J. (Eds.) (1999). How people
learn: Bridging research and practice. Washington, DC: National Research
Council, U.S. Department of Education’s Office of Educational Research and
Improvement.

Fontana, D. (1981). Psychology for teachers. London: Macmillan/British
Psychological Society.

Rogers, C. (1969). Freedom to learn. Columbus, OH: Merrill.
Skinner, B. (1969). Contingencies of reinforcement. New York: Appleton-
Century-Crofts.

39

HOW STUDENTS LEARN, HOW TEACHERS TEACH, AND WHAT GOES WRONG WITH THE PROCESS

Richard M. Felder
North Carolina State University
8/3/98

* Different students learn in different ways, that is, they have different
learning styles.

* Different faculty also teach in different ways, that is, they have different
teaching styles.

* Learning styles can be defined in large part by the answers to five questions:

(1) What type of information does the student preferentially perceive: sensory
(external) - sights, sounds, physical sensations, or intuitive (internal) -
possibilities, insights, hunches?

(2) Through which sensory channel is external information most effectively
perceived: visual - pictures, diagrams, graphs, demonstrations, or auditory -
words, sounds?*

(3) With which organization of information is the student most comfortable:
inductive - facts and observations are given, underlying principles are
inferred, or deductive - principles are given, consequences and applications are
deduced?

(4) How does the student prefer to process information: actively - through
engagement in physical activity or discussion, or reflectively - through
introspection?

(5) How does the student progress toward understanding: sequentially - in
continual steps, or globally - in large jumps, holistically?

* Teaching styles may also be defined in terms of the answers to five questions:

(1) What type of information is emphasized by the instructor: concrete -
factual, or abstract - conceptual, theoretical?

(2) What mode of presentation is stressed: visual - pictures, diagrams, films,
demonstrations, or verbal - lectures, readings, discussions?

(3) How is the presentation organized: inductively - phenomena leading to
principles, or deductively - principles leading to phenomena?

40

(4) What mode of student participation is facilitated by the presentation:
active - students talk, move, reflect, or passive - students watch and listen?

(5) What type of perspective is provided on the information presented:
sequential - step-by-step progression (the trees), or global - context and
relevance (the forest)? [6]

* Problems occur because there are often significant mismatches between the
learning styles of most college students and the teaching styles of most college
professors.

* The key to dealing with the above reality is "BALANCE." The goal is NOT to
match each students preferred learning style with a corresponding teaching
style, rather it is to present a variety of teaching styles to all learners.

* Professionals need to function as sensors (practical, methodical) and
intuitors (interpretive, imaginative), visual and verbal learners, etc.

* Students taught only in their less preferred modes can't learn effectively.

* Students taught only in their preferred modes won't develop balanced strength.

* Solution: Teach to both sides of each dimension.

Felder offers the following recommendations to address various learning types:

* Establish relevance and provide applications for all course material. Before
presenting theoretical material, provide graphic examples of phenomena that the
theory describes or predicts. (sensing, inductive, global)

* Balance concrete information (facts, observations, data) (sensing) and
abstract information (principles, theories, models) (intuitive) in all courses.

* Make extensive use of pictures, schematics, graphs, and simple sketches
before, during, and after presenting verbal material. (sensing, visual)

* Use multimedia presentations. (sensing, visual) Provide demonstrations
(sensing, visual), hands-on if possible.

* Use some numbers in illustrative examples, not just algebraic variables.
(sensing)

* Give students time to think about what they have been told. Assign "one-minute
papers" (Write the main point of this lecture and the muddiest point) or
learning logs. (reflective)

41

* Give small-group exercises in class. (active, reflective)

* Use computer-assisted instruction (if you have software that allows for
experimentation and provides feedback). (sensing, active)

* Assign some drill exercises in homework (sensing, active) but don't overdo it
(intuitive, reflective).

* Assign some open-ended problems and exercises that call for creative thinking
and critical judgment. (all styles)

* Have students cooperate on homework. (all styles)

* Limit new material, surprises, twists, etc., on timed tests and minimize speed
as a critical factor. (sensing)

* Encourage creative solutions, even wrong ones. (all styles)

* Tell students about their learning styles or let them assess their own style.
See the Index of Learning Styles at above web site.

* Try a few of these suggestions at a time. Adopt the ones that work. Then try a
few more.

--

R.M. Felder & R. Brent, National Effective Teaching Institute, 1998

R. M. Felder and L.K. Silverman, "Learning and teachings styles in engineering
education," Journal of Engineering Education, vol. 77, no. 2, April, 1988

42

How People Learn

 * Learning occurs in context.
 * Learning is active.
 * Learning is social.
 * Learning is reflective.

Driscoll (2002) proposes the following principles for how people learn:

 * Learning occurs in context: Learning must happen within certain context.
Without an appropriate setting, learning is unlikely to succeed.

 * Learning is active. Learners have to be mentally active during learning
activities, make connections between the new knowledge and existing knowledge,
and construct meaning from their own experiences.

 * Learning is social. Learners benefit from working collaboratively in
groups so that they can hear different perspectives and accomplish the learning
tasks with the help of their peers and experts.

 * Learning is reflective. Learning is facilitated when learners are given
chances to express and evaluate on their own thinking.

Different Learning Theories

There are three dominant learning theories which provides different perspectives
on how learning occurs.

 1. Behaviorism: Focuses on observable behavior rather than non-observable
mental events. It suggests learning is a relatively permanent change in behavior
due to experience (Ormrod, 1999). The learner must be engaged in the behavior in
order to learn.

 2. Cognitivism: Focuses on the internal mental events. Cognitivism considers
how people perceive, interpret, remember and think about the environmental
events they experience. It suggests learning occurs when information is mentally
processed and the structure of learner's knowledge changes.

 3. Constructivism: Constructivism is also internal oriented, asserting that
one's knowledge, as well as the learning process itself, is constructed by the
learners according to their interpretation of their own experiences.

1

43

What is learning?

Different learning theories give different definitions for what learning is.

1. Behaviorism Perspective of Learning

“Learning is a change in human disposition or capability that persists over a
period of time and is not simply ascribable to processes of growth.” (Gagne,
1985, p. 2). It represents itself in a change in behavior.

2. Cognitivism Perspective of Learning

“Learning is a relatively permanent change in a person’s knowledge or behavior
due to experience. This definition has three components: (1) the duration of the
change is long-term rather than short-term; (2) the locus of the change is the
content and structure of knowledge in memory or the behavior of the learner; (3)
the cause of the change is the learner’s experience in the environment rather
than fatigue, motivation, drugs, physical condition, or physiological
intervention.” (Mayer, 1982, p. 1040).

“Learning is a process that takes place inside a person’s head.” This process
“enables organisms to modify their behavior fairly rapidly in a more or less
permanent way.” (Gagne & Driscoll, 1988).

3. Constructivism Perspective of Learning

Jonassen & Land (2000, p.v) suggested that constructivists believe that learning
is “willful, intentional, active, conscious, constructive practice that includes
reciprocal intention-action-reflection activities.” Therefore, learning is
“conscious activity guided by intentions and reflections.”

Driscoll (1994) suggested that many learning theories do share some basic
assumptions about learning:

 * Learning is a persisting change in human performance or performance
potential.

 * To be considered learning, a change in performance must come about as a
result of the learner’s interaction with the environment. Learning requires
experience. How these experiences are presumed to bring about learning
distinguishes different learning theories.

2

44

The Ways That People Learn

A research study, How people learn: Bridging research and practice (Donovan,
Bransford, & Pellegrino, eds., 1999)), summarized three key findings of how
people learn based on robust research. The findings have significant
implications for teaching and learning:

 1. Students have preconceptions about how the world works before they come to
the classroom. Research suggests learners start to make sense of the world at a
very young age. Many research experiments show the persistence of preexisting
understandings. Therefore, teaching has to integrate their preexisting knowledge
in order to be effective.

 2. Research that compared the performance of experts and novices on learning
and transfer suggest that in order to develop competence, students must have
deep understanding of the factual knowledge, understand the facts/ideas in the
context of a conceptual framework, and organize knowledge in certain ways which
can facilitate retrieval and application.

 3. Research on performance of experts and research on metacognition also
suggests that learners can be taught to define their learning goals and monitor
their learning progress.

How to Facilitate Learning

A lot of research studies have been conducted to investigate the effects of
different instructional strategies on human learning. The following sample
research studies investigate the effects of illustrated text and animations on
human learning and provide some general guidelines on using illustrated text and
animations in teaching and learning process.

 1. Levie and Lentz (1982) conducted a metanalysis using the instructional
treatments developed by Dwyer which was presented in a text format or programmed
booklet. All studies included in the metanalysis included a text-only condition.
Based on 41 comparisons of treatments with text plus prose vs. with text only
using four criterion measures (drawing test, identification test, terminology
test, comprehension test), Levie and Lentz (1982) reported that 36 comparisons
favored illustrated text and 4 favored text alone.

 2. Park and Hopkins (1993) summarized 25 studies investigating the effects of
dynamic versus static visual displays. Fourteen of the studies found significant
effects for dynamic visual displays. The findings suggest that dynamic visuals
are effective under some circumstances.

3

45

 3. Rieber (1990) stated “The power of animation … comes from the potential
for creating a wide assortment of practice strategies. In 1989, Hannafin and
Rieber (1989a, 1989b) conducted two research studies to compare a traditional
questioning activity to an activity involving student control of an interactive
dynamic in a structured simulation which taught Newton’s law of motion. When
subjects were adults, the question practice group and interactive dynamic
practice group performed equally well, however, the interactive dynamic practice
group required significantly less time to answer posttest questions. It
suggested that the interactive dynamic practice “supported encoding and
retrieval tasks better than traditional questioning” (Rieber, 1990, p.83).

Principles of Human Learning

Ten tested principles of human learning have been summarized below ("Ten Tested
Principles," 2003):

 1. Students cannot recall and apply knowledge unless they practice retrieval
and use.

 2. Better learning (more easily recalled and applied) results when we vary
the conditions of learning.

 3. When learners integrate knowledge from both verbal and visual
representations, they can recall it and apply it with greater ease.

 4. Prior knowledge or belief determines what students will learn.

 5. What instructors and learners believe about knowledge acquisition
(epistemology) influences what will be learned.

 6. Experience is a poor teacher because corrective feedback is rare.

 7. Lectures fail to promote understanding because understanding is an
interpretive process in which students must be mentally involved.

 8. Remembering is a creative process that influences what learners will and
will not be able to recall and apply.

 9. In learning, less is more. Trying to cover large amounts of material and
information reduces understanding and recall. If we teach toward future use, we
should focus on in-depth understanding of principles.

 10. What learners do in a course will determine what they will learn, how well
they can recall it, and the conditions under which they can use it.

4

46

Learning Styles

"Information about learning styles can serve as a guide to the design of
learning experiences that either match, or mismatch, students' style" ("Why is
learning style important," no date).

Information about students' learning style is important to both the instructors
and the students because:

 * Instructors need to understand their students' learning styles in order to
adapt their teaching methods accordingly.
 * Students who knows their own learning style become better learners.
 * Instructors will better understand the differences among the students.
 * If an instructor's learning style differs from that of many of his or her
students, the instructor may need to make adjustments in how material is
presented.

Fleming and Mills (1992) suggested four categories that seemed to reflect the
experiences of their students.

Visual

This preference includes the depiction of information in charts, graphs, flow
charts, and all the symbolic arrows, circles, hierarchies and other devices that
instructors use to represent what could have been presented in words.

Aural / Auditory

This perceptual mode describes a preference for information that is "heard."
Students with this modality report that they learn best from lectures,
tutorials, tapes, group discussion, speaking, web chat, talking things through.

Read/write

This preference is for information displayed as words. Not surprisingly, many
academics have a strong preference for this modality. This preference emphasizes
text-based input and output — reading and writing in all its forms.

Kinesthetic

By definition, this modality refers to the "perceptual preference related to the
use of experience and practice (simulated or real)." Although such an experience
may invoke other modalities, the key is that the student is connected to
reality, "either through experience, example, practice or simulation."

1

47

Types of Learners

Summary

 Active and reflective
 Sequential and global
 Sensing and intuitive
 Visual and verbal

Active and reflective learners

 * Active learners tend to retain and understand information best by doing
something active with it—discussing or applying it or explaining it to others.
Reflective learners prefer to think about it quietly first.

 * "Let's try it out and see how it works" is an active learner's phrase;
"Let's think it through first" is the reflective learner's response.

 * Active learners tend to like group work more than reflective learners, who
prefer working alone.

 * Sitting through lectures without getting to do anything physical but take
notes is hard for both learning types, but particularly hard for active learners

Sequential and global learners

 * Sequential learners tend to gain understanding in linear steps, with each
step following logically from the previous one. Global learners tend to learn in
large jumps, absorbing material almost randomly without seeing connections, and
then suddenly "getting it."

 * Sequential learners tend to follow logical stepwise paths in finding
solutions; global learners may be able to solve complex problems quickly or put
things together in novel ways once they have grasped the big picture, but they
may have difficulty explaining how they did it.

48

Sensing and intuitive learners

 * Sensing learners tend to like learning facts; intuitive learners often
prefer discovering possibilities and relationships.

 * Sensors often like solving problems by well-established methods and
dislike complications and surprises; intuitors like innovation and dislike
repetition. Sensors are more likely than intuitors to resent being tested on
material that has not been explicitly covered in class.

 * Sensors tend to be patient with details and good at memorizing facts and
doing hands-on (laboratory) work; intuitors may be better at grasping new
concepts and are often more comfortable than sensors with abstractions and
mathematical formulations.

 * Sensors tend to be more practical and careful than intuitors; intuitors
tend to work faster and to be more innovative than sensors.

 * Sensors don't like courses that have no apparent connection to the real
world; intuitors don't like "plug-and-chug" courses that involve a lot of
memorization and routine calculations.

Visual and verbal learners

 * Visual learners remember best what they see—pictures, diagrams, flow
charts, time lines, films, and demonstrations.

 * Verbal learners get more out of words—written and spoken explanations.
Everyone learns more when information is presented both visually and verbally.

49

Meyers-Briggs Type Indicator

MBTI assigns four personality dimensions to individuals depending on how the
perceive and interact with their environment.

Summary

 Introvert vs. Extrovert
 Thinking vs. Feeling
 Judging vs. Perceptive
 Sensing vs. Intuition

Introvert vs. Extrovert

Introverts tend to prefer to focus on inward thoughts and feelings and may
prefer a quiet environment for learning and to listen rather than talk in class.

Extraverts often prefer to talk aloud and are more comfortable interacting with
others. These learners may prefer collaborative learning, thinking aloud and/or
class discussion.

Faculty vs. Students (Brightman, no date):
 "The majority of undergraduate students are extraverts. Based on data from
the Center for Applied Psychological Type (CAPT) between 56% and 58% of over
16,000 freshman students at three state universities were extraverts.
Interestingly, over 83% of college student leaders were extraverts, while over
65% of honors students were introverts. Our own data base indicates that over
65% of business students are extraverts...The majority of university faculty are
introverts."

Thinking vs. Feeling

Thinking students tend to prefer to use objective, impersonal facts to make
decisions and form opinions. Thinking students may be more comfortable with
personal conflicts than other students. Thinking students may prefer concrete
language and working directly with data.

Feeling students tend to focus on emotions and personal values when making
decisions and forming opinions and tend to value group harmony. Because students
may form opinions based on emotional reactions or vague intuitions, them may
need coaching to generate precise commentary or analysis.

50

Gender Differences and Student vs. Faculty (Brightman, no date):
 "CAPT reports that on this dimension, the proportion of males and females
differ. About 64% of all males have a preference for thinking, while only about
34% of all females have a preference for thinking...The majority of university
faculty have a preference for thinking. CAPT reported that almost 54% of 2,282
faculty are thinking. Seventy percent of business faculty have a preference for
thinking."

Judging vs. Perceptive

Judging students tend to prefer to make immediate decisions based on initial
input and may be considered "decisive". A danger for these students is to make a
premature conclusion before examining all the data.

Perceptive students may not make decisions until they process all the data and
may be considered "indecisive" or "wandering" (as they begin more tasks). A
danger for these students is procrastination as they collect more data.

Student vs. Faculty (Brightman, no date):
 "The majority of undergraduate students are judging students. Based on data
from the Center for Applied Psychological Type (CAPT) between 46% and 60% of
over 16,000 freshmen at three state universities were judging students...The
majority of university faculty also have a preference for judging."

Sensing vs. Intuition

These students prefer to focus on established facts, known procedures and linear
presentations. These students tend to have stronger skills in memorizing
details. However, concept maps may be recommended to help these students
understand the "big picture."

These learners may see connections between seemingly random sets of data, but
may not be as strong in remembering details. These students may prefer to see
the entire framework first and fill in the details later.

Faculty vs. Students (Brightman, no date):
 "The majority of undergraduate students are sensing students. Based on data
from the Center for Applied Psychological Type (CAPT) between 56% and 72% of
over 16,000 freshmen at three state universities were sensing students.
Interestingly, almost 83% of national merit scholarship finalists and 92% of
Rhodes Scholars were intuitive students. Our own data base indicates that over
65% of business majors are sensing students.....The majority of university
faculty are intuitive. CAPT reported that almost 64% of 2,282 faculty are
intuitive."

51

Multiple Intelligences

Howard Gardner's Multiple Intelligence Theory: different "ways of knowing".

Traditionally, instructional methods tend to favor verbal-linguistic and
logical-mathematical intelligences, and don't focus on the arts, self-awareness,
communication and physical education.

By employing role-playing, musical performance, cooperative learning,
reflection, visualization, story telling, etc. as well as assessment methods
that account for the diversity of intelligences, the learning experience can be
richer for all students.

Summary of Types

 Verbal/Linguistic -- Word Player
 Logical/Mathematical -- Questioner
 Visual/Spatial -- Visualizer
 Musical/Rhythmic -- Music Lover
 Body/Kinesthetic -- Mover
 Interpersonal -- Socializer
 Intrapersonal -- Individual

TEMPLATE
Type of Learner
 -- Definition
 Likes to
 Is Good At
 Is Best At

Verbal/Linguistic -- Word Player
 -- the ability to use words and language

 ReadWrite Tell Stories
 Memorizing Names,places, trivia, dates
 Saying, hearing and seeing words

Logical/Mathematical -- Questioner
 - the capacity for inductive and deductive thinking and reasoning, as well
as the use of numbers and the recognition of abstract patterns

 Experiments Works with numbers Explores patterns
 Math, logic, reasoning, & problem solving
 Categorizing, classifying, & working with abstract patterns

1

52

Visual/Spatial -- Visualizer
 -- the ability to visualize objects and spatial dimensions and create
internal images and pictures

 Draw, build, design. Create. Watch Movies. Play with machines
 Imagination, Sensing Changes, Mazes & Puzzles, Map reading
 Visualizing Dreaming Working with pictures

Musical/Rhythmic -- Music Lover
 -- The ability to recognize tonal patterns and sounds, as well as a
sensitivity to rhythms and beats

 Sing, hum Play instruments Listen to music Respond to music
 Picking up sounds Noticing rhythms Keeping time Melodies
 Rhythm Melody Music

Body/Kinesthetic -- Mover
 -- The wisdom of the body and the ability to control physical motion

 Move around Touch and talk Use body language
 Physical activities
 Moving around Interacting with space Touching

Interpersonal -- Socializer
 -- The capacity for person-to-person communications and relationships

 Lots of friends Talk to people Join groups
 Understanding people. Leading others. Organizing. Communicating
 Sharing Comparing Cooperating Interviewing

Intrapersonal -- Individual
 -- The spiritual, inner states of being, self-reflection, and awareness

 Work along Pursue own interests
 Understanding self. Following instincts. Originality. Pursuing goals
 Working alone. Self-paced. Individual projects. Having own space.

2

53

TALKERS AND LISTENERS

When running seminar or discussion classes for undergraduates, the major issue
instructors face is unbalanced participation, with some students dominating the
discussion while others remain silent. While there are ways to force more
widespread participation (such as calling upon people, basing grades on
participation, using tokens, allowing people to speak only a limited number of
times, etc.), all these techniques involve coercion to a greater or lesser
degree. They run counter to the basic idea of the seminar/discussion as a
continuing conversation, similar to the ones that one might have with friends
and neighbors. One cannot imagine using coercion there. <http://www.ntlf.com/
html/ti/images/v13n2a.jpg>

No Coercion

Since my own teaching philosophy has evolved to the point where I believe that
the best learning occurs under conditions that aren't coercive, I tried a
promising experiment this semester that focused on improving discussion without
coercion. The course was on the "Evolution of Scientific Ideas." The class was
comprised of 17 sophomore students. At the beginning of the very first meeting,
after brief introductions all around, I spoke for a few minutes, saying that the
class would function best if everyone participated in the discussions. Of
course, all instructors say this, and it usually has little effect.

But then I said that in semi-formal groups such as this, each one of us had,
over time, developed a preferred, or at least customary, role. We saw ourselves
as either "talkers" (people who volunteered to speak and did so frequently) or
"listeners" (people who preferred to stay silent and rarely, if ever, joined in
the discussion unasked). I asked each person to self-identify, with me beginning
and identifying myself as a talker. (This should be no surprise. McKeachie
reports that the most common cause of unbalanced discussion is the instructor
who typically talks about 70-80% of the time!)

Which Are You?

Six students identified themselves as talkers, while eleven said they were
listeners. I then said that both talking and listening were essential skills and
that we needed to develop both aspects of our personalities. I then asked all
the talkers to sit together in one part of the room, the listeners to group in
another part, and to discuss amongst themselves the following questions: What
made me become a talker (listener)? How can I develop my listening (talking)
skills? How can I help listeners (talkers) talk (listen) more?

The two groups spent about 20 minutes discussing these questions. The talkers
group (which I naturally joined), although half the size of the listeners, made
much more noise, talking and laughing as they discussed, with people jumping in

54

with ideas and comments. The listeners group was much quieter, with only one
person speaking at a time, but even there the conversation never died down. The
two groups then reported to each other at the end of the time period.

Listener Characteristics

The listeners said they listened and did not talk much because they felt that
their ideas must already be obvious to everyone; that there was usually no pause
in the discussion for them to insert their ideas; they liked to take in
information; they took time to formulate their ideas and by the time that
happened the discussion had moved on to something else; they did not feel
themselves to be experts and did not want to waste other people's time with
their unformed or poorly articulated views. To overcome these feelings, they
felt that they should force themselves to talk more.

Talker Characteristics

On the other hand, the talkers said that they felt compelled to share whatever
ideas they had; that they thought their ideas were good; felt compelled to
correct ideas they believed were wrong; were uncomfortable with silence and felt
obligated to break it; and sometimes felt they would explode if they kept
silent. They also said that this behavior had developed over years as they
realized that they liked the attention talkers received, they were noticed in
class by teachers and hence did better, and were often expected by teachers to
respond to questions. To overcome this, they felt they should force themselves
to listen.

An important realization by the listeners was that the talkers did not need to
think their ideas had to be very original or carefully phrased before they
expressed them. Talkers said they often thought things through while they
talked, rather than before. Listeners realized that their own ideas were not
inferior to those of the talkers. In their private journals to me for that first
week, students said they were totally surprised by the exercise, but that they
enjoyed it because they had never before thought carefully about why they
adopted their particular roles.

The whole class felt that we should try and create the conditions under which
everyone got to participate. It was agreed that this responsibility should be
shared and that the instructor should not have to play the role of arbitrator or
be the focal point of the discussion. The class as a whole would try to develop
good seminaring skills as we went along, monitoring the discussions so that they
were not dominated by a few people.

Silent Running

55

I was apprehensive as to how this early discussion would influence subsequent
classes. The next few classes were not promising, with low levels of
participation and discussion. But what I then learned from their journals was
that a few of the talkers (who are the kinds of students who keep discussions
going) had decided to take a vow of complete silence in order not to dominate
the discussions and to allow space for the listeners! They said they felt
discouraged that the listeners had not immediately picked up the slack. I
replied that they had to be patient, and that it is much harder for a listener
to talk than for a talker to decide to listen. I suggested that they strive for
a balance between domination and silence.

Conversation

The discussions got much better as the semester progressed, with the distinction
between the talkers and listeners getting blurred but not eliminated. Almost all
the listeners seemed to feel much more at ease in speaking and one or two of
them even started talking to such an extent that they were accused (in good
humor) of having "crossed over" to the talkers.

In a review discussion at the end of the semester, students said that this
initial discussion had had a major impact on how they viewed their role in the
seminar. It had made them more self-reflective and conscious of how their
actions influenced that of others. They wished that it would be done in other
classes as well.

56

Management Decision Models

CLASSIFICATION

Place the following items into groups. Describe each group.

tree book table star

house cup fire shirt

car horse foot bird

string door heart idea

water road fork ball

57

TEACHING FOR INNOVATION

TOPIC 3. TEACHING STYLES AND METHODS

 TP: New Technologies in Teaching and Learning: Evolution of Lectures

 TP: Powerpoint Debate

 Teaching Large Classes: Strategies for Improving Student Learning

 Activity Breaks: A Push for Participation

 TP: Problem Solving Through Design

 TP: Asking the Right Questions in Class

 TP: Keeping Discussion Going Though Questioning, Listening, Responding

 TP: Tactics for Effective Questioning

58

NEW TECHNOLOGIES IN TEACHING AND LEARNING: EVOLUTION OF LECTURES

By Charles Kerns

As a learning activity designer, I explore how new technologies are likely to
change specific teaching and learning problems and practices. For this article,
I shall examine, in detail, one instructional practice: the lecture. It is
important to look at the possibilities for change in the lecture because this
mode of teaching is still the dominant practice in higher education. I do not
mean to suggest that the traditional lecture will disappear, but that new models
for oral presentations by instructors are appearing and are following normal
innovation-adoption patterns.

The lecture has already been affected by technology, of course. During the past
twenty-five years, the lecture was extended into distributed learning through
analog video recordings. Given the opportunity, many students choose to view
videos rather than attend lectures, even when doing so involves inconvenient
visits to an audio-video center. Once recorded lectures are made available, it
is difficult to constrain use only to certain students. Some students register
for online courses while living on campus, simply to gain access to the
recordings. In addition, faculty want to make lecture recordings available to
all students, local or distant, for makeup and review.

Many technologies including streaming video, widespread high-bandwidth networks,
recording whiteboards and rooms, automated indexing of audio and video, IP-based
videoconferencing, and new types of computer-supported collaborative learning
(CSCL) tools can affect how lectures will be given. With tools to digitize,
index, summarize, link, and annotate video, we can create and distribute
streaming-video recordings of lectures, including the slides and whiteboards
that were presented. Handouts, alternative illustrations, animations,
references, problem sets, and assessments can be indexed and tied to points in
the audio-video recording. These clusters of resources and activities can be
used as independent modules or learning objects, in some cases replacing the
event of the lecture. Indexed recordings allow students to access specific
moments in the lecture. Once the lecture recording has nonlinear access,
students will move from sequential viewing (as must be done in the face-to-face
lecture) to a combination of sequential (with and without pausing) and search-
and-review viewings.

Another change is that online, lecture-based learning objects will be used with
communication tools for discussion and annotation. New systems allow moments in
the video to be annotated with students' questions, novice and expert
explanations, drawings, and other representations of the content. Excerpts from
lectures can be pasted into students' Web page projects and papers to elaborate
on the original content. The students' works can then be linked back to the
original learning object. Eventually, the recorded lecture can lose its

59

centrality in the learning object. The lecture thus evolves from a single event
to a mediated,,"chunked" learning object to a dynamic set of resources. It
evolves from a performance to an annotated recording of the performance to a new
type of dynamic text.

Because of these possibilities, it is difficult to predict exactly how learning
objects that contain lectures will be used by students. We do know that students
do not like most lectures. Students often feel isolated, distant, and passive in
the large lecture halls. They have trouble dealing with the continuous flow of
information. With online lecture modules, students are able to decide when
to"go" to a lecture, with whom to go, where to see it, and what to do while
viewing it. With shared, network access, lectures can become distributed,
informal group events (as homework has become for high school students with
telephones and chat rooms). In both local and distributed informal study groups,
students will dissect, review, and question the information in the lecture.
Research has shown that for learning, facilitated group viewings of recorded
lectures, both co-located and distributed, have been as effective as or more
effective than simply attending lectures.1

Faculty, administrators, and academic technologists should support collaborative
viewing. Planners and designers should be aware that students' study of lecture
learning objects will lead to new types of behaviors determined by temporal
constraints, learning styles, social supports, and other variables. Faculty need
to monitor these new practices to identify those that are effective in helping
students gain deep understanding. Academic computing groups should provide
logistical and technical support for interaction, not simply distribute digital
video recordings, in order to encourage the evolving collaborative learning
practices.

The face-to-face lecture event, in which people physically meet, is an impetus
to informal interactions: asking questions of instructors and friends in the
hallway before class, carrying out discussions with other students, and
developing trust and supportive friendships that start with the camaraderie
resulting from facing common challenges. If students study from lecture-based
learning objects, they will still need these informal interactions. CSCL tools
that support casual discussion, trust building, and awareness are currently
being researched. Collaborative activities will likely become part of the
lecture-viewing practice. Buddy lists and other methods of maintaining awareness
in informal groups have already become popular on some campuses and in some
distributed learning environments.

As in most mediated learning interactions, the instructor will lose some level
of control over students' behavior when lecture-based learning objects are used.
Attending face-to-face lectures several times weekly provides external
discipline for the student. When students can schedule their viewing and

60

discussions of an online lecture, they will need more support in planning their
time and in developing meta-learning skills.

Finally, what happens to faculty as the lecture changes from being an event to
being part of a learning object? Many faculty like to give lectures. Others are
driven by the economic necessities of large classes. Many feel that the
presentation of a long, sustained, oral argument is an important form of
academic discourse. Lectures often form the skeletons of future books. In any
case, faculty have become experts in organizing and preparing the content of
lectures. They have gone through an apprenticeship in lecturing. They create
lectures with little outside assistance. They consider the lecture their own
independent activity. When lectures are part of a complex, online learning
object, instructors must rely on technicians, producers, and, often,
instructional designers, programmers, and other support staff. Learning objects
that include lectures can force the faculty into new relationships. Some faculty
may create lectures as they always did and leave the production to others; some
may become producers; some may act only as content consultants in production
groups.

How will faculty integrate learning objects into their teaching? Rather than
providing basic coverage of facts (which learning objects can provide), will
lecture periods consist of more complex discussions and arguments? Will they be
periods of remediation based on monitoring student interactions with learning
objects? Will more guest lectures delivered over IP-based videoconferencing
offer different viewpoints? Will there be fewer, but intellectually more
stimulating, lectures? Or will faculty simply be assigned more students per
course?

Other instructional practices: seminars, laboratories, tutorials, problem-based
instruction, peer tutoring, can be analyzed similarly to the lecture. These
analyses need to look for constellations of interlocking, mutually supportive
technologies that affect practice by providing rich interactions, access,
effective learning, and efficiency.

61

THE PERILS OF POWERPOINT

Thomas R. McDaniel, Converse College, and Kathryn N. McDaniel, Marietta College

College professors everywhere are incorporating PowerPoint presentations into
their classroom lectures. Faculty often pressure their deans to make every
classroom a "smart classroom," and those fuddy-duddy faculty too slow to embrace
this quickly-emerging technology are considered Luddites, resisters to change,
out of step with modern student expectations. Technology can be a boon to
pedagogy, but it is not without its perils. Before jumping headlong into the
rushing tide of PowerPoint presentations, consider these cautions and criticisms
about this popular teaching tool:

1) It's Inflexible.

When you use PowerPoint to convey information and ideas, it limits not only the
content you can convey, but also the pace at which you present. If a student has
a question (which the format of PowerPoint discourages anyway), the presenter
may lose the flow of the PowerPoint in trying to answer it. If the student's
question requires a quick jump ahead to a later point, the presenter will (if
the program will allow it) have to scroll through upcoming points to address it.
This can lead to confusion and a sense of disorder for both the presenter and
the students. If the presenter has included too much information on the slides,
students may delay the presentation by insisting that they "haven't finished"
copying everything down. If you find out that your audience has a different
level of knowledge than you expected (for example, if they didn't do the reading
they were supposed to), the presentation cannot easily be adapted to fit the new
situation. What all of these "ifs" demonstrate is that there's insufficient
flexibility in the presentation form to allow for any surprises-those wonderful
"teachable moments" that energize a lesson.

2) It's Risky.

How many times have you seen a PowerPoint presentation where some technical
difficulty
a) made it impossible to start the presentation on time?
b) caused the presenter to lose the presentation entirely and end up fumbling
halfheartedly through the presentation?
c) made it difficult to change the "slides," making every transition a long or
clumsy process?
d) created a problem with the sequencing of points such that the presenter lost
his or her place?
e) all of the above?

Technology is a wonderful thing, but its use also opens up all kinds of possible
delays and technical difficulties. The real trouble with PowerPoint technology

62

is that the presenter becomes too dependent on it and often cannot simply
abandon the technological "enhancement" to perform the lesson anyway when
technical difficulties arise, as they invariably do.

3) It's a Crutch.

PowerPoint often serves as a crutch that prevents academics from developing real
teaching skills. This is particularly a problem for academics who have spent
most of their training in relatively isolated activities (researching in labs
and libraries and then writing up their research) and who often have introverted
tendencies. Instead of having to develop a pedagogy that engages the class at
some level, instead of having to learn to communicate ideas to the individuals
within the class, the professor can spend hours laying out a PowerPoint
presentation that resembles a scholarly publication more than a lesson and that
presents the information in a way that stifles communication between teacher and
students. This is "presentation," not teaching.

4) It's Boring.

One of our students talks about PowerPoint classes as a "Zone-Out Zone." Not
only is it easy for students to zone out during a presentation, it's often
actually difficult for them to stay focused and attentive. This occurs for
several reasons. First, a PowerPoint presentation seems to signal to students
that they will not be necessary for the next 50 minutes or so, that their
presence is purely as an audience, and as a result many students automatically
disengage even at the very outset. (Having the lights out provides a cue.)

Second, presenters often put all of the salient points of the presentation on
the slides, bullet-pointed for clarity-and sometimes they even distribute a
handout of the information on each slide. Why does a student need to listen to
the presenter read through each of these, even if there is a longer explanation?
The pacing seems to slow down painfully; the students never have to figure out
for themselves what the key ideas or points are; they have become merely
scribes, copying down information. No matter how many "cool graphics" you have,
if they don't relate to the material (and are just "frills"), students will tune
out everything of substance.

5) It's Style without Substance.

The stylish presentation that PowerPoint offers often occurs at the expense of
substance. Instead of spending time researching and studying the content, the
presenter spends hours figuring out how to have the bullet points "fly" in.
Examples end up watered down because of technological limitations or the lack of
an appropriate graphic. Complex ideas are reduced to bullet points and clever
images which don't allow for nuance, multiple perspectives or definitions, or

63

points of contention. Excessive stylish features slow the pace of the lesson and
reduce the amount of material that can be conveyed effectively.

Even the best PowerPoint presentation is impressive not because of the insights
and ideas conveyed, but because of the skilled use of technology it represents.
In thinking about whether or not a PowerPoint presentation was effective, people
will often focus on the technologies used, the frills and graphics, the
smoothness with which the technology functioned. This is the last thing you want
students to be getting out of your lesson-that you, the teacher, are good with
technology.

Like Any Tool . . .

While PowerPoint can be a great addition to a teacher's pedagogical repertoire,
it is no magic bullet guaranteed to make professors better (and more impressive)
teachers. Like any tool, it can be misused or abused, and when that happens
teaching effectiveness may be undermined instead of enriched. Effective pedagogy
means knowing the benefits of any given teaching tool. Those who know the
"perils of PowerPoint" are most likely to avoid its pitfalls.

==

A PRUDENT PERSPECTIVE ON "THE PERILS OF POWERPOINT®

William R. Hamilton and Melissa F. Beery

PowerPoint® presentations are becoming the standard method to aid in lectures
and college discussions. PowerPoint® is also frequently seen in financial,
educational, and other professional institutions. The authors William R.
Hamilton and Melissa F. Beery would like to respond to the concerns presented in
"The Perils of PowerPoint®" by Thomas R. McDaniel, and Kathryn M McDaniel.
PowerPoint® presentations are reviewed in terms of the format, technology, and
style.

1. "It's Inflexible."

PowerPoint® presentations are inherently flexible because each presenter is
different and can adjust the PowerPoint® slides accordingly. For example, if a
question is built into the slide, then the presenter can pause for a group
discussionŠ.When a person's lecture is flexible and accommodating, then the
PowerPoint® presentation is a reflection of the author. In fact, PowerPoint® is
only intended to be a framework for presentation of information and content of
the lecture. Teachable moments can be created within that framework. The
presenter need not be a slave to PowerPoint®, in that PowerPoint® presentations
are as flexible as the author wants them to be.

64

2. "It's Risky."

Risk can be countered with options available outside of the technology.
PowerPoint® presenters have a plethora of backup plans available if they chose
to use them. A whole system failure is not common but slides can be printed in
advance and used in the event the technology doesn't work at all. File
management can be an issue but a CD, flash card, or the presenter can email the
presentation to himself can all be options. Presenters need to be aware that a
backup method is the key to any technological or other types of "failures," and
then adjustments can be made. For example, a presenter that relies on a prepared
report in his briefcase but leaves that briefcase on the subway would be in the
same position as the PowerPoint® presenter that is faced with a computer crash.
Do the presentations continue in either case? That's up to the individual
person, not the briefcase or PowerPoint®. Backup plans are available almost
without limit.

3. "It's a Crutch."

In high school speech, some students will use note cards and try to hide their
face behind a 3 X 5 card. Some of these students will outgrow their introverted
tendencies, while others will not. The same goes for those who use PowerPoint®
presentations. Regardless of the tool used, introverted tendencies will occur
because of the individual. There are rare instances when a PowerPoint® presenter
will try and use their technology as a barrier. However, barriers can be
overcome by involving the audience. Some of the best presentations involve
PowerPoint® presentations that are paused to allow group work and enhance
discussion if the presenter wishes it to do so.

4. "It's Boring"

It is generally agreed that the more a student is "engaged," or the more senses
are utilized when involved in a discussion, the more the student will retain the
information. PowerPoint® enables students to "see" in addition to hear a
presentation. A student who wants or needs to "Zone-Out" probably can make that
happen even if they were electrocuted by the PowerPoint® presentation as they
begin to drift off. Simple entertainment techniques can be added to break up the
monotony of a lecture. To blame the technology for "The Zone" is like blaming
paper for a poor lecture.

5. "It's Style without Substance."

If presenters wish to be successful to any degree, they must learn how to have a
bit of style to enhance their presentation. Even a novice can manipulate
PowerPoint® to his or her liking with minimal training and experience. On the
other hand, PowerPoint® presentations can be tailored to fit even complex
discussions. >From graduate students to senior professors, many have used the

65

PowerPoint® format to defend dissertations and present research. Styles will
vary depending on the use of PowerPoint®, but the substance is in the content of
the lecture.

Like many technological aids for the classroom, PowerPoint® presentations have
their advantages and disadvantages. However, PowerPoint® is the correct tool to
most likely to be used. It would be difficult to go back to using the chalk
board where poor handwriting and broken chalk are almost always an issue. With
PowerPoint®, the professor also doesn't have to spend his time with his back to
the students writing everything on the board. Instead, he or she can engage the
students when a group discussion question flies in and sparks the intellectual
thought process.

===

DEATH BY POWERPOINT*

It's a rare professor who hasn't been tempted in recent years to put his or her
lecture notes on transparencies or PowerPoint. It takes some effort to create
the slides, but once they're done, teaching is easy. The course material is
nicely organized, attractively formatted, and easy to present, and revising and
updating the notes each year is trivial. You can put handouts of the slides on
the Web so the students have convenient access to them, and if the students
bring copies to class and so don't have to take notes, you can cover the
material efficiently and effectively and maybe even get to some of that vitally
important stuff that's always omitted because the semester runs out.

Or so the theory goes. The reality is somewhat different. At lunch the other
day, George Roberts-a faculty colleague and an outstanding teacher-talked about
his experience with this teaching model. We asked him to write it down so we
could pass it on to you, which he kindly did.

* * * "About five years ago, I co-taught the senior reaction engineering course
with another faculty member. That professor used transparencies extensively,
about 15 per class. He also handed out hard copies of the transparencies before
class so that the students could use them to take notes.

"Up to that point, my own approach to teaching had been very different. I used
transparencies very rarely (only for very complicated pictures that might be
difficult to capture with freehand drawing on a chalkboard). I also interacted
extensively with the class, since I didn't feel the need to cover a certain
number of transparencies. However, in an effort to be consistent, I decided to
try out the approach of the other faculty member. Therefore, from Day 1, I used
transparencies (usually about 8 -10 per class), and I handed out hard copies of
the transparencies that I planned to use, before class.

66

"After a few weeks, I noticed something that I had not seen previously (or
since)-attendance at my class sessions was down, to perhaps as low as 50% of the
class. (I don't take attendance, but a significant portion of the class was not
coming.) I also noticed that my interaction with the class was down. I still
posed questions to the class and used them to start discussions, and I still
introduced short problems to be solved in class. However, I was reluctant to let
discussions run, since I wanted to cover the transparencies that I had planned
to cover.

"After a few more weeks of this approach, two students approached me after class
and said, in effect, `Dr. Roberts, this class is boring. All we do is go over
the transparencies, which you have already handed out. It's really easy to just
tune out.' After my ego recovered, I asked whether they thought they would get
more out of the class and be more engaged if I scrapped the transparencies and
used the chalkboard instead. Both said `yes.' For the rest of the semester, I
went back to the chalkboard (no transparencies in or before class), attendance
went back up to traditional levels, the class became more interactive, and my
teaching evaluations at the end of the semester were consistent with the ones
that I had received previously. Ever since that experience, I have never been
tempted to structure my teaching around transparencies or PowerPoint."

* * * The point of this column is not to trash transparencies and PowerPoint. We
use PowerPoint all the time-in conference presentations and invited seminars,
short courses, and teaching workshops. We rarely use pre-prepared visuals for
teaching, however-well, hardly ever-and strongly advise against relying on them
as your main method of instruction.

Most classes we've seen that were little more than 50- or 75-minute slide shows
seemed ineffective. The instructors flashed rapid and (if it was PowerPoint)
colorful sequences of equations and text and tables and charts, sometimes asked
if the students had questions (they usually didn't), and sometimes asked
questions themselves and got either no response or responses from the same two
or three students. We saw few signs of any learning taking place, but did see
things similar to what George saw. If the students didn't have copies of the
slides in front of them, some would frantically take notes in a futile effort to
keep up with the slides, and the others would just sit passively and not even
try. It was worse if they had copies or if they knew that the slides would be
posted on the Web, in which case most of the students who even bothered to show
up would glance sporadically at the screen, read other things, or doze. We've
heard the term "Death by PowerPoint" used to describe classes like that. The
numerous students who stay away from them reason (usually correctly) that they
have better things to do than watch someone drone through material they could
just as easily read for themselves at a more convenient time and at their own
pace.

67

This is not to say that PowerPoint slides, transparencies, video clips, and
computer animations and simulations can't add value to a course. They can and
they do, but they should only be used for things that can't be done better in
other ways. Here are some suggested dos and don'ts.

* Do show slides containing text outlines or (better) graphic organizers that
preview material to be covered in class and/or summarize what was covered and
put it in a broader context. It's also fine to show main points on a slide and
amplify them at the board, in discussion, and with in-class activities, although
it may be just as easy and effective to put the main points on the board too.

* Do show pictures and schematics of things too difficult or complex to
conveniently draw on the board (e.g., large flow charts, pictures of process
equipment, or three-dimensional surface plots). Don't show simple diagrams that
you could just as easily draw on the board and explain as you draw them.

* Do show real or simulated experiments and video clips, but only if they help
illustrate or clarify important course concepts and only if they are readily
available. It takes a huge amount of expertise and time to produce high-quality
videos and animations, but it's becoming increasingly easy to find good
materials at Web sites such as SMETE, NEEDS, Merlot, Global Campus, and World
Lecture Hall. (You can find them all with Google.)

* Don't show complete sentences and paragraphs, large tables, and equation after
equation. There is no way most students can absorb such dense material from
brief visual exposures on slides. Instead, present the text and tables in
handouts and work out the derivations on the board or-more effectively-put
partial derivations on the handouts as well, showing the routine parts and
leaving gaps where the difficult or tricky parts go to be filled in by the
students working in small groups.

If there's an overriding message here, it is that doing too much of anything in
a class is probably a mistake, whether it's non-stop lectures, non-stop slide
shows, non-stop activities, or anything else that falls into a predictable
pattern. If a teacher lectures for ten minutes, does a two-minute pair activity,
lectures another ten minutes and does another two-minute pair activity, and so
on for the entire semester, the class is likely to become almost as boring as a
straight lecture class. The key is to mix things up: do some board work, conduct
some activities of varying lengths and formats at varying intervals, and when
appropriate, show transparencies or PowerPoint slides or video clips or whatever
else you've got that addresses your learning objectives. If the students never
know what's coming next, it will probably be an effective course.

68

Teaching Large Classes: Strategies for Improving Student Learning

Dr. Graham Gibbs
Centre for Higher Education Practice
Open University, UK
g.p.gibbs@oper.ac.uk

4/24/98
Stanford University
(notes by R. Reis)

What research has found?

*Student ratings:
* Students dislike large classes
* They sometimes like very large classes, for dysfunctional reasons:- they can
hide- tests are easier
* Students with unsophisticated conceptions of learning like teachers who have
unsophisticated conceptions of teaching

* Student performance (USA):
* Performance on introductory large classes not worse, nor is it on subsequent
courses (that build on the introductory courses) EXCEPT
*where assessment taps higher level outcomes
* where subsequent course had higher level goals
* This result has helped universities get away with very large introductory
courses - if you keep testing with cheap/dirty methods, you wont' catch this.

*Classroom studies:
* Pattern of interaction changes as class size grows.- top 3-4 students who
participate in a class of 8, still participate at same rate as size grows. - the
remaining minimal interaction is just spread over the remainder of the class
* Quantity, quality of interaction changes
- % of teacher talking increases as size grows
- Students questions & answers get shorter
- Cognitive level of Q & A drops -- start to just ask/deliver facts not ideas

* UK Quantitative Studies
(Note on methods: external examiners review exams and set standards, a system
not easily available in the U.S.)
* Correlation between enrollment & marks (grades) is as high as 0.5. Worst
affected is social science, then humanities, then technical/engineering
* Decline of 1% avg. marks for ea. add'l 12 students!
* 50% more likely to gain C or F when enrollment over 70, than under 20
* Lots of studies across different institutions, given same systems

69

* Negative correlation between amt. of teaching & learning (The more teaching
you do, the harder it is for students to prioritize what's important
* Long-term outcome research shows a dependence on amount of interaction with
teachers
* Teaching and learning-centered descriptions of a course
*"teaching-centered" schedule at Oxford Brooks:

Lectures 24 hrs
Labs 36 hrs
Problem classes 12 hrs
* Lots of teacher misunderstanding of how much time students have available, or
how much they actually spend outside of class
*"learning-centered description for same course
Budget for 120 hours of total student effort in the course
Example
4 hrs lectures (teaching)
3 hrs workshops (teaching)
6 hrs seminars (teaching)
56 hrs fieldwork (learning)
10 hrs workshops to present fieldwork (teaching)
18 hrs preparing fieldwork notes (learning)
21 hrs preparing reports (learning)
6 hrs on resource paper
15 hrs on group report
120 hrs total, t:l ratio = 1: 4

*You can brief students on this & track it.
Understanding total student learning time is the key indicator of learning!

* What they did to improve situation at minimum cost
* Course requirement to complete 50 of 70 problem sets
* Peer assessment in six additional "lecture" sessions (Students' assessment was
more personal & direct, but less correct)
* Grades on these problem sets didn't count!
* Lectures, problem sets, classes, exams unchanged
* Result - Average exam increased from 45% to 80%
Note: More examples given in the overheads.

* Why did it work?
* Peer group is more influential
* Doing the grading made them engage in the solution, not just the
problem...they had to use the solution
* Experience with correcting problems gave them an inside perspective on how to
look for problems in the solution
* More time spent on task (your peers will see it)

70

* SUMMARY
* Focus on learning activity, not teaching
* Generate learning hours up to your limit
* Use assessment to lever hours and focus
* Get students to do for themselves and for each other what you previously did
for them
* Use social mechanisms for peer support and peer pressure
* See your course as an integrated whole

71

ACTIVITY BREAKS - A PUSH FOR PARTICIPATION

By Phillip Wankat and Frank Oreovicz

Active learning makes lectures a more powerful classroom technique.

You've surely heard about active learning, cooperative groups, personalized
systems of instruction and problem-based learning. But you were probably taught
through lectures. What is best? Is a well-presented lecture or one of these
other techniques the best learning tool?

It depends on your goals. If all you want to do is transmit information and
assess the results with a multiple- choice test, then lectures do the job. The
only teaching methods that statistically show that students learn better are the
closely related techniques of mastery learning and the personalized system of
instruction. But how many practicing engineers do you know who are paid to take
multiple-choice tests? As soon as higher-order skills (designing, problem
solving, communicating, working with people) are included in the assessment,
teaching methods involving active learning and cooperative groups show a
significant increase in student learning.

Still, lecturing does have advantages. Quite simply, it doesn't rock the boat.
The professor stays in control and only has to be 50 minutes ahead of the
students. And since lectures are face-to-face, developing rapport can be easier,
although this advantage is lost in large classes. If the lecture format enabled
students to learn higher-order skills, it would be quite a good technique.

We don't have to completely abandon lectures to gain many of the advantages that
active learning and cooperative groups offer. If lecture classes are interactive
so that students are not passive for long periods of time, they can be good
learning experiences.

Since the attention span of almost all students is between 10 and 20 minutes,
you can expect to lose most of your students if you lecture for 50 minutes
straight. Even professionals fall victim to the "my eyes glaze over" syndrome.
Not only do students tune out once that "dead" period is reached, the energy
level of the class also flags. The solution might be to structure a 50-minute
class something like this: a mini-lecture including an introduction, an activity
break, a second mini-lecture, an activity break and finally a third mini-
lecture, including a wrap-up. The mini-lectures contain an introduction, a body
and a closing, similar to a straight lecture except they are shorter.

Activity breaks should incorporate active learning and the formation of
cooperative groups. Both techniques practically force students to become
involved. They can be very simple, like turning to a peer and comparing lecture
notes. Alternatively, ask the student groups to solve a short problem. If the

72

problem is part of the homework assignment, they will be more motivated to do
it. Or use technology to involve your students, such as student response systems
like "clickers" to obtain immediate responses to multiple choice questions.
Clickers, which allow students to respond anonymously to a multiple-choice
question and allow the professor to display the responses in real time, involve
the students and give the professor immediate feedback on student learning.
After answering the questions, you might allow students to compare their answers
with one another and change them if necessary.

Ensuring that all of the courses in the curriculum are lecture/active learning
classes is not sufficient-students still need laboratory, design and computer
simulation courses. However, it will go a long way toward satisfying the
conditions necessary to becoming an engineer.

Phillip Wankat is director of undergraduate degree programs in the department of
engineering education and the Clifton L. Lovell Distinguished Professor of
chemical engineering at Purdue University. Frank Oreovicz is an education
communications specialist at Purdue's chemical engineering school. They can be
reached by e-mail at purdue@asee.org.

73

PROBLEM SOLVING THROUGH DESIGN

To design is to solve problems. The author describes a model of problem solving
through design that can be used to restructure courses, programs of study, or
entire institutions.

Although problem-based learning (PBL) can be successful in individual
classrooms, I am advocating a broader and more sweeping implementation of PBL
that can extend across courses, degree programs, or even institutions.
Specifically, I advocate the notion of PBL through design. In this article, I
begin with a description of the relationship between design and problem solving.
Next I offer an example of how I implemented "problem solving through design"
across three graduate-level courses. Finally, I offer considerations for
implementing a model of problem solving through design.

Connection Between Design and Problem Solving

Designing is a problem-solving process, and design problems are usually
described as open-ended, unstructured, or "wicked" (Rittel, 1984). Whether
designing something highly technical, like a computer-based flight simulator to
train future pilots, or something far less technical, like a centerpiece flower
arrangement for a formal table setting, we cannot design without inherently
thinking and working in a problem-solving mode. Through both design and problem
solving, we are focused on "changing existing situations into preferred
ones" (Simon, 1996, p. 130).

Across disciplines, designers tend to share a common problem-solving process
that is an open-ended analogue of the scientific method (Newell and Simon,
1972). Designers solve problems by employing a cyclical process of problem
identification and analysis, research, and inquiry that leads to the ranking of
design priorities, testing multiple solutions through prototyping, and
evaluating the design artifacts against performance criteria (Davis, 1998). To
conceive this cyclical process in slightly different terms, we can note that
design typically flows through major stages: naming (identifying main issues in
the problem), framing (establishing the limits of the problem), moving (taking
an experimental design action), and reflecting (evaluating and criticizing the
move and the frame). Schön (1991) notes that designers reflect on moves in three
ways: by judging the desirability and consequences of the move, by examining the
implications of a move in terms of conformity or vio!
lation of earlier moves, and by understanding new problems or potentials the
move has created. Regardless of how we describe the process, the point is that
designing, like problem solving, is based on systematic processes and
situational "rules of thumb" (Perez, 1995) that should lead to purposeful and
practical outcomes.

Example of Classroom That Uses Problem Solving Through Design

74

In a recent semester, I incorporated a problem-solving-through-design method
into three graduate courses in instructional technology-an instructional design
class, a software development class, and a project management class.

In the past, I had taught these courses using traditional approaches, including
the use of in-class exercises based on decontextualized examples, readings from
texts and journals, and final projects as a basis of evaluation. In these
courses, collaboration was minimal. I recognized a huge limitation of this
traditional approach. Because courses are removed from practical and authentic
contexts, students come to see the content of courses as isolated stages of a
process, not as integrated activities within a single process.

To "transform" these classes using a method of problem solving through design. I
compiled several problem scenarios that included possibilities for real and
simulated interaction with clients. I also designed a set of performance
expectations that established major deadlines and described my ideas of various
working relationship among the three classes. As I introduced the various
problem scenarios to students at the beginning of the semester, I invited each
class member to volunteer for problem scenarios that were personally appealing,
although I monitored the process to ensure that at least one student from each
class was on each design team. Once all students had volunteered for a team, I
distributed the performance expectations document, members of each team
collaboratively worked to devise processes of design that would result in
suitable artifacts.

Because each team was autonomous, no single description of the events that
semester could fully capture each team's approach to design. In general, members
of the project management class were in charge of the various projects. The
project managers worked with the clients to establish project goals and tasks.
Members of the design class assisted project managers in completing a needs
assessment and analysis. Members of the design class also developed a design
plan that members of the project management class presented to the client for
approval. After the clients approved the various design plans, members of the
software development class produced prototypes based on the plan created by the
design class. The prototypes were tested with target audiences. The project
management class then produced an evaluation report and held a culminating
meeting with the design team to reflect on the process and outcomes of the
design project.

Because students were enrolled in three different courses that met on three
different nights, communication within each team was a potential problem.
Project managers maintained Web sites for each problem scenario. These Web sites
allowed all team members to view work schedules, drafts of design plans, and
prototypes. Team members could communicate with each other and the client

75

through e-mail. An important feature was that, using the Web sites as guides,
each group, for the most part, was self-directed and self-sufficient.

I served as a consultant to the teams at various points of difficulty, as a
"client" when quick decisions were necessary regarding project goals or vision,
and as a team member when production problems arose. By the end of the semester,
students had successfully completed seven projects, and students remarked that
the process, while arduous, was also meaningful, fun, and afforded them
opportunities to learn in ways that were different from those in traditional
graduate classes.

Recommendations for Implementing Problem Solving Through Design

So far in this article, I have made a connection between design and problem
solving. I also have described my attempts with implementing a problem-solving-
through-design model across three higher education courses. In this section, I
offer a vision of an environment that would fully support such a model. To
implement a problem-solving-through-design approach, professors should
reconceptualize curriculum as problems, places students in the role of
designers, and reconfigure classrooms as design studios.

Curriculum as Problems. In a problem-solving-through-design model, professors
cannot preestablish a curriculum. Even the idea of teaching design sensibilities
as a topic in the curriculum is problematic because design is not an object of
study; design is a mode of inquiry and exploration (Davis, Hawley, McMullan, and
Spilka, 1997). Instead of a contrived curriculum presented through an artificial
context, design tasks are supported by learning on demand, where learning goals
emerge from the situation at hand. In other words, because design problems are
ill structured, professors cannot determine a standard curriculum until students
actively devise methods for addressing the design problem.

Although a predesigned curriculum is irrelevant in a problem-solving-through-
design model, professors are necessary and vital to students' success.
Professors serve as facilitators and share their expertise as experienced
designers. Facilitators can help participants establish individual and small-
group goals through the use of performance contracts (Rieber, 2000). The
facilitator also can moderate evaluations, helping and encouraging learners to
offer feedback to their peers. Most important, however, professors must serve as
experienced designers by helping students formulate alternatives to solutions as
students design.

Students as Designers. In a problem-solving-through-design model students become
designers. Designers work collaboratively and use conversation, argumentation,
and persuasion to achieve consensus about perspectives and actions that might be
take to solve a design problem (Bucciarelli, 2001). Conflicting viewpoints are
debated, and differences of opinion are negotiated. In this way, dialogue

76

transforms individual thinking, creating collective thought and socially
constructed knowledge within the team (Sherry and Myers, 1998). To further a
shared understanding of the problem to be solved, designers create
representations to solidify their design ideas (Hedberg and Sims, 2001).

Beyond working collaboratively, designers tend to be self-organized both
individually and within their collaborative groups (Thomas and Harri-Augstein,
1985). Designers accept responsibility for their own learning by identifying
their own purposes, setting goals for learning, implementing learning
strategies, and identifying appropriate resources and tools (Fiedler, 1999).

Classrooms as Studios. To organize and manage design activities, professors can
create an environment that is more akin to a studio than to a traditional
classroom. Design studios are common in fine arts, architecture, and other
fields that emphasize design (Orey, Rieber, King, and Matzko, 2000). Studios
provide a learning environment in which participants use design tools and
processes to complete real-world, and often self-selected, projects.

First, a design studio supports the use of appropriate design tools to craft
models, drawings, narratives, and other representations of solutions. In many
situations, professors may find that design activities provide excellent
opportunities for the integration of computers into the classroom (for example,
D'Ignazio, 1989; Liu and Pedersen, 1998). In other contexts, a consideration of
communication tools can facilitate good design. As I note in my problem-solving-
through-design example, students were officially registered for different
courses, so a Web site became a valuable tool for promoting organization among
students, and electronic communication tools became important tools for
fostering clear communication.

Second, design studios support the use of processes that assist students in the
design task. In general, students work independently and within teams to design
a viable product that will solve their problem. For many students who have
experience as designers, the idea of reflection may be natural and innate. But
professors should consider building into the studio environment processes that
will promote reflection among students. Professors need to scaffold reflection
through concrete activities. For example, designers often maintain sketchbooks
and diaries to support reflection (Cheng, 2000; Webster, 2001).

Also, professors can use numerous evaluation processes in design studios. They
can conduct informal "desk critiques" on a regular basis. These desk critiques
serve to provide students with cursory feedback about their work products. More
formally, design studios imply the use of "juried" presentations of works in
progress. In juried presentations, groups summarize their processes and showcase
their products to professors and students who are working on other design
projects. Juries provide an opportunity for formative peer review. In studios,
summative evaluation often comes in the form of portfolios or formal

77

presentations to faculty committees, other students, and possible even real-
world clients.

Conclusions

>From students learning through the design and production of multimedia (Kahn
and Taber Ullah, 1998) to students learning science by designing and testing
solutions to problems (Harel and Papert, 1991), problem-solving-through-design
tasks have become an effective model for teaching and learning. For students and
professors, the use of design in the classroom presents new challenges and
fundamentally alters their roles. In accepting the challenges of incorporating
design into the classroom, professors create new learning experiences that are
more appropriate for students rather than relying on tradition exercises or
lectures from a textbook.

References

Bucciarelli, L. "Design Knowing and Learning: A Socially Mediated Activity." In
C.M. Eastman, W.M. McCracken, and W.C. Newstetter (eds.) Designing Knowing and
Learning: Cognition in Design Education. Amsterdam, N.Y,: Elsevier, 2001, pp.
297-314.
Cheng, N. "Web-based Teamwork in Design Education." Paper presented at SiGraDi
2000: 4th Iberoamerican Congress of Digital Graphics, Rio de Janiero, Sept.
2000.
Davis, M. "Making a Case for Design-Based Learning." Arts Education Policy
Review, 1998, 100(2), 7-14.
Davis, M., Hawley, P., McMullan, B., and Spilka, G. Design as a Catalyst for
Learning. Alexandria, Va.: Association for Supervision and Curriculum
Development, 1997.
D'Ignazio, F. "The Multimedia Sandbox: Creating a Publishing Center for
Students." Classroom Computer Learning, 1989, 10(2), 22-23, 26-29.
Fiedler, S.H.D. "The Studio Experience: Challenges and Opportunities for Self-
Organized Learning." Department of Instructional Technology, University of
Georgia. [http://itech1.coe.uga.edu/studio/fiedler.html]. 1999.
Harel, I., and Papert, S. (eds.). Constructionism. Norwood, N.J.: Ablex, 1991.
Hedberg, J., and Sims, R. "Speculations on Design Team Interactions." Journal of
Interactive Learning Research, 2001, 12(2-3), 193-208.
Kahn, T.M., and Taber Ullah, L.N. Learning by Design: Integrating Technology
into the Curriculum Through Student Multimedia Design Projects. Tucson: Zephyr
Press, 1998.
Liu, M., and Pedersen, S. "The Effect of Being Hypermedia Designers on
Elementary School Students' Motivation and Learning of Design Knowledge."
Journal of Interactive Learning Research, 1998, 9(2), 155-182.
Newell, A., and Simon, H.A. Human Problem Solving. Englewood Cliffs, N.J.:
Prentice Hall, 1972.

78

Orey, M., Riever, L., King, J., and Matzko, M. "The Studio: Curriculum Reform in
an Instructional Technology Graduate Program." Paper presented at the annual
meeting of the American Educational Research Association, New Orleans, Apr.
2000.
Perez, R. "Instructional Design Expertise: A Cognitive Model of Design."
Instructional Science, 1995, 23(5-6), 321-349.
Rieber, L.P. "The Studio Experience: Educational Reform in Instructional
Technology." In D.G. Brown (ed.), Best Practices in Computer Enhanced Teaching
and Learning. Winston-Salem, N.C.: Wake Forest Press, 2000, pp. 195-196.
Rittel, H.W. "Second-Generation Design Methods." In N. Cross (ed.), Developments
in Design Methodolofies. Chichester, U.K.: Wiley, 1984.
Schön, D. The Reflective Practitioner: How Professionals Think in Action. New
York: Teachers College Press, 1991.
Sherry, L., and Myers, K.M. "The Dynamics of Collaborative Design." IEEE
(Institute of Electrical and Electronics Engineers) Transactions on Professional
Communication, 1998, 41(2), 123-139.
Simon, H.A. The Sciences of the Artificial. (3rd ed.) Cambridge, Mass.: MIT
Press, 1996.
Thomas, L., and Harri-Augstein, S. Self-Organised Learning. London, U.K.:
Routledge, 1985.
Webster, H. "The Design Diary: Promoting Reflective Practice in the Design
Studio." Paper presented at the Architectural Education Exchange, Cardiff, U.K.,
Sept. 2001.

WAYNE A. NELSON is a professor of instructional technology and chair of the
department of educational leadership at Southern Illinois University
Edwardsville.

79

ASKING THE RIGHT QUESTIONS IN CLASS

"Effective Teaching in Agriculture and Life Sciences," Unit 2 Improving
Presentation/Classroom Skills

Module D -Questioning

Teachers should be liberal in their use of questions while teaching.
Numerous research studies have found a correlation between questioning and
student learning. Questions serve a variety of purposes:

* They can be used to ascertain what students know prior to
 teaching
* They can be used to determine if students have learned
 what has been taught
* They can be used to gain attention
* They provide variation while teaching
* They can be directed at problem students to get the student back on task
* They cause students to think

Using questions while teaching is a desirable behavior.

Levels of Questions: Questions are typically divided into two levels: Higher
Order and Lower Order. The higher order questions call for responses from
students that require synthesis, analysis and evaluation. Lower order questions
require students to provide answers that demonstrate basic
knowledge and comprehension (see Unit 1 Developing Higher-Order Thinking Skills
for a review of the levels of the cognitive domain). It is desirable to ask both
higher order and lower order questions. Research finds professors tend to ask
only lower order questions.

Types of Questions: There are several systems for classifying questions. One
system classifies questions as convergent or divergent. Convergent questions
have a single or limited number of correct answers. Convergent questions
typically involve the recall of facts or application of knowledge to a specific
situation. Examples of convergent questions are:

 What is the chemical formula for photosynthesis?
 What are signs of nitrogen deficiency in plants?
 Which breeds of livestock would be best adapted for South Texas?

In some classification schemes, convergent questions are called closed
questions.

80

Divergent questions have many correct answers or even unknown answers. They are
often used to get students to think or solve problems. Examples of
Divergent questions are:

What do you think will happen to family farms over the next ten years If you
were the Secretary of Agriculture, what three things would you do first?

For an agribusiness to be successful, what business principles must be
followed?

Teachers typically asked convergent questions five times more often than
they ask divergent questions. Both types of questions are valuable in the
classroom. In some classification schemes, divergent questions are called
open questions.

A probing question is one in which the teacher asks the student to provide
additional information, clarify a response or justify an answer. Teachers
should get into the practice of asking probing questions as this causes students
to develop higher order thinking skills. Even if a student response to a
question is correct, it is appropriate to follow-up with a probing question.

One teaching skill not discussed in Module A of this lesson is cueing. When a
student is asked a question and cannot respond, it is ok to provide a hint
or clue to help the student. This is called cueing.

Steps in Asking Questions

There is a correct way and incorrect way to ask a question. A novice teacher may
throw out a question or two to the class, get no response, and then decide not
to use questioning as a part of the teaching repertoire. The problem was in the
way the question was asked. In using questions the following sequence is
recommended:

1.Ask the question. The question should be clearly stated and correctly
phrased. If all you get are blank looks after asking a question, it may be
because the question is poorly worded. When teachers come up with questions on
the spur of the moment, they may not be the greatest example of precise wording.
It isn't a bad idea to write down 2-3 questions you might want to ask and place
those in your lecture notes.

2.Pause. After the question is asked, the teacher should pause for several
seconds. This allows time for students to formulate a response. The longer
the pause, the better the response will be. Research shows the average
pause time after a question is asked is eight-tenths of a second. This is
inadequate. Research shows the quality of the response is improved if more

81

time is allowed for students to think after a question is asked.

3.Call on a student by name. There are two things that generally happen
when a teacher asks a question, but doesn't call on a specific student to
respond.

A. No one will respond. Broadcast questions such as "Does anybody know..." or
"Who knows..." rarely invoke a response; especially early in the semester. After
rapport has been established, a professor may be able to
ask this type of question. A specific student should be called on to answer the
question.

B. One or two students may dominate the class if no one is called on to
respond. Every time a question is posed, the same couple of students will
answer. This is not desirable.

There are some people who are reluctant to call on a student by name
because they might embarrass the student if the student doesn't answer the
question correctly. As long as the professor doesn't lambaste the student
for not knowing the answer and makes it a habit to call on all students in
the class as a matter of course instead of singling out a few, this isn't a
major problem.

The reason the questioning process starts with stating the question instead
of identifying a student to answer is because this will cause all the
students to have to think of the answer. If the teacher calls on a student
and then asks the question, the other students tend to relax.

4.Acknowledge the answer, probe or redirect the question. The manner in
which the teacher reacts to a student response to a question depends up the
time available and the goals trying to be accomplished. The simplest
response is to say "That is correct" or "That isn't quite right" or
something to that effect. The student response should beacknowledged but a
master teacher will build upon the student response whether it correct or
incorrect. A master teacher will probe further (Why do you believe that to
be true? Are you sure? Why did you respond that way?) or redirect the question
to another student (Do you agree? What do you think?). The question may be
redirected to 3-4 other students. Even if the original response was correct, it
is not a bad idea to bounce the same question off of several students. Probing
and redirecting the question promotes a deeper level of understanding and
thinking.

5.State the correct response. Before a question is left, the teacher should
emphasize the correct answer.

82

Keeping Discussion Going Though Questioning, Listening, and Responding

We emphasize throughout this book that democratic discussion is open and fluid,
building on the diverse experiences and interpretations of its participants.
Although teachers have some responsibility for guiding the discussion, no one
person controls its direction entirely. Consequently, good discussions are
unpredictable and surprising. They reveal things about the discussants and the
topic under examination that are illuminating and eye-opening. At the same time,
however, because democratic discussions have a life of their own, they can
falter and even expire quite unexpectedly.

Even when discussions gets off to a good start and seem to have momentum, a
variety of circumstances can intervene to bring group talk to a grinding halt.
Sometime the teacher or one or two students assume too dominant a role.
Sometimes the question or issue to be discussed just isn't controversial enough.
Often the pace seems too slow, or the process for exploring the question lacks
variety. In other cases, the students may not be ready to explore a topic in a
large group setting or for some reason have lost their enthusiasm for the
subject. Although it is frequently difficult to pinpoint the reasons why
attention is wandering or commitment to the subject is waning, action needs to
be taken to reinvigorate the conversation when these things happen. Part of the
secret of dealing with these situations lies in refusing to panic or to berate
oneself for allowing things to get off track. Fortunately, it is often possible
to revive discussion and regain the sense of "controlled spontaneity" (Welty,
1989, p.47) characteristic of good conversation.

This is not to say, however, that we regard discussion as a panacea for tuning
bored, disinterested, or hostile students into enthusiastic advocates for
learning. Neither do we believe that simply talking about problems leads
inevitably to students' deciding to take action to address pressing social
concerns. As we argued in Chapters One and Two, discussions, in general tend to
increase motivation, promote engagement with difficult material, and give people
appreciation for what they can learn from one another and for what can be
accomplished as a group. But we want to acknowledge that we have both been
responsible for classes where discussion failed miserably, inducing boredom,
resentment, and confusion. We have no magic formula to guarantee success, just
some ideas that have proved useful to rejuvenate conversations that seem to be
stuck.

Sometimes a discussion can be considered successful even if the original
intentions of the leader go unrealized. When participants learn that a problem
is more complex than they had thought or when their appreciation for existing
differences is deepened, these can be counted as significant accomplishments,
even though they might be different from the teacher's anticipated outcomes. We
can say unequivocally, however, that discussion fails when participants avoid
similar dialogical encounters in the future or when they lose interest in the

83

topics under consideration. If part of the point is to keep conversation going,
to stimulate people to keep talking in the future, then discussion that inhibit
this desire must be regarded as counterproductive and miseducational.

The question remains, what conditions inhibit dialogue and what measures can be
taken to overcome them? This chapter and the next will focus on a variety of
ways to make discussion a process of continuous discovery and mutual
enlightenment. Getting students to view problems more critically and creatively
helps keep discussion fresh. How teachers maintain the pace of the discussion,
how they use questioning and listening to engage students in probing subject
matter, and how they group students for instruction all affect how the
discussion proceeds and how motivated the students are to participate in similar
discussions in the future.

Questioning

To reiterate, an important focus of democratic discussion should be on getting
as many people as possible deeply engaged in the conversation. Whatever the
teacher says and does should facilitate and promote this level of engagement. As
a number of commentators have pointed out, at the heart of sustaining an
emerging discussion are the skills of questioning, listening, and responding
(Christensen, 1991a, 1991b, Jacobson, 1984; Welty, 19898). Of the three learning
to question takes the most practice and skill (Freire, 1993; Bateman, 1990).
Although it is certainly true that the kinds of questions one asks to begin a
discussion set an important tone, it is equally true that subsequent questions
asked by both the teacher and the students can provide a powerful impetus for
sustaining discussion. Indeed, as Palmer (1998) has noted, how we ask questions
can make the difference between a discussion that goes nowhere and one that
turns into a "complex communal dialogue that bounces all around the room" (p.
134).

Types of Questions

Once the discussion is moving along, several kinds of questions are particularly
helpful in maintaining momentum.

Questions That Ask for More Evidence These questions are asked when participants
state an opinion that seems unconnected to what's already been said or that
someone else in the group thinks is erroneous, unsupported, or unjustified. The
question should be asked as a simple request for more information, not as a
challenge to the speaker's intelligence. Here are some examples:

How do you know that? What data is that claim based on? What does the author say
that supports your argument? Where did you find that view expressed in text?
What evidence would you give to someone who doubted your interpretation?

84

Questions That Ask for Clarification Clarifying questions give speakers the
chance to expand on their ideas so that they are understood by others in the
group. They should be an invitation to convey one's meaning in the most complete
sense possible. Here are some examples:

Can you put that another way? What's a good example of what you are talking
about? What do you mean by that? Can you explain the term you just used? Could
you give a different illustration of your point?

Open Questions Questions that are open-ended, particularly those beginning with
how and why, are more likely to provoke the students; thinking and problem-
solving abilities and make the fullest use of discussion's potential for
expanding intellectual and emotional horizons. Of course, using open questions
obliges the teacher to take such responses seriously and to keep the discussion
genuinely unrestricted. It is neither fair nor appropriate to ask an open-ended
question and then to hold students accountable for failing to furnish one's
preferred response. As Van Ments (1990) says, "The experienced teacher will
accept the answer given to an open questions and build on it" (p.78). That is,
as we all know, easier said than done. Here are some examples of open questions:

Sauvage says that when facing moral crises, people who agonize don't act, and
people who act don't agonize. What does he mean by this? (Follow-up question:
Can you think of an example that is consistent with Sauvage's maxim and another
that conflicts with it?)

Racism pervaded American society throughout the twentieth century. What are some
signs that things are as bad as ever? What are other signs that racism has
abated significantly?

Why do you think many people devoted their lives to education despite the often
low pay and poor working conditions?

Linking or Extension Questions An effective discussion leader tries to create a
dialogical community in which new insights emerge from prior contributions of
group members. Linking or extension questions actively engage students in
building on one another's responses to questions. Here are some examples of such
question:

Is there any connection between what you've just said an d what Rajiv was saying
a moment ago? How does your comment fit in with Neng's earlier comment? How does
your observation relate to what the group decided last week? Does your idea
challenge or support what we seem to be saying? How does that contribution add
to what has already been said?

These kinds of questions tend to prompt student-to-student conversation and help
students see that discussion is a collaborative enterprise in which th e wisdom

85

and experience of each participant contributes something important to the whole.
Too often discussion degenerates into a gathering of isolated heads, each saying
things that bear no relationship to other comments. The circular response
exercise (see Chapter Four), which requires students to ground their comments in
the words of the previous speakers, gives students practice in creating
discussions that are developmental and cooperative. Skillfully employing linking
questions can also help participants practice discussion as "a connected series
of spoken ideas" (Leonard, 1991, p. 145).

Hypothetical Questions Hypothetical questions ask students to consider how
changing the circumstances of a case might alter the outcome. They require
students to draw on their knowledge and experience to come up with plausible
scenarios. Because such questions encourage highly creative responses, they can
sometime cause learners to veer off into unfamiliar and seeming tangential
realms. But with a group that is reluctant to take risks or that typically
answers in a perfunctory, routinized manner, the hypothetical question can
provoke flights of fancy that can take a group to a new level of engagement and
understanding, Here are some examples of hypothetical questions:

How might World War II have turned out if Hitler had not decided to attack the
Soviet Union in 1941? What might have happened to the career of Orson Welled, in
RKO Studios had not tampered with his second film, The Magnificent Ambersons? In
the video we just saw, how might the discussion have been different if the
leader had refrained from lecturing the group? If Shakespeare had intended Iago
to be a tragic or m ore sympathetic figure, how might he have changed the
narrative of Othello?

Cause-and-Effect Questions Questions that provoke students to explore cause-and-
effect linkages are fundamental to developing critical thought. Questions that
ask students to consider the relationship between class size and academic
achievement or to consider why downtown parking fees double on days when there's
a game at the stadium encourage them to investigate conventional wisdom. Asking
the class-size question might prompt other questions concerning the discussion
method itself, for example:

What is likely to be the effect of raising the average class size from twenty to
thirty on the ability of learners to conduct interesting and engaging
discussions? How might halving our class affect our discussion?

Summary and Synthesis Questions Finally, one of the most valuable types of
questions that teachers can ask invites students to summarize or synthesize what
has been thought and said. These questions call on participations to identify
important ideas and think about them in ways that will aid recall. For instance,
the following questions are usually appropriate and illuminating:

86

What are the one or two most important ideas that emerged from this discussion?
What remains unresolved or contentious about this topic? What do you understand
better as a result of today's discussion? Based on our discussion today, what do
we need to talk about next time if we're to understand this issue better? What
key word or concept best captures out discussion today?

By skillfully mixing all the different kinds of questions outlined in this
chapter, teachers can alter the pace and direction of conversation, keeping
students alert and engaged. Although good teachers prepare questions beforehand
to ensure variety and movement, they also readily change their plans as the
actual discussion proceeds, abandoning prepared questions and formulating new
ones on the spot.

References

Welty, W. "Discussion Method Teaching." Change, 1989, 21(4), 41-49.

Christensen, C. "The Discussion Leader in Action: Questioning, Listen- ing, and
Response." In C. Christensen, D. Garvin, and A. Sweet (eds.), Education for
Judgment: The Artistry of Discussion Leadership. Boston: Harvard Business School
Press, 1991a.

Christensen, C. "Every Student Teaches and Every Student Learns: The Reciprocal
Gift of Discussion Teaching." In C. Christensen, D. Garvin, and A. Sweet (eds.)
Education for Judgment: The Artistry of Discussion Leadership. Boston: Harvard
Business School, 1991b.

Jacobson, R. "Asking Questions Is the Key Skill Needed for Discussion."
Chronicle of Higher Education, July 25, 1984, p. 20.

Welty, W. "Discussion Method Teaching." Change, 1989, 21(4), 41-49.

Ferrier, B., Marrin, M., and Seidman, J. "Student Autonomy in Learning Medicine:
Some Participants' Experiences." In D. Boud (ed.), Devel- oping Student Autonomy
in Learning. New York: Nichols, 1988.

Baetman, W.L. Open to Question: The Art of Teaching and Learning by Inquiry. San
Francisco: Jossey-Bass, 1990.

Palmer, P.J. The Courage to Teach: Exploring the Inner Landscape of a Teacher's
Life. San Francisco: Jossey-Bass, 1998.

Van Ments, M. Active Talk: The Effective Use of Discussion in Learning. New
York: St. Martin's Press, 1990.

87

Leonard, H. "With Open Ears: Listening and the Art of Discussion Lead- ing." In
C. Christensen, D. Garvin, and A. Sweet (eds.), Education for Judgment: The
artistry of Discussion Leadership. Boston: Harvard Business School Press, 1991.

88

TACTICS FOR EFFECTIVE QUESTIONING
B.G. Davis, Tools for Teaching, San Francisco, CA: Jossey-Bass Inc.,
Publishers, 1995, pp. 85-88

ASK ONE QUESTION AT A TIME. Sometimes, in an effort to generate a response,
instructors attempt to clarify a question by rephrasing it. But often the
rephrasing constitutes an entirely new question. Keep your questions brief
and clear. Lon complex questions may lose the class. For example, "How is
the theory of Jacques Lacan similar to Freud's?" rather than "How are Lacan
and Freud alike?" Are they alike in their view of the unconscious? How
about their approach to psychoanalysis?" (Sources: Hyman, 1982; "Successful
Participation Strategies," 1987)

AVOID YES/NO QUESTIONS. Ask "why" or "how" questions that lead students to
try to figure out things for themselves. Not "Is radon considered a
pollutant?" but "Why is radon considered to be a pollutant?" You cannot get
a discussion going if you ask questions that only require a one-syllable or
short-phrase response.

POSE QUESTIONS THAT LACK A SINGLE RIGHT ANSWER. A history professor
includes questions for which a number of hypotheses are equally plausible-
for example, "Why did the birthrate rise in mid-eighteenth century
England?" or "Why did Napoleon III agree to Carvour's plans? She emphasizes
to students that the answers to these questions are matters of controversy
or puzzlement to scholars and asks the class to generate their own
hypotheses. She embellishes what the students suggest by adding historians'
theories and by showing how different answers to the questions lead in very
different directions. She concludes by stressing that the answer to the
question remains unsolved.

ASK FOCUSED QUESTIONS. An overly broad question such as "What about the
fall of the Berlin Wall?" can lead your class far off the topic. Instead
ask, "How did the reunification f Germany affect European economic
conditions?"

AVOID LEADING QUESTIONS. A question such as "Don't you all think that
global warming is the most serious environmental hazard we face?" will not
lead to a free-ranging discussion of threats to the environment. Similarly,
avoid answering your own question: "Why can't we use the chi-square test
here? It is because the cells are too small?"

89

AFTER YOU ASK A QUESTION, WAIT SILENTLY FOR AN ANSWER. Do not be afraid of
silence. Be patient. Waiting is a signal that you want thoughtful
participation. Count to yourself while your students are thinking; the
silence rarely lasts more than ten seconds. If you communicate an air of
expectation, usually someone will break the silence, even if only to say,
"I don't understand the question." If a prolonged silence continues, ask
your students what the silence means: "Gee, everyone has been quiet for a
while- why?" or encourage students by saying, "It's not easy to be the
first one to talk, is it?" Someone will jump in with a comment or response.
Don't feel like you have to call on the first person who volunteers. You
might want to wait until several hands have been raised to let the students
know that replies do not have to be formulated quickly to be considered.
Consider choosing the student who has spoken least. After the first student
is finished, call on the other students who had raised their hands, even if
their hands are down. (Sources: Kasulis, 1984; Lowman, 1984; Swift ,
Gooding and Swift, 1988)

SEARCH FOR CONSENSUS ON CORRECT RESPONSES. If one student immediately gives
a correct response, follow up by asking others what they think. "Do you
agree, Hadley?" is a good way to get students involved in the discussion.

ASK QUESTIONS THAT REQUIRE STUDENTS TO DEMONSTRATE THEIR UNDERSTANDING.
Instead of "Do you understand?" or "Do you have any question about
evaluation utilization?" ask, "What are the considerations to keep in mind
when you want your evaluation results to be used?" Instead of "Do you
understand this computer software?" ask, "How would we change the
instructions if we wanted to sort numbers in ascending order rather than
descending order. Instead of "Does everybody see how I got this answer?"
ask, "Why did I substitute the value of the delta in this equation?" If you
want to ask, "Do you have any questions?" rephrase it to "What questions do
you have?" The latter implies that you expect questions and are encouraging
students to ask them.

STRUCTURE YOUR QUESTIONS TO ENCOURAGE STUDENT-TO-STUDENT INTERACTION. "Sam,
could you relate that to what Molly said earlier?" Be prepared to help Sam
recall what Molly said. Students become more attentive when you ask
questions that require them to respond to each other. (Source: Kasulis,
1984)

DRAW OUT RESERVED OR RELUCTANT STUDENTS. Sometimes a question disguised as
an instructor's musings will encourage students who are hesitant to speak.

90

For example, instead of "What is the essence or thesis of John Dewey's
work?" saying, "I wonder if it's accurate to describe John Dewey's work as
learning by doing?" gives a student a chance to comment without feeling put
on the spot.

USE QUESTIONS TO CHANGE THE TEMPO AND DIRECTION OF THE DISCUSSION.
Kasulis (1984) identifies several ways to use questions.
Ö To lay out perspectives: "If you had to pick just one factorä" or "In a
few words, name the most important reasonä" This form of questioning can
also be used to cap talkative students.
Ö To move from abstract to concrete, or general to specific: "If you were
to generalizeä" or "Can you give some specific examples?"
Ö To acknowledge good points made previously: "Sandra, would you tend to
agree with Francisco on this point?"
Ö To elicit a summary or give closure: "Beth if you had to pick two themes
that recurred most often today, what would they be?"

USE PROBING STRATEGIES. Probes are follow-up questions that focus students'
attention on ideas or assumptions implicit in their first answer. Probes
can ask for specifics, clarifications, consequences, elaborations, parallel
examples, relationship to other issues, or explanations. Probes are
important because they help students explore and express what they know
even when they aren't sure they know it (Hyman, 1980). Here are some
examples of probing from Goodwin, Sharp, Cloutier, and Diamond (1985, pp.
15-17):

Instructor: What are some ways we might solve the energy crisis?

Student: Peak-load pricing by utility companies.

Instructor: What assumptions are you making about consumer behavior
when you suggest that solution?

Instructor: What does it mean to devalue the dollar?

Student: I'm not really sure, but doesn't it mean that, um, like
say last year the dollar could buy a certain amount of
goods and this year it could buy less-does that mean
devalued?

Instructor: Well, let's talk a little bit about another concept,
and
this is inflation. Does inflation affect the dollar in

91

that way?

Instructor: What is neurosis?

Students: [no response]

Instructor: What are the characteristics of a neurotic person?

Instructor: How far has the ball fallen after three seconds,
Christi?

Student: I have no idea.

Instructor: Well, Christi, how would we measure distance?MOVE AROUND THE ROOM TO
INCLUDE STUDENTS IN THE DISCUSSION. When a student
asks a question, it is natural for an instructor to move toward that
student without realizing that this tends to exclude other students. To
draw others into the conversation, look at the student who is speaking, but
move away from that student.

Hyman, R. T. Improving Discussion Leadership, New York: Teachers College
Press, 1980
Goodwin, S.S., Sharp, G. W., Cloutier, E.F., and Diamond, N.A., Effective
Classroom Questioning, Urbana: Office of Instructional Resources,
University of Illinois, 1985.

===

QUESTIONING STRATEGIES

Questions should play an important role in every classroom--both student
questions and teacher questions. Teachers can create an active learning
environment by encouraging students to ask and answer questions.

STUDENT QUESTIONS

 * Make it easy for students to ask questions
 * Make time for questions
 * Wait for students to formulate questions
 * Ask other students to answer
 * Have students formulate questions prior to class

TEACHER QUESTIONS

 * Plan some questions as you prepare

92

 * Ask clear, specific questions
 * Use vocabulary students can understand
 * Ask questions in an evenly-paced, easily identifiable order
 * Ask questions from all levels of Bloom's Taxonomy of Educational
Objectives
 * Use questions to help students connect important concepts
 * Use questions to give you feedback
 * Allow sufficient time for students to answer
 * Rephrase questions

Teacher Questions
PLAN SOME QUESTIONS AS YOU PREPARE your lesson plan.

Consider your instructional goals and emphasize questions that reinforce them.
The questions you ask will help students see what topics you consider important.

ASK CLEAR, SPECIFIC QUESTIONS that require more than a yes or no answer. Avoid
ambiguous or vague questions such as "What did you think of the short story?"

If a student does give you a yes/no or short answer, ask a follow up question
that will encourage him/her to expand, clarify, or justify the answer.

USE VOCABULARY THAT STUDENTS CAN UNDERSTAND. Students cannot respond well to a
question that contains unfamiliar terms.

ASK QUESTIONS IN AN EVENLY-PACED, EASILY IDENTIFIABLE ORDER. Students might be
confused by random, rapid-fire questions. Use questions to signal a change of
topic or direction in the lecture.

ASK QUESTIONS FROM ALL LEVELS of Bloom's Taxonomy of Educational Objectives.
Mixing more difficult questions that require synthesis and evaluation with
simple questions that require memory and comprehension keeps students actively
switching gears. For a more complete description of the major categories in the
cognitive domain, see the section on testing.

USE QUESTIONS TO HELP STUDENTS CONNECT IMPORTANT CONCEPTS. (e.g., Now that we've
learned about conservation of energy, how does this knowledge help us relate the
kinetic and potential energy of an object?)

USE QUESTIONS TO GIVE YOU FEEDBACK on whether students have understood the
material. (e.g., "Which part of the experiment was most difficult for you and
why?").

ALLOW SUFFICIENT TIME FOR STUDENTS TO ANSWER your questions (10-15 seconds).
Students need time to think and organize an answer before responding. Learn to
wait until you get a student response. The silence can be uncomfortable

93

sometimes, but it is necessary in order for students to know that you are
serious about wanting an answer to your question. You can ask students to write
down their response to a question, then call on several students to read their
answers. This technique requires all students to become actively involved in
thinking about your question.

REPHRASE QUESTIONS when students do not respond in the manner you expected.
Admit that your original question might have been confusing.

Student Questions
MAKE IT EASY FOR STUDENTS TO ASK QUESTIONS

a. Make your classroom risk-free for asking questions. Banish the phrase "stupid
question" from your vocabulary. Let students know the first day that you want
and expect questions.

b. Solicit questions by asking:
- "What aspects of this material are unclear?"
- "Can I give another example to help you understand this topic?"
- "Can anyone add some examples to mine to help clarify this material?"

MAKE TIME FOR QUESTIONS throughout your class. Do not leave the question time
until the last 2 or 3 minutes. Students will assume that "Are there any
questions?" is a signal for class to end.

WAIT FOR STUDENTS TO FORMULATE QUESTIONS. Be sure to allow pause time (10-15
seconds) for students to review their notes for areas that are unclear.

Again, you may ask students to write their question and then call on several
students to read what they have written.

ASK OTHER STUDENTS TO ANSWER student questions. This will encourage a discussion
among the class.

HAVE STUDENTS FORMULATE QUESTIONS PRIOR TO CLASS.
Anytime you assign reading, math problems, experiments, case studies, journal
writing, etc., ask your students to prepare three questions they had while they
were completing the assignment. Also, you might ask them to write three
questions they would expect to answer on a quiz covering the material they
encountered. Begin class by having your students share their questions in small
groups or as a whole. Their questions not only will stimulate discussion but
also will allow you to determine confusing aspects of the material. In addition,
being able to anticipate questions a teacher will ask on exams is an important
study skill for students to develop.

94

 13

PUTTING A SECOND LIFE “METAVERSE” SKIN ON LEARNING
MANAGEMENT SYSTEMS

Jeremy Kemp,
eCampus,

San Jose State University
jkemp@cemail.sjsu.edu
SL: Jeremy Kabumpo

Daniel Livingstone,
School of Computing
University of Paisley

daniel.livingstone@paisley.ac.uk
SL: Buddy Sprocket

Abstract
This paper outlines the advantages and weaknesses
of Multi-User Virtual Environments for teaching and
explores the possible benefits of integrating them
closely with traditional Learning Management
Systems. We present survey findings of teachers
interested in using the Second Life MUVE for
teaching. The teachers gave us their opinions about
integrating SL and LMS in their classrooms. We
finally propose technical methods for creating hybrid
systems combining elements of both MUVE and
traditional LMS systems for use in teaching. The
hybrid system uses the Moodle open source system
and Second Life's connectivity features to mirror
web-based classrooms with in-world learning spaces
and interactive objects. We suggest that further work
may help suggest the most suitable educational
applications for these hybrid systems.

Introduction
Faculty who offer web-based instruction and
resources have become very familiar with the likes of
WebCT, Blackboard, Moodle and other Learning
Management Systems, or LMS. Rather than wasting
time learning the technical craft of Web design, they
rely on templates and simple forms to create
interactive web-based class environments.

These environments offer affordances beyond simple
document repositories, by featuring discussion
forums, online chatrooms, gradebooks and the ability
to give automatically marked tests such as multiple
choice questionnaires.

LMS often include a variety of means for
communication between staff and students, but they
are perhaps most commonly used as document
repositories (Livingstone and Kemp 2006). This
enables flexible access to course materials – on and
off campus with the security of password-controlled
access. More adept faculty employ the fuller range of
communication tools including discussion forums,
synchronous chat, assignment file drop-boxes, self
scoring quizzes and grade books.

For the most part, the educational content is stored in
static documents – copies of Powerpoint slides and
Word documents. Assessment and interactive

features are used more sparingly. It is clear that the
full potential for interactive learning support is not
being reached in the main. There is relatively little use
of multi-media – and indeed these VLE’s do not
readily support the creation of multi-media content.
But richer multi-media presentations supporting
learning of ‘hard’ topics has long been known to have
value in student learning (Laurillard, 1997).

Second Life overview
Teachers and university administrators are
experimenting with a new form of virtual learning
environment with some basic similarities to LMS but
offering radically different affordances. The Second
Life, SL, system by Linden Lab is a persistent 3D
world, or "metaverse". Users access the online system
with a proprietary client and interact with content and
other “residents.” Unique features include simple
tools for constructing 3D objects and scripting tools
for interactive content - including connectivity with
external web-pages and internet resources. SL
improves on its predecessors in several key ways.

First, the SL platform is completely free of a
publisher-imposed narrative. Unlike thematic
MMORPG games such as World of Warcraft, SL has
no plotline or setting. Teachers have freedom to
weave their own metaphors and build domain-specific
settings in 3D environments. Currently, education
designers in SL create all manner of classrooms,
lecture halls and campus landmarks. For example,
New York Law School created a “Democracy Island”
complete with a Supreme Court building and
miniature models of urban neighbourhoods. These
cityscapes were proposed as a way to meet public
review requirements for city planning (Democracy
Design Workshop 2006).

Secondly, SL offers very simple tools for modifying
or “modding” content. Users build items with a
limited palette of primitive objects “prims” including
cubes, spheres, cones, etc. Simple menus allow users
to adjust the size of the objects and to map images on
their surface. For-profit designers do a brisk business
in virtual furniture and pre-fabricated structures such
as one-room school houses, office desks, decorative
seats and interactive bookshelves.

95

 14

Finally, amateur programmers create complex
interactive applications in the proprietary Linden
Scripting Language (LSL). They design objects that
react intelligently to touch - making virtual
“manipulatives” helpful for instruction (Resnick,
1998). For example, physics professor Anthony
Crider at Elon University created a telescope trainer
that teaches students the proper order for adjusting
focus knobs on a real telescope (Crider, 2006).
Objects respond in text chat to chatted commands
allowing rudimentary teaching “agents” which
answer questions and dispense domain content
similarly to Harvard’s River City MUVE project.
(Dede, 2005). One object can even be programmed to
move independently and control other items to create
complex, multi-step building tools.

Objects can also send data to Web-based systems
outside SL using the hyper-text transfer protocol
(http). This data conduit is unique among all MUVE
systems and opens immense opportunities for
creating powerful connected learning applications.

While the features that already exist in LMS are not
generally used to their fullest, they nicely fill in some
of the current weaknesses of SL as a learning
platform.

SL vs. LMS: Round 1
Many papers highlight benefits of learning within 3D
worlds where students are embodied as avatars. For
example, a review of two distance learning projects
using Active Worlds is presented in Dickey (2005),
concluding that the 3D immersive format has
significant potential for “facilitating collaborations,
community and experiential learning” and
highlighting the situated embodied nature of the
learning as a particular strength. A more speculative
look at the future potential of 3D learning
environments, albeit grounded in much prior

practical experience, is presented in Dede (2004).
Also see Antonacci & Modaress (2005).

As with the hypothetical example of Dede (2004), SL
provides a sense of embodiment, yet one in which
normal barriers between students and staff can be
broken down as in Robbins (2006) concept of image
slippage. Compared to other electronic tools for
distance communication, there can be an improved
sense of being ‘there’ in a classroom, rather than of
being a disembodied observer, Figure 1.

Rich 3D demonstration models can be built in SL –
leveraging the power of modern computers to allow
students to experience phenomena of interest. The
acknowledged power of multi-media to improve
delivery of material over purely written means,
(Laurillard, 1997), is worth exploiting – and SL
makes this quite feasible, even for faculty with only
modest scripting and modelling skills.

So, in terms of enhancing the experience of learning,
it seems clear that SL should have some distinct
advantages over traditional LMS. It also has some
clear disadvantages.

SL vs. LMS: Round 2
If it is a weakness of LMS that they are often used
only as document repositories, it is certainly the case
that MUVEs including SL are very poor document
repositories. The note cards used with SL are simple
text documents which can support only very limited
formatting. The documents which can be generated
are essentially simple ASCII texts with embedded
objects which require clicking on to view or open.
Transferring documents between SL and desktop OS
is also less straightforward than with LMS – generally
requiring cut-and-paste.

SL developers have created PowerPoint-style
presentations tools which require presenters to upload

 Figure 1. Interactive classroom settings in traditional LMS and Second Life.

Source: http://www.sluniverse.com/pics/pic.aspx?id=50270

96

 15

each individual slide as a separate image – either to
Second Life itself or to a web site such as Flickr
(Metalab 2006).

Several other issues cause concern for the nascent
community for educators. First, SL makes
considerable hardware demands. The minimum
technical requirements are beyond the capabilities of
typical labs in most schools and colleges –
particularly with regards to graphics cards. Some
teachers must find secretly sympathetic technology
administrators who accommodate their special needs
(Delwiche 2003). This issue is exacerbated
somewhat by a constant call for visual improvements
from users with heightened expectations from the
latest video game offerings. Linden Lab designers are
tasked with serving an extremely heterogenous user
base. Users range from game designers recreating
traditional MMORPGs (Solvang 2006) to Barry
Joseph’s Global Kids (2006) youth program
educating underserved communities.

Educators often raise the important topic of
improving access for visually impaired students.
Aside from the problems of navigating a 3D world,
even the chat is inaccessible – the user-interface
currently does not work with any screen-readers. For
students with less severe visual-impairments, the
ability to modify the user interface – to change
colours and fonts to less stylish but more readable
settings – would be a step in the right direction.
Linden Lab promises to move toward a more flexible
interface.

Disruptive players present another problem. For
classes held in publicly accessible areas, these
‘griefers’ may interfere with classes and negatively
impact the student experience such as paintballing
the instructor (Kemp 2006). The virtual harm
inflicted in many griefing incidents can cause very
real distress (c.f. the well known incident reported in
Dibbell, 1993).

Of these, only the issue of access for visually
impaired students will concern users of LMS – and
these students at least may rely on screen readers to
some degree.

SL with LMS
Each platform offers complimantary affordances not
available in the other. Connecting the two systems
may allow instructional developers and teachers to
explore exciting new opportunities for interaction on
the Web and within the SL Multi-User Virtual
Environment. It makes sense then to progress past
the mindset of SL “vs.” LMS, to the interconnection
of the two - SL “with” LMS. We also want to avoid
using SL as a weak rendition of LMS for document

management or to continue using legacy Web
learning systems by themselves with less interactivity
and student engagement.

Survey Results
We recently completed a survey to better understand
needs and desires for integrating both types of system
for educators.

There are two distinct directions in which to progress
this work. Moodle, or similar, can be modified to link
or refer to SL. For example, using the Map API it
might be possible to have links to SL locations, with
maps, shown inside the LMS. LMS content generally
allows HTML formatting, but not scripting, to be
embedded in pages – thus a custom resource or
similar would need to be developed.

Secondly, developers may put content, or links to
LMS content, into SL.

We surveyed educators interested in using Second
Life in their teaching to help determine whether these
efforts would be worthwhile. To reach educators, a
post was made to the Second Life Education mailing
list and 27 educators responded. All respondents were
able to exit the survey at any time or skip any
question. A number of the questions were of general
interest (showing, for example, that 80% of
respondents had been active in SL for less than one
year), while other questions were focused on
questions relating to integrating SL and LMS. As it
was possible to skip questions, for each of the
findings we include details of the number of
respondents that answered that particular question.

Asked which LMS they used, there was an equal split
between Blackboard, WebCT, Moodle and ‘Other’,
with 35% not using LMS at all (n=23).

Asked to compare aspects of SL and LMS
environments, (n=16), 94% felt that SL was ‘slightly
better’ or ‘best’ for synchronous chat, and 85% felt
the same for live presentations or classes.
Unsurprisingly, these opinions were reversed for
features such as document storage, asynchronous
discussion (e.g. forums) or grade-book support.

86% (n=22) thought integrating SL and LMS would
be moderately, very or extremely useful. A final
question asked what features of an integrated system
would respondents find most useful, and allowed up
to four choices to be selected (n=21). The most
requested features, and number of times the feature
was requested, were:

• Link to SL locations from inside LMS (e.g. SL
Map API) (15)

• Broadcast LMS announcements in SL (13)

97

 16

• Access assignment handouts from SL & LMS
(13)

• Display text information from LMS in SL (13)
• Log of student time in SL sent to LMS (11)

Other requested features included linking live chat in
SL and LMS, or allowing assignment submission in
both, or accessing LMS forums from SL.

Sloodle
While the survey size was small, it was focussed very
tightly on educators using – or planning to use –
Second Life in their teaching. As such, we feel that
the findings do illustrate genuine interest in SL/LMS
integration, and provide motivation for designing and
prototyping different integrated systems. The system
we propose will integrate the Open Source Moodle
LMS with SL, and which we call Sloodle.

Platform Layers
In thinking through the possible integration of these
systems, it is helpful to consider them in the
framework of “three tier” architecture (Wikipedia,
2006). Most modern Web-based teaching systems
comprise three parts separated into the “layers” of
data, logic and presentation.

The data layer includes passwords, pointers to
assignment files, logs of interactions such as threaded
messages and chat transcripts. It also includes
guidelines for page designs and how static materials
are arranged for viewing. LMS systems store this raw
information in databases such as MySQL (Moodle)
or Oracle (Blackboard Vista).

Figure 2. Typical three-tier architecture of an LMS

Logic is the second tier or layer in these systems.
This layer implements interactive functions such as
restricting access to materials, calculating grades, and
multi-step operations such as quizzes and
assignments. In the Moodle LMS system which we
are currently working with, this layer is implemented
using PHP. The final, presentation, layer delivers
HTML code to the user combining images, static
content and layout.

SL applications coded inside the environment may
also be seen in this structure. Data is stored on
notecards or chatted into the applications. For
instance, museum owners set up “tour bot” agents that
greet guests and take them on a pre-determined track
with descriptions of the exhibits. The stopping points
and text for the descriptions sit inside the “bots” as
notcards. Logic is implemented using LSL, the
presentation layer in 3D interactive objects.

Possibilities for interoperability
Now we take these three layers and see what areas
lend themselves to interoperability. How will the two
systems work together?

The logic layer for Moodle requires some minor
adjustments to remove HTML formatting and to map
the data onto the new interfaces offered in the SL
environment. The SL logic layer mostly handles
passthrough of data to the web-based database.
Linden Lab limits access through this portal to a few
times each minute so that real-time interaction is
difficult. Thus, LSL scripting will be required to
buffer data.

The presentation layer is the most interesting and
holds the greatest potential for innovation. We think
developers will be very active creating new ways to
present previously web-delivered class information.
Ubiquitous functions such as threaded messaging may
be used in completely novel ways in this new setting
where 3D metaphorical objects are generated
automatically. Will artists create giant oak trees, each
branch representing a thread of conversation? Or, as
has often been the case, will fanciful interfaces be
wittled down to bare-bones functionality, enabling
students and their teachers to focus directly on the
content being discussed?

Figure 3. Three-tier architecture of a combined

 LMS-SL tool

Some features would only require changes to the LMS
– such as adding resources which would allow the SL
Map API (Second Life, 2006) to work inside Moodle.
However, we would like to propose a set of tools to
give access to Moodle resources from inside SL, and

LMS DATA- Stored in
Database on the Web

LMS LOGIC (PHP) SECOND LIFE
LOGIC (LSL)

LMS Presentation –
formats HTML

SL Presentation –
Interactive “prims”

DATA LAYER – Information stored in databases

LOGIC LAYER – Recipes for interaction

PRESENTATION LAYER – Sends formatted HTML to the browser

98

 17

to attempt to make effective and interesting use of
the 3D space – otherwise why not simply open
Moodle in a separate web-browser?

Figure 4. Sloodle will reflect the 2D page design in

Moodle in a 3D ‘office’ space in SL

There are very many possible uses for this, but we
propose a very simple example of this system at
work. Our plan is that a standard-sized 512m2
"office" in SL that reflects in 3D the Moodle page
structure, Figure 4. This will be instantiated, or
“rezzed”, automatically based on blocks visible in the
Moodle class. Each tool displayed in the Moodle
class is re-created as interactive, metaphorical objects
or "furnishings."

For example, notices in Moodle may be appear as

flagpoles with text labels – providing clear visual cues
to important new content. Calendar information may
be rendered as a wall display, while real simple
syndication “RSS” feeds appear in the form of radios
or teletype machines. Interacting with any of these
elements results in loading an appropriate URL or
sending an IM text message to the user. Figure 5.
shows three configurations of a Moodle class page
along the top row and the corresponding SL office
layouts below. The first column shows a calendar
block on the left column and the flagpole on the
opposite column announcing “Essays due now!” The
reader board in SL shows the text included in the
Moodle HTML block. The flagpole is down in the
middle example, while the calendar and flagpole have
shifted on the page and the RSS block is showing.
The final column shows another flagpole
announcement and the three blocks in their new
positions.

Backend Functionality
The current prototype implementation uses "Sloodle
distillers" loaded in PHP on the Moodle server. When
the Second Life Sloodle objects are used, these use
HTTP requests to PHP pages which then access the
Moodle database. They output simplified, non HTML
data that can be gathered by LSL scripts in-world.

It is hoped that as faculty re-arrange blocks in the
Moodle shell, the office furnishings layout should
change as well to mirror this. This repositioning might
be either automatic or upon a "Sloodle reset"
command chatted by the faculty member's avatar.

Conclusions
While previous work highlighted the distinct
differences between SL and LMS, our subsequent
investigations have identified a strong interest in

Figure 5. Moodle class page designs on the top row show calendar, flagpole (html) and RSS blocks. Corresponding

layouts in SL show how 3D items reflect the Moodle design.

99

 18

integrating these systems. We argue that any such
integration should avoid merely presenting a weak
LMS interface inside of SL, but should rather attempt
to build something innovative that might lead to
richer forms of interaction. Finally, we discussed
how such integration may be achieved, and detailed
our initial work in this area. While much remains to
be done, we are confident that this will be a
productive area of activity – and only time will tell
what exciting shapes the flat worlds of LMS are
transformed into when they become fully realised in
three dimensions.

References
Antonacci, D., Modaress, N. (2005) Second Life: The

Educational Possibilities of Massively Multiplayer
Virtual Worlds (MMVW), EDUCAUSE Western
Regional Conference, April 26, 2005, San Francisco,
CA.
http://www2.kumc.edu/netlearning/SLEDUCAUSES
W2005/SLPresentationOutline.htm (accessed August
2006)

Crider, M. (2006). “Living and Learning in Second Life:
A Firsthand Exploration and Tour of a User-Created
Virtual World.” Games, Learning, and Society
Conference. Madison, WI, July 2006.
http://homepage.mac.com/acrider/SL/SpaceportAlphaT
alk-SV3.mov (October 2006)

Dede, C. (2004). "Enabling Distributed Learning
Communities Via Emerging Technologies - Part One."
T.H.E. Journal (September).

Dede, C., et al. (2005). “Fostering Motivation, Learning,
and Transfer in Multi-User Virtual Environments.”
Paper presented at the American Education Research
Association, Montreal.
http://muve.gse.harvard.edu/muvees2003/documents/D
ede_Games_Symposium_AERA_2005.pdf (last
accessed October 2006)

Delwiche, A. (2003). MMORPG’s in the College
Classroom. The State of Play: Law, Games and Virtual
Worlds. New York Law School, November 2003.
http://www.nyls.edu/docs/delwiche.pdf (last accessed
October 2006)

Dibbell, Julian. "A Rape in Cyberspace." The Village
Voice 21 Dec 1993.

Dickey, M. D. (2005). "Three-dimensional virtual worlds
and distance learning: two case studies of Active
Worlds as a medium for distance education." British
Journal of Educational Technology 36(3): 439-451.

Democracy Design Workshop (2006)
http://dotank.nyls.edu/DemocracyIsland.html (accessed
October 2006)

Global Kids. (2006) http://www.globalkids.org/olp/
(accessed October 2006)

Kemp, J. (2006) “There: Fading platform offers good chat
tools.” [Weblog entry.] From where I hover….
http://www.simteach.com/blog/?p=16/ (accessed
October 2006)

Livingstone, D. and J. Kemp (2006). "Massively multi-
learner: recent advances in 3D social environments."
Computing and Information Systems Journal, School of
Computing, University of Paisley 10(2).

Laurillard, Diana (1997) Learning Formal Representations
through Multimedia, in The Experience of Learning,
Marton, Hounsell & Entwistle (eds), 2nd Edition,
Scottish Academic Press

Metalab (2006),
http://metalab.blogspot.com/2006/06/communal-
whiteboard.html (accessed October 2006)

Resnick M. et al. (1998) Digital manipulatives: New toys to
think with. Proceeding of CHI 1998.
http://llk.media.mit.edu/papers/dig-manip (accessed
October 2006)

Robbins, S. (2006) “Image Slippage: Navigating the
Dichotomies of an Academic Identity in a Non-
Academic Virtual World.” Education Workshop at the
Second Life Community Convention. San Francisco,
August 2006.

Second Life (2006),
http://secondlife.com/developers/mapapi/ (accessed
August 2006)

SimTeach (2006a) http://www.simteach.com/wiki/
(accessed August 2006)

SimTeach (2006b) http://simteach.com/moodle (accessed
August 2006)

Solvang, J. (2006) Dark Life in Second Life. Way Out
There Radio.
http://www.wayoutthere.net/GameReports/DarkLife.ht
ml/

Wikipedia (2006), http://en.wikipedia.org/wiki/Three-
tier_%28computing%29 (accessed October 2006)

Authors Note
Daniel Livingstone teaches computer game development at
the University of Paisley. Research interests cover ALife,
Game AI and teaching and learning with game technology.

Jeremy Kemp has coordinated online communities since
1998 and taught Web-based distance learning courses at the
university level, starting in 1999. As a research assistant for
Stanford University's medical school in 2001, he created
Flash simulations for radiation therapy further education.
Contact: jkemp@simteach.com.

100

TEACHING FOR INNOVATION

TOPIC 4. THESIS PREPARATION AND GUIDANCE

 Small Piddly Projects, and Big Time Undertakings

 TP: The Roles and Phases of Mentorship

 TP: Combining Undergraduate Research and Learning

Teaching Examples (Bricken):

 HCI: Project Ideas and Refinement

 HCI: Design a Software Toolkit

 Ethics: Local Expert

101

SMALL, PIDDLY PROJECTS, AND BIG TERM UNDERTAKINGS

Excerpted from: K. Donaldson, "Outside the Classroom - Workload and
Studying," in *The Engineering Student's Survival Guide,* Boston, MA,
McGraw-Hill,1999, pp.77-79. © 1999 McGraw Hill Companies - Inc.

Engineering projects pop up in any course where there may be some
engineering design going on (almost everywhere). Whether you choose door 1
(a heat exchanger!) or door 2 (you, too, could design your very own
voltmeter!), recognize that projects always take more time than is
budgeted. The key to painless projects is: Start early. Not a surprise,
eh? We will subdivide projects into two categories: SPPs and BTUs. SPPs
(small, piddly projects) and BTUs (big term undertakings) can be
individual or group projects.

SMALL, PIDDLY PROJECTS (SPPs)

SPPs are those projects that professors decide are fun ways for you to
apply what youve learned in their courses. You often have only two weeks
(or Less) toward the end of the term to wrack your brain, then write your
work up nicely, and maybe even present it to class.

1. First things first. Understand the project assignment. Many times the
problem statement is much more confusing than the problem itself..

2. Research. SPPs usually do not require much outside researchunless paying
attention in class isn't your forte. Are there any back-of-the-textbook
computer programs you need to learn? Depending on the project, sometimes a
quick trip to the library or a 15-minute Web search can help substantially.
Once you figure out what you need to do, what equations youll need, what
methods work the best, and what kind of results you should expect, you
are set to...

3. Work it. Allow yourself lots of time (goes with starting
early) for computer program, dont forget to allow time for debugging
and sanity breaks.

4. Test it. Does everything work without glitches? Your work should be easy
for the professor to follow when he or she grades it. Did you state your
assumptions? Sometimes decisions that are clearly evident to us are not
obvious to others tackling the same design problem. Look critically at your
project for any potential holes that could cost you.
5. Fix things. Rework it Add. Subtract. When running short on time, fill
in as much as possible and list what you might have done had you not run
out of time.

102

6. Write it up. Isnt it exciting? You are almost finished..
7 Go the extra mile. It takes very little time to polish up a project.
Throw all those sources into a bibliography. Draw a diagram that clarifies
final concepts. Whip out a spreadsheet graph. Number your pages.

BIG TERM UNDERTAKINGS (BTUs)

And you thought BTUs were British thermal units! You just cant unknowingly
and accidentally find yourself in a class with a term project (a.k.a. big
undertaking). A BTU is not an SPP with more time to think. You should have
been forewarned by upperclassmen and even by professors. Big term
undertakings are often the finale-the end of a course series or maybe the
end of your undergrad career (senior projects!). They tend to reflect
real-life engineering and project management. Although BTUs are a lot of
work, it is cool to see the engineering theory youve learned come together
to produce something impressive. A good term project will make you an
expert in your chosen topic.

1. First things first. Understand the project assignment and what is
expected. Master the acronyms. Learn (or relearn) how to do journal
searches at the library, operate machine-shop tools, use computer
codes you have tried to forget, and so forth..

2. Research. It is this phase of the BTU that consumes the largest chunk of
time; as much as half of the term can be spent getting up to speed on the
assigned or chosen topic. Any good project that really puts you to work
will cause anxiety and frustration early on. The whitecapped swell of
frustration follows the
realization-of-the-magnitude-of-what-you-have-gotten-yourself-into wave
that washes over you as you weed through all the background
information. First, start with the easy stuff. If you are doing a project
on contaminant tracking in rivers, Begin with some water quality and
contaminant readings from an environmental engineering text. After you get
that nailed down, move on to the journal articles. Don't be afraid to ask
questions of professors, graduate students, friends of distant relatives,
and even people in industry.

3. Generate. Generate as many ideas, solutions, methods, possibilities and
paths as possible. This is a great time for a mind map.

4 Work it. Working it means decision making by you and perhaps a computer.
After the time and toil devoted to research, this step is almost
disappointingly easy.

5. Double-check results. Does everything make sense? Check your
assumptions. Double-check your constants and anything that involves a unit

103

conversion. The answers are often obviously good or bad for BTUs. If you
find everything looks good, its time to feel relief. If things look
monstrous, make an appointment with the professor there may still be time
to recover. You are approaching the home stretch.

6. Tend to the small details. With big projects there are often many minor
considerations that get tossed aside. Dot your is, cross your ts. Produce
schematics of your solution and progress. Go back and fill in the gaps.

7. Write it up. After all the time you have devoted to this project, dont
slack off now! Writing up the BTU will take more time, patience, and disk
space tan expected. If possible, get a good nights sleep before the final
edit. It is painful to see a typo in the freshly bound copy.

8. Go the extra mile. Polish it up. Scan in pertinent photographs. "Borrow"
some slick graphics from the Web (its legal for educational purposes as
long as you credit the source!). Generate some CAD drawings and
renderings. Put a cool graphic on the cover page.

9. Take it to the printer for binding and extra copy. Don't do this last
minute! ("The earliest we can have this done for you is tomorrow
afternoon.") Pick a cool color for the cover (Kinkos has Rocket Red for the
Aero/Astros). Make an extra copy. Finish out the semester with bang.

104

 THE ROLES AND PHASES OF MENTORSHIP

Michael W. Galbraith,
Patricia Maslin-Ostrowski,

ROLES OF MENTORSHIP

Within the mentorship process, a mentor often assumes multiple roles
to bring about the enhancement of the mentee's professional,
personal, and psychological development. At different times, the
mentor may be a role model, advocate, sponsor, adviser, guide,
developer of skills and intellect, listener, host, coach, challenger,
visionary, balancer, friend, sharer, facilitator, and resource
provider. Along with these roles comes a responsibility to consider
the psychological dimensions of the relationship, for example,
accepting, confirming, counseling, and protecting. The role that best
describes the mentor may be decided as a result of how well the
mentor understands the total mentorship process. Clearly, the mentor
role does not suit all people, including professors.

PHASES OF MENTORSHIP

There has been little investigation of mentoring phases or stages
from a conceptual and theoretical perspective, except for the work of
Kram (1985) and Cohen (1995a). Kram examined the phases of a mentor
relationship from the perspective of psychological and organizational
factors that influence career and psychological functions performed.
She suggests that developmental relationships vary in length but
generally proceed through four predictable, yet not entirely
distinct, phases.

THE INITIAL PHASE is the period in which the relationship is
conceived and becomes important to both mentor and mentee. This phase
may last for a time span of six months to one year. From the
undergraduate perspective, this would occur during the freshman year.
Given the apparently overwhelming challenge of college to most
freshmen on entrance, one can imagine the mentor on the team finding
himself or herself in great demand. Yet, all students, undergraduate
and graduate level, learn best in a supportive environment, and
having a designated mentor on the team will give students much easier
access to faculty. The mentor team member would be willing, able and
desirous of this kind of interaction with students, instead of
faculty whose academic preparation and research makes them offer
"limited office hours."

105

THE SECOND PHASE, called the cultivation phase, lasts from two to
five years. For the undergraduate, this then might take place during
the sophmore and junior years, or even longer. During this phase, the
positive expectations that emerged during the initiation phase are
continually tested against reality. The mentor and mentee discover
the real value of relating to each other and clarify the boundaries
of their relationship.

PHASE THREE, separation, is marked by significant changes in the
relationship and might happen during or soon after a student's senior
year. It is a time when the mentee experiences new independence and
autonomy, as well as turmoil, anxiety, and feelings of loss. The
separation phase lasts from six months to two years. Mentors on teams
that are teaching college seniors or students at the end of their
graduate course work will represent a new resource to students
feeling the anxiety of departure from the comfort of their college or
university years and seeing the uncertainty of their postgraduate
experience.

THE FINAL PHASE is redefinition. In this phase, the relationship
takes on significantly different characteristics and becomes either a
more pee-like friendship or one that is characterized by hostility
and resentment. In general, during the redefinition phase, both the
mentor and mentee recognize that a shift in developmental tasks has
occurred and that the previous mentorship process is no longer needed
or desired.

Getting out of sync with the developmental phases of the mentoring
relationship could result in a less-than-positive experience for both
mentor and mentee. Although everyone will not experience the phases
at the same rate, it is essential that they go through all of them,
and in sequence.

If one accepts the stage theory of mentoring, it is obvious that the
time commitment required precludes this being accomplished in a
single semester. Mentoring is not a short-term relationship. It does
not fit the higher education model of taking a series of courses with
different professors if the expectation is for all faculty to mentor
all students. One course in one semester does not provide sufficient
time to move through the total process.

It is, however, reasonable to expect that if the mentor team members
are given the responsibility for teaching entry-level required
courses, then they may begin to establish a relationship with future
mentees early in the students' academic careers. This would be
accomplished, in part, through active listening and questioning that

106

establishes a psychological climate of trust. This lays the
foundation for a more engaging mentoring relationship. Without this
kind of connection, the likelihood of a meaningful mentor-mentee
experience is limited.

Although mentoring relationships evolve over an extended period of
time, Advising can be effective in the short-term because the
emphasis is more on information than on relationship and nurturing.
On the other hand, if the team members chosen to be mentors are given
the companion assignment of department advisers, they would have a
better chance of getting to know students both in and out of the
classroom. This would allow them to cultivate relationships further
and continue building a foundation of trust. Advising may be
transformed into mentoring. An additional benefit to this team
approach is that students would get some of their needs met through
the department mentor - for example, advising, career planning, and
even some counseling needs - rather than having to seek out help from
strangers located across the community.

CONCLUDING THOUGHTS

Good mentoring is a distinctive and powerful process that enhances
intellectual, professional, and personal development through a
special relationship characterized by highly emotional and often
passionate interactions between the mentor and mentee. Although we
can assume that all professors in higher education engage in some
level of instructional activity, it cannot be concluded that all are
actively involved in mentoring, nor should they be. The complete
mentor role does not fit all individuals: some faculty are less
inclined toward developing close relationships with students and with
nurturing the students' development. Not all faculty are capable of
or willing to take on this role and if required to do so would be
inadequate or "incomplete" mentors. That is why the faculty team
concepts has the promise of improving the quality of education. If
only faculty who are well matched to this role become the team
mentors, students will be better served.

Even if all professors are not mentors, understanding the role of the
complete mentor can be a template for the good instructor. The
essence of mentoring is grounded in the concept of one-on-one
teaching. If one is engaged in mentoring, one is engaged in teaching.
Thus, in addition to having the responsibility of mentoring students,
the team mentor could also be asked to share his or her expertise
regarding the mentor role with colleagues. The function of the
effective mentor, which include building a relationship, providing
information, being facilitative and challenging, serving as a role

107

model, and co-constructing a vision, are not far removed from what
good teachers do. If one also examines the role of a skillful
instructor, it will become clear that there is high correlation
between the two roles (Brookfield, 1990, 1995; Daloz, 1986).
Regardless of the academic discipline or subject, the instructional
process can be enhanced by understanding and incorporating aspects of
the complete mentor role.

Instructors as mentors, according to Daloz (1998), provide a balance
of support and challenge such that our learners feel safe to move.
From ancient times to contemporary life, mentors have challenged
students to have a vision that places their journey in a larger
context and invokes purpose in their lives. Mentoring is a special
role that should only be assigned to professors who embrace it.
Mentors support their students, challenge their students, and help
their students construct a vision to further their educational
journey. Complete mentors work in a truly responsive and interactive
way with learners, which allows for a profound affirmation of both
teaching and learning in the higher education environment. The
faculty team model would permit the mentor-mentee relationship to
flourish.

REFERENCES

Brookfield, S.D. (1990). The skillful teacher. San Francisco, Jossey-Bass

Cohen, N. H. (1995a). Mentoring adult learners: A guide for educators and
trainers. Malabar, FL: Kriger.

Daloz, L.A. (1986) Effective teaching and mentoring. Ssan Francisco:
Jossey-Bass

Daloz, L.A. (1998) Mentorship. In M.W. Gallbraith (Ed).), Adult learning
methods (2nd ed. Malabar, FL: Krieger

Kram, K.E. (1985) Mentoring at work: Developmental relationships in
organizational life. Glenview, IL. Scott, Foresman.

108

COMBINING UNDERGRADUATE RESEARCH AND LEARNING: A THREE-STEP
APPROACH

Bunmi O. Olatunji and Donna M. Desforges, of Wisconsin-Stevens Point

Today's undergraduate is typically accustomed to traditional learning
methods--taking information in through textbooks and lectures,
memorizing that information, and reproducing it on an exam. Relying
solely on such methods of teaching and learning may undermine the
unique learning needs of students (Kaplan & Kies, 1995), and hence
provide a less than optimal learning situation. In addition to the
development of intellectual and critical thinking skills, student
needs include learning about the process as well as the content in
their disciplines. And underpinning all their needs, students have a
basic need to feel and actually have ownership in their education. In
light of that, we conceptualize the optimal teaching and learning
experience as requiring three steps: stimulation, application, and
integration. Further, we believe that faculty-student collaborative
research and other scholarly activity offer an excellent means of
incorporating these steps into students' learning experiences, thus
more fully meeting their educational needs.

The Three-Step Approach

Stimulation

As it applies to learning, stimulation means a more active engagement
with the material to be learned, as well as growth and development of
student
interest in the material and in their abilities to work with it. Often times,
students may experience participation in their classes as a daunting
situation where the potential for ridicule or embarrassment
reinforces well-rehearsed silence. To remedy this situation and
really engage students, faculty must play the role of facilitator,
developing a climate of trust in which students can openly risk
examining their personal thoughts, confusions, and opinions (Barkham
& Elender, 1995). Students require an environment in which they can
go beyond merely memorizing facts in order to grow as intellectuals.

Several methods of stimulation help create such an environment. For
example, asking specific controversial questions relevant to course
material helps draw students out. Having students debate various
positions on current topics or issues further stimulates students'
critical thinking skills. The method for stimulating learning we
advocate is student involvement in research and scholarly activity.
For maximum effectiveness, this involvement should include every

109

aspect of the activity, from the initial conception of the research
plan to the final research product. But more on this in a moment.

Application

Is the smartest person in the class the person who can remember the
most information at the time of the exam? Or is it the person who can
take that
information and correctly apply it to a novel situation? Studies have shown
that when given two identical exams on different occasions, undergraduate
students do significantly worse on the second exam (Harrison, 1995). Part
of the problem may stem from the students' lack of broader application of
the material they have studied. In other words, the exam was the only
opportunity students had to apply the material. Long-term retention of
information calls for a broader application or use of the information
students study.

Integration

The final phase of learning--and of our model for improved
teaching--comes when students are able to integrate material into a
broader knowledge base. Fostering integrative learning requires that
faculty encourage students to analyze and interpret class literature,
as well as indicate the extent to which they agree or disagree with
the author's perspective. Thus--harking back to the importance of
establishing an environment of trust--integration not only requires
that students include the rationale behind their perspective, but
also that their rationale include an understanding of additional
literature supporting their position.

While it requires rigor, integrative teaching reaps exponential benefits. Not
only does integration serve as a culmination of earlier steps in learning, it
also propels students toward higher levels of critical thinking. In fostering a
keen sense of appreciation and understanding for explanatory information,
integrative learning ultimately enhances students' ability to assimilate and
utilize content (Olatunji, 1999).

The Model In Operation

Faculty-Student Collaborative Research Research involves the active
pursuit of knowledge, and it is this process of pursuit that is often
overlooked in undergraduate teaching in favor of covering content.
But in general, undergraduates want to be more actively involved in
the process of their disciplines (Long, 1994). Thus, one means of
accomplishing the three steps to improving the student learning
experience is through faculty-student collaborative research.

110

As we said earlier, to fulfill the stimulation step, students should be
involved in each step of the process. One way that we have done this is to
start each semester with a small set of readings with a common focus.
Facilitated by a faculty member, student researchers work collaboratively
to generate hypotheses and the means to test the hypotheses. Obviously,
this process enhances students' sense of ownership in their education.

The application step involves applying the information students have learned
through readings and discussions to the task of creating a novel way
to test their hypotheses. It also involves the actual testing of one
or more hypotheses through the methods students have generated. In
this process, students learn to think critically about published
works' hypotheses and the adequacy of tests, results, and
conclusions. This critical awareness prepares them to apply that same
process to the original work they are creating.

The integration step begins with the process of analyzing and interpreting
the data collected from students' research. Students are encouraged to
interpret and explain the rationale behind the acceptance or rejection of
their hypotheses. After that, students have to integrate their findings into
the appropriate knowledge base that already exists. Not surprisingly, this
often generates more questions that students want to answer, which
often prompts follow-up studies of some sort.
Conclusion

In practice it isn't as easy as "one, two, three," but our three-step
model encourages faculty and students to take "one step beyond" the
usual,
ordinary and expected right from the start. The payoffs from thinking
beyond the current horizon of most undergraduate teaching are
tremendous. We know that undergraduates have learning needs that go
beyond taking in information and repeating it back at exam time, and
we believe that faculty-student collaborative research goes a long
way toward meeting those needs. Certainly, research within the proper
atmosphere unquestionably promotes creativity, synthetic thinking,
and the appreciation of knowledge (Seligman, 1999). Thus, even though
an undergraduate research project may focus on a particular area, the
processes and the educational benefits of doing the research extend
well beyond that project or that subject area. Going one step beyond
enhances all of the undergraduate's learning experience.

References

Barkham, J.; Elender, F. 1995. "Applying Person-Centered Principles
to Teaching Large Classes." British Journal of Guidance and

111

Counseling, 23, 179-198.

Harrison, A. 1995. "Using Knowledge Decrement to Compare Medical
Students' Long Term Retention of Self-Study Reading and Lecture
Materials." Assessment & Evaluation in Higher Education, 20, 149-160.

Kaplan, E.J.; Kies, D.A. 1995. "Teaching Styles and Learning Styles:
Which Came First?" Journal of Instructional Psychology,
22, 29-34.

Long, F. 1994. "Research as Living Knowledge." Studies in Higher
Education, 19, 47-58.

Olatunji, B. 1999. "Undergraduate Research as an Invaluable
Experience." APS Observer, 12, 24-27.

Seligman, M. 1999. "Teaching Positive Psychology." Eye on Psi Chi, 4, 16-17.

112

 Programming the Interface

 1

SOME PROJECT IDEAS

1. Virtual University Course
 Develop a short course to be presented on the web. A clever twist would be to develop
this course as a web-based remote course.

2. Web-page Refinement
 Select a web-site from a moderately large company. Review and critique their design
and performance. Then rebuild the entire site to correct the identified problems. A clever
grounding for this work would be to send our results to the company.

3. Internet Software Tool
 Select, design, and implement a software tool which facilitates some aspect of web-
interaction. Ideas may include intelligent agents, search engines, web-page builders, site
mapping and layout, download analysis, etc.

4. Customized GUI Interface
 Evolve an existing interface toolkit with some customized refinements, such as a new
type of widget, customization tools, dialog management, or interaction traking.

5. Virtual Reality System
 Develop existing C code for parts of a VR system, including 3D interaction devices,
smart terrain, multiple participants in a single environment, new virtual bodies, etc.

6. Finite State Machine Emulators
 Software to emulate an interactive system, such as an ATM, a soda machine, a telephone
answering system, airline ticket booking, etc.

7. Java-based Gaming
 Implement a fun game for the internet. Could be a version of a standard adventure and
fighting game, or a strategy game such as Diplomacy or Stratego, or a graphics/visual game
such as Life or Centipede.

8. Mathemat ics Visual ization
 Develop a visual interface to some abstract mathematical structure such as an N-
dimensional cube, 3D knots, or Fractals

9. Spatial Arithmetic and Algebra
 Develop a graphic interface for 7th grade math, using manipulative structures rather
than equations and symbols.

10. Manipulable Logic
 Develop an interactive interface for Boundary Mathematics

11. Innovation Prototyping
 Select a yet-to-be commercialized application, such as wearable computers or TV-
wristwatchs, and develop a prototype functional design for the interface.
==

113

 Programming the Interface

 2

PROJECT ORGANIZATION

Our class project will be Knowledge-based Hyperl inks (KBHL). (The name is suggestive,
not final.) The general idea is to develop a demonstration example (simulation of) traversing a
network of hyperlinks based on content or semantic information, rather than on syntactic
structures such as keywords.

The component tasks/roles for this project include:

0. Research: have others tried this approach? What did they learn? What topics partially
address our project (eg: knowledge engineering, hypertext, web search, expert systems,
interactive interface, software agents, etc.)?

1. Develop a sample database of content-carrying web-pages, with hyperlinks across various
content components.

2. Develop a knowledge-based data-structure which attaches to each hyperlink. The
knowledge-base will contain conventional expert system-like assertions of facts and relations.

3. Develop an inference strategy for traversing the knowledge of various hyperlinks. This may
include pattern-matching, Baysian probabilities, various types of inference, and other semantic-
like structures. See below for more ideas.

4. Develop an interaction plan which permits the user to understand and traverse knowledge-
based links.

5. Develop an interface prototype for using KBHLs. The interface should require minimal
learning, and have a “natural” feel.

6. Discuss and roughly design extensions to the KBHL, including user-extensibility, automated
documentation, and software agency.

Discussion

The content web-pages require careful selection and design, to maximize the (apparent) utility
of the KBHL tool. Research from Ontology Engineering (ie what the folks at Yahoo do to
organize their weblinks) will guide this effort.

The available types of intelligent traversal require careful design, so that 1) the tool will be
useful for finding information, and 2) the tool will be understandable to normal folks.

How semantics is captured and accessed is of critical importance. How do we know what the
user is looking for? How will users be able to say what they are looking for? What types of
intelligent traversal are useful?

A given links will usually contain may intelligent branches. How will the user know which to
select? That is, the organization of information is not only, or even necessarily, logical.

114

 Programming the Interface

 3

What type(s) of organizational structure do we what our smart links to expose? Inferential
techniques address implicit or embedded information. Other types of smart links expose
different structures. For example,

a refinement link leads to more detail on a topic.
a classification link provides a property inheritance context.
a chronological link tells you what happened before or after.
a spatial link navigates through locations.
a dependency link identified prerequisites, requirements and causal structures.
a structure link decomposes an object into its component parts.
a decision link traces choices and their consequences.
an analogy link identifies thnig that are similar but not necessarily related.

Our problem maps onto a classic graph problem: what kind of nodes and vertices make sense?
How many types of links can be used at one time? Should nodes or links provide consistency?

Observations

The simulation web-pages need to accurately reflect the data-structures underlying actual web-
pages. We will need to figure out how additional information can be easily and portably
attached to links.

Specialized types of inference are needed for different fields of knowledge. Only some kinds of
knowledge are reducable to knowledge-based encoding.

Knowledge may not be about “content”, it can also be about structure (the form of the link),
about possibilities, about grouping, about proximity, etc.

We will need to show critical functionality. What does our tool do that other tools do not do?
How is the advantage measured? Where are the strong. weak, and failure points?

There may be no solution for information overload. We can be overwhelmed by too many
windows, by too many nodes and links, by too much scrolling. Perhaps links should filter and
refine rather than enhance access.

Understandable structure may need to be designed and written into the website itself, rather
than put into links.

Techniques for structuring and filtering:
 Labeling: clear, concise labels and concepts
 Chunking: relatively small, related hunks of information
 Relevance: all information pertains to the content of the page or the goal of the user
 Consistency: similar items are treated in similar ways

Hyperlinks may simply increase the desire for better content structure and more efficient linking
models. That is, smart links may expose the greater weaknesses of hypertext systems.

Bottom line is that the information itself must have a structure for a smart link to expose.

115

 Programming the Interface

 4

PROJECT REFINEMENT

For our class project, we will be developing a single website which demonstrates knowledge-
based hyperl inks (perhaps just SmartLinks). Active items (words, graphics, diagrams,
sections, etc) will permit traversal of the website based on semantic rather than syntactic
references.

Discussions and decisions:

1. Review of relevant class handouts, and research into possible approaches.

2. Identify the task that the potential user of the website will be trying to accomplish. Develop
several scenarios which capture the semantic need and intent.

3. Identify the types of traversal available to the user. Rough out the engine functionality and
the system architecture.

4. Select a content area for the site which facilitates task accomplishment. The types of smart
links will depend directly on the content and functionality of the site.

5. Identify the requisite languages, skills and roles for the project. (content and site
development, link definition, engine development, interaction design,...)

6. Discuss the issue of novice vs expert users.

7. Brainstorm possible models of interactivity and interface displays. How will the user:

1) know what is possible? 2) know what to do? 3) communicate their needs?

8. Assignment of tasks to individuals.

Recall

• Our links will be more useful if they are filters rather than generators.

• We may use several types of traversal, but each type will have a separate underlying
traversal graph. We will eliminate interaction between semantic components.

Individual assignment:

Construct a graph of a possible site, with nodes being content chunks and links being
traversals. You will need to

1. make up some rough content chunks in a content area (the class should have
decided the content area tonight),

2. imagine some tasks, queries and traversals,
3. identify the type of connection being traversed,
4. specify in detail some content containing the link and some content being traversed

to, with emphasis on the semantic connection between the two, and
5. be prepared to show this graph to the class.

116

 Programming the Interface

 5

PROJECT REFINEMENT -- ONTOLOGY

The content of our project is Childhood Ailment Diagnosis. The rough architecture is to
use SmartLinks to connect the HTML-page-structure to a semantic-network, traverse the
semantic-network, and then return to the HTML location which correcsponds to the end of the
semantic-network path.

So we’ll be constructing two (or more) databases: the structural-HTML-database and the
semantic-net-database. Then we’ll be constructing a linking database, which contains the
connectivity between syntactic and semantic elements. We will also need a traversal engine
as the back-end, and a query interface as the front-end.

Issues:

1. Review class assignments; make a rough pass at the data structures (the HTML structure
graph and the semantic network graph).

2. Refine content area.

3. Refine semantic nets, and identify what we can do semantically. Types of traversal. Identify
the language of the semantic-net (ie what types of nodes and links)

4. Discuss the types of structural (HTML) forms. Grainsize of information units; grainsize of
textual and paragraph HTML; types of knowledge units. Other types of syntactic organization.
Other types of semantic queries.

5. Rough pass at the control structure architecture.

6. Discuss the implications of the semantic-net modleling approach, the notion of ontology and
the mappings from semantic-nets to relational calculus.

7. Discuss the limitations and traps in the proposed control architecture.

8. Identify roles, esp. who will be writing what code. Identify the requisite languages, skills and
roles for the project. (content and site development, link definition, engine development,
interaction design,...)

9. Continue to develop usage scenerios.

10. Consider the interaction and user-interface issues.

11. Discuss the issue of novice vs expert users.

12. Discuss the issue of partial vs. complete knowledge. Hypothesis testing in diagnosis.

117

 Programming the Interface

 6

118

Virtual World Development

DESIGN A SOFTWARE TOOLKIT

The class is to specify the software tools and interface techniques for a

Virtual Reality suite.

Do not use English for the specification. Use command words, or a formal

language, or functions, or predicate calculus, or diagrams, or animations, or

a programming language, or any form that you can be explicit about what a

tool does or how it works, but do not use English, use a specification

language.

Follow this organizational structure:

Form eleven groups of two members. Each group will be responsible for a

particular tool in the suite. No group may duplicate another group's

functionality.

Include at least these six tools:

The Wand

The Virtual Body, sub-components:

visual sensors

audio sensors

position sensors

The Physiological Model, sub-components:

body position model

voice recognition

The remaining five groups may specify a tool of their choice.

Each group must coordinate its specification language and protocol with other

groups (tools) that use them. For example, the Wand may depend on the

position of the virtual body.

Super-observers must report the progress of class activity.

This is a two hour exercise, I will collect a two page design specification

from each tool/group and a two page design integration from the class as a

whole.

Grades for the class will be based on functionality, integration, and clarity

of specification.

119

1/23/01 SE 593: Computer Ethics Bricken

1

Final Assignment

Computer Ethics is a field that covers many diverse and relevant topics. In order to anchor our

skills, each student is to become a “local expert” in one particular branch of Computer Ethics.

Your assignment is to

1. Select a topic or focus area,

2. Locate and read selected articles, discussions, and case studies,

3. Formulate the ethical issues and analysis, policy needs, and moral grounds, and

4. Contribute your specialized knowledge to class discussions.

Your focus area could be any one of the following

• one wide area of Computer Ethics

(regulation, privacy, security, property, professionalism)

• one specialized, fairly narrow topic

(digital signatures, electronic voting, wire tapping, public encryption)

• one particular person or group

(Deborah Johnson, Lawrence Lessig, CPSR, EFF)

• one particular dilemma or case study

(software copying, gender bending, protection for minors, spamming)

You do not have to prepare a paper, talk, or presentation of your selected topic. You will be

expected to contribute knowledge, opinion, analysis, current status, and other aspects of your

topic during class discussion throughout the quarter.

Each class meeting will emphasize some particular aspect of Computer Ethics. Each student is

expected to be able to discuss connections between their focus area and any other topic at any

time during the quarter. When the class is focussed on a topic which is in your field of

concentration, you will be expected to contribute more information and analysis than usual.

Students may bring in case studies, discussion topics, questions, analysis and/or opinions for

class discussion at any time.

120

TEACHING FOR INNOVATION

TOPIC 5. CURRICULUM DESIGN

 Teaching and Facilitating Learning Syllabus

 TP: The Function of the Course Syllabus

 TP: The Value of Writing a Course Portfolio

 Syllabus Elements

 Course Structuring

 Cognitive Taxonomy

 Affective Domain Taxonomy

 Psychomotor Domain Taxonomy

 TP: 101 Things You Can Do the First Three Weeks of Class

Teaching Examples (Bricken):

 Situated Curriculum

 Curriculum Exercises

 Just What is VR Anyway?

 Wonderful Computer Science Books

121

TEACHING AND FACILITATING LEARNING
Lake Washington Technical College

WINTER Quarter 2007

Text

Successful Beginnings for College Teaching, Angela Provitera McGlynn, Atwood
Publishing. Amazon $23.75

Course Description

New instructors/learners will practice implementing a variety of instructional
strategies and student assessments to meet course outcomes. Focus is on
teaching strategies and methodology and ways in which instructors act as
facilitators of learning in their classrooms. Instructors/learners will
actively practice their teaching skills to begin to implement learner-centered
instructional activities and lessons that they have devised. This course
teaches to the global outcome of Communication.

Method of Instruction

This class uses a combination of concept lessons, demonstrations, cooperative,
hands-on and independent practice using a textbook, handouts, resource books,
technology, and the Internet. The Blackboard learning system will provide
learners access to handouts, grades, and assignments 24 hours a day. Students
need access to a computer or computers at the college to successfully complete
discussion board assignments. Instructor will be available by appointment and
during office hours.

Learning Outcomes

The instructor-learner will:

Design well-organized and learner-centered instructional activities that
actively engage students and promote achievement of student-learning
outcomes.

Analyze, identify, and select the essential information of a course syllabus--
contract between instructor and student.

Deliver and/or facilitate instructional strategies (lecture/concept,
demonstration, discussion, small group--cooperative) that provide students
regular opportunities to actively engage with course content to achieve
course objectives/outcomes.

122

Demonstrate the ability to convey ideas/feedback in a variety of formats to meet
the needs of diverse students.

Outcome Assessments

1.Create/edit a course syllabus. The syllabus will consist of elements in
the syllabus example and specifically to include elements in grading,
attendance, classroom policies and procedures, and plagiarism.

2.Develop/revise a rubric or checklist tool to use in observing faculty.

3.Observe two faculty in the classroom and use the checklist tool to measure
instructional effectiveness.

4.Facilitate a lesson incorporating a new teaching strategy which provides a
safe classroom environment.

5.Develop and write one organized lesson plan using the 8 elements. This
plan will provide an opportunity for student practice and instructor
feedback.

6.Choose a Classroom Assessment Technique (CATS), sponge, or another
teaching strategy and implement in the lab or classroom.

7.Facilitate a lesson integrating a strategy which focuses on engaging and
soliciting feedback from every student.

8.Facilitate a lesson using a game, role play, and/or collaboration
strategy.

9.Write a 5-paragraph Reflection Paper

10. Participate by providing feedback on current classroom experiences and
sharing/conveying ideas during classroom and blackboard discussions.

Grading

Learners are evaluated on their ability to follow directions and work
individually and/or cooperatively in a group to successfully complete all
activities and assignments.

**A 10 percent penalty will result for any homework assignments turned in after
due date and up until one week late. After one week from due date, maximum
points to be earned will be 75%. No points available after 4 weeks from due
date. Check calendar for due dates.

123

Complete 9 assignments (check outcomes assessment above for listing and calendar
below for point distribution)

Blackboard Discussion Questions:

Complete sixteen (16) responses to questions A-H—one response to original
question and one response to peer (25 pts per question)

Active participation (25 pts each class meeting)
Discussion during class and actively engaged in activities

COURSE POLICIES

Respect

Show courtesy by not talking with other classmates while instructor or another
student is speaking. If you have a question or comment, please raise your hand,
rather than starting a conversation with your peer. Show respect for other
student’s ideas and comments. Wait for your turn to speak.

Active Participation and Cooperation

Students are expected to participate verbally independently and cooperatively
within groups. If a student disrupts the learning environment or does not
participate cooperatively within a group, he/she will receive a reduction in
participation points. If a student cannot attend class or is late to class,
he/she will receive a reduction in participation points. Attendance during
class time will increase success in this class.

Make-up policies

Students who miss class meetings are still responsible for lecture material
covered, handouts, and announcements. It is a good idea to contact a class
member for additional instructions and/or assignments given in class. Also
check the Blackboard site, if available, for additional information and/or
instructions. All assignments and handouts should be posted on this site.
Students are encouraged to make an appointment with the instructor or meet
during office hours for any further clarification.

124

Other/inclement weather

Check local radio stations in the event of weather or other possible closures.
If the weather is such that it is dangerous for the student to come to school,
the student will work at home, be counted present in class, and the classroom
will be a lab environment until the weather improves. E-mail or voice mail
instructor if weather is causing absence from class.

Class time is subject to change due to equipment/software problems and/or
holidays, meetings, and other schedule changes.

Student Code of Conduct

Students are expected to follow the college student conduct code, WAC 495D-120,
which prohibits cheating, plagiarism, theft, or hurtful behavior toward others
and shall be grounds for discipline pursuant to college rules. See the Student
Handbook for more details on the code. Plagiarism is defined as not doing your
"own work." If you turn in assignments that are created by another student, you
will receive a 0 for that assignment/test.

Cell Phones and Pagers

Turn cell phones or audible pagers to vibrate before the class session begins.
If you must use this device in an emergency, quietly leave the classroom.

Computer Use

• Users are limited to applications listed on the menus available on screen.
• Users are not allowed to play games, use chat rooms, or use e-mail unless

part of instruction.
• Users are not allowed to install programs, alter system configurations,

defaults, system settings, system files, program files, data files,
desktop configuration, or change colors.

Equal Opportunity Policy

Lake Washington Technical College is an equal opportunity college and is
committed to principles of diversity. The college accepts students without
regard to race, color, religion, national origin, gender, sexual orientation,
age, marital status, disability, or status as a disabled veteran or Vietnam-era
veteran. In keeping with this policy, slanderous, defamatory, or insulting
remarks directed at any group of individuals shall not be tolerated in either
classroom discussions or written assignments.

125

SUPPORT SERVICES FOR LEARNING

Computer Lab

The student Computer Lab, room T413, is open Monday-Friday 7:30a.m.-8:00p.m.
There is a $25/quarter cost associated with the use of the lab, which can be
paid at Registration by signing up for item number PCLB.

Peer Tutoring

Peer tutoring is available for students who are having difficulty in a class. If
you would like to request a tutor, please contact the Academic Skills Center
T217 to obtain and complete the appropriate paperwork.

Writing Center

Informational handouts, special grammar practice software, and writing tutorials
are available in the Writing Center, room T217. There is no fee associated with
the use of Writing Center computers or printers. Hours vary by quarter and are
posted on the entrance to T217.

Campus Security

Your safety and security are taken seriously at the college; we have a very low
incidence of crime on the campus. Although the college has no security force of
its own, the campus is patrolled regularly by the Police Department and all
incidents of confirmed or suspected crimes are reported.

Students requesting academic adjustments related to disability should contact
Disability Support Services (DSS) in person, by phone or by email.

126

CLASS CONTENT

Syllabus—Classroom Management
Classroom Observation
Learning Styles
LWTC Students
Lesson Plans
Teaching Strategies
Disruptive Behaviors--Safe Environment
Retention
Reflection

CALENDAR

Directions for each of the following assignments will be discussed and handout
provided.

DATE

Weekly Classroom Activities
Assignments, Readings, Discussion Questions Due Dates by midnight

Week 1
Pre-Test
Discuss elements of Syllabus—Assignment #1
Syllabus
Intro to Blackboard
Develop faculty observation checklist to assess instructional excellence.
Respond to Blackboard Discussion Question A during class time; Respond to Peer.

Week 2
Discuss observation rubric/checklist
Discuss online responses by students
Guest speaker--Scott
Read/Skim Chapter 2 in textbook in order to respond to discussion question B;
respond to Peer

Week 3
Minimum 30-minute Faculty Observation
Discuss chapter 5; share an experience or favorite paragraph in chapter and
why?
Read/Skim Chapter 3 in textbook in order to respond to discussion question C;
Respond to Peer

127

Week 4
Lesson Plan intro
Edit rubric
CATS
#1 Assignment due—Syllabus (100 pts)
#2 Assignment due—Observation (50 pts)
Respond to Blackboard Discussion Question D; Respond to Peer

Week 5
No face-to-face class
Respond to Blackboard Discussion Question E; Respond to Peer

Week 6
CATS
Discuss chapter 4; share an experience or favorite paragraph in chapter and
explain why? --Engaging Students
Intro to games
#3Assignment--Lesson Plan (100 pts)
Respond to Blackboard Discussion Question F; Respond to Peer

Week 7
Engaging Students
Games
Reflection
Read/Skim Chapter 6 in textbook in order to respond to discussion question G;
Respond to Peer
#4 Assignment--Classroom Assessment Techniques (50 pts)

Week 8
Minimum 30-minute Faculty Observation
Respond to Blackboard Discussion Question H; Respond to Peer;
#5 Report on strategies to engage students (50 pts)

Week 9
Sharing face-to-face or online?
#6 Assignment--Classroom observation (50 pts)
#7 Assignment with edited observation checklist (100 pts)
#8 Assignment--Games/Role Playing (50 pts)
#9 Assignment—Reflection (50 pts)
Post Test

128

THE FUNCTION OF THE COURSE SYLLABUS

Syllabus Functions

Your syllabus can serve a wide variety of functions that will support and
challenge students as they engage in their educational activities.

1) Establishes an Early Point of Contact and Connection Between Student and
Instructor

Research has shown that students want more frequent interaction with faculty.
You can begin to communicate your availability by including basic information
such as your name, address, telephone numbers, e-mail address, office hours, how
to arrange for a conference. [See Examples, Part II] You can also include a page
soliciting biographical information (also address, phone #, e-mail, etc.) that
will help you to learn students' names, their interests, and why they are in the
course. To encourage interaction with other students in the course, you might
use this information to develop a student roster (including name, address, phone
#, e-mail, etc.) that is particularly useful for group work and work time out of
class. You can include similar information about other important student
contacts, such as TAs, technicians, main office staff, and librarians, when
appropriate. This contact information will be useful in case plans change during
the course of the term or semester.

2) Helps Set the Tone for Your Course

Your syllabus communicates much about your attitudes toward students and
learning. The way in which you communicate your views helps students to
understand whether your class will be conducted in a formal or informal manner.
Communicating an openness to questions, concerns, and dialogue begins with the
syllabus.

3) Describes Your Beliefs About Educational Purposes

You can explain whether your course has a product or a process orientation and
how that determines your expectations of students. Explain how you have set your
agenda for the course, how the course structure reinforces goals and objectives,
how the activities and assignments will help them to meet both product and
process goals. You may describe learning strategies and techniques you will use
and your rationale for using them. You can make explicit how your criteria and
standards for both their work process and products are aligned with course
goals.

4) Acquaints Students with the Logistics of the Course

129

Courses vary in terms of the days classes meet, the instructors for each class,
and the type of sessions which occur (i.e., guest lecturer, teamwork sessions,
simulations, films, etc.). Your syllabus can detail this information so that
students will know what to expect and can be prepared for each class meeting.
Providing students with a course calendar helps them to plan their work. Noting
holidays and any days on which class will be canceled or rescheduled allows
students to plan ahead and prevent misunderstandings. It also shows that you
respect the value of students' time. [See Examples, Part II]

5) Contains Collected Handouts Faculty often distribute handouts as they become
appropriate to the topics covered. Often students put them into whatever
notebook is at hand and then find it difficult to retrieve them. By planning
your course, preparing the necessary handouts, and including them in your
syllabus, you help students, among other things, to keep all course material
together and accessible. These items, among other things, might include
biographical information forms, detailed information on assignments, various
evaluation forms, or diagrams and other visual representations.

6) Defines Student Responsibilities for Successful Course Work Your syllabus can
help students to achieve some personal control over their learning, to plan
their semester, and to manage their time effectively. If your students have a
clear idea of what they are expected to accomplish, when, and even why, they
will be more likely to finish assignments within a reasonable time and be
appropriately prepared for classes and exams.

7) Describes Active Learning Students often conceive of learning as the
acquisition of correct information, but they may not know what it means to take
an active role in the process, beyond rote memorization and recall. You can
include a description of your expectations for student initiative in your
syllabus. If critical thinking, problem solving, and inquiry are part of your
course, it is helpful to tell students that they will be asked to consider
multiple viewpoints and conflicting values and to imagine, analyze, and evaluate
alternate positions on issues or solutions to problems. It is also important to
describe what students can expect from you in your role as teacher: content
expert, formal authority, socializing agent, facilitator, role model,
experienced learner, resource consultant, coach, counselor.

8) Helps Students to Assess Their Readiness for Your Course What are the
prerequisites for your course? In addition to specific course prerequisites,
students should be given some idea about what they should already know and what
skills they should already have before taking your course so they can
realistically asses their readiness. Your syllabus can provide information about
the challenges students will face, the assumed skill level, the skills they will
build upon, and the skills they will learn during your course. You may also
include information about institutional or other sources for academic support.

130

Some faculty include self-assessment tools and learning contracts to assist
students with this process.

9) Sets the Course in a Broader Context for Learning

Your syllabus can provide a perspective that allows students to see instructors
in your discipline as active and experienced learners engaged in inquiry in
their professional fields or disciplines. Many students are unaware that their
instructors are involved in research and creative professional activity beyond
the classroom, that they are not simply transmitters of knowledge and skills.
You can encourage your students to approach the learning situation as apprentice
learners in a community of scholars. You can help them to see you and other
faculty as experienced active learners who can provide expert guidance about
general and specialized knowledge of content and practice in your field. Your
syllabus can provide information that shows students how your course fits within
the discipline or profession, the general program of study, and their own
educational plans. You can make students aware that every discipline or field
has its unique way of knowing. You can encourage students to approach the field
actively as ethnographic fieldworkers who want to understand the social and
intellectual practices of the field. Assure them that you will guide them while
they learn how to use the characteristic tools and modes of inquiry, patterns of
explanation, discourse practices, and they types of artifacts that are valued
and produced in their field.

10) Provides a Conceptual Framework Your syllabus can support major ideas,
topics, and factual information. Include in it questions or issues for students
to think about that range from major issues or key questions in the discipline
to the meaning of a significant passage in a course reading (Bean, 1996). Such a
framework will help students organize information and focus their learning.

11) Describes Available Learning Resources You can list campus resources such as
libraries, reserve desks, reading rooms, laboratories, computer clusters, and
studios that students may use (including their locations, availability, and
policies) as well as any information concerning the location and use of aids
such as tape recordings, copy services, CD ROMs or videos. You may also note the
locations of specific books, videos, and sites on computer networks. [See
Examples, Part II]

12) Communicates the Role of Technology in the Course Computers and computer
networks have increased our ability to access information and communicate with
each other. Computers are working tools that students use for their own
learning: to enhance their thinking; plan and revise learning goals; monitor and
reflect on their progress; set up and access their own personal knowledge files;
share a common database; build their own database; use a spreadsheet; run
statistical software; keep a journal; write, illustrate, and revise texts; and
build up a portfolio. You can use computers as a resource tool to provide direct

131

instruction of new content, tutorials, and interactive simulations; to model
extremely small or large phenomena (Brown, 1993; Davis, 1993a). E-mail is a
practical way to interact with your students. Assignments, comments on their
work, important class information, and questions to you and to other students,
and extended classroom discussions are all possible uses and allow documents to
be prepared, sent, received, and read by the recipient at convenient times.
Institutions, individual faculty, and students are creating their own home pages
on the World Wide Wed or using information servers to share course materials on-
line, such as your learning-centered syllabus, reading lists, lecture outlines
or notes, collaborative software, and other course information. When you use
servers and the World Wide Web, you can control the information you want to
access by navigating through the system to explore any topic of interest at your
preferred pace and level of detail. Studies have shown that students derive much
benefit from environments which encourage collaborative/cooperative learning.
The Web and groupware (such as Lotus Notes) provide opportunities for
asynchronous collaboration (participants can share work that may be done at
different times and places). Networked writing environments encourage students
to write more and to learn from each other. On-line discussion groups can lead
to fuller participation in class discussions by students who may not participate
in face-to-face classroom environments (Polyson, S., Saltzberg, S., & Goodwin-
Jones, R., 1996).

13) Can Expand to Provide Difficult-to-Obtain Reading Materials

There are times when courses are developed before comprehensive literature is
available on the topic. The syllabus can include copies of articles you want
your students to read, as well as supplemental information not found in course
texts. You can include materials that expand on, synthesize, and facilitate
critical reflection on issues presented during formal instruction. You might
include materials that fill in the gaps not covered by class presentations, or
present questions raised by other points of view. When you use the syllabus in
this way, be certain that you obtain necessary copyright clearances for reading
selections.

14) Can Improve the Effectiveness of Student Note Taking

Good, carefully written notes are a significant resource for active learning.
Active thinkers keep notebooks and journals of ideas from readings, lectures,
presentations, and their own ruminations about topics. It is important to make
every effort to help students improve the quality of this form of writing. As a
model, you may want to include outlines that provide an orientation to topics
for lectures and presentations, making it clear what you want students to
remember, and providing room for their own interpretations and elaborations of
the material. You can use notetaking pairs (Johnson, Johnson, & Smith, 1991)
intermittently during or at the end of a lecture. (In this case, two students
work together to review major concepts and pertinent information, to clarify

132

unresolved issues or concerns.) It is also helpful to include any detailed
formulas and diagrams that students will be required to use. You may want to
include study techniques that are specific to your c! ourse. In this way, the
contents of the syllabus will help to organize and focus student notetaking and
learning. [See Learning Tools, Part II]

15) Can Include Material that Supports Learning Outside the Classroom

Much learning takes place outside of the classroom. You can transform student
study time outside of class by providing strategies in your syllabus that help
students to interact more critically with the textbook, supplemental readings,
or other work, so that they will be better prepared for class. For example,
along with the readings you might give students a short (one page or less)
writing assignment that asks them to support, reject, or modify the thesis or
claims in the reading. You might include a guide for troubleshooting a story or
a drawing. You can also provide self-check assignments that allow students to
monitor their progress.

16) Can Serve as a Learning Contract

As an agreement or contract defining mutual obligations between instructor and
students, your syllabus also speaks for the college and university. "You should
realize that this fact gives you responsibilities but also gives you protection
against complaints or challenges to your teaching. For example, the conditions,
goals, and requirements you state enable (department chairs and academic
administrators) to support your decisions on grades, teaching methods, readings,
and topics of inquiry. That is only possible, of course, if you and the
administration (and the students) have a record of what you promised and
planned, and if your syllabus conforms broadly to program goals and
policies" (SU Project Advance, 1995). You will need to be familiar with
institutional policies regarding attendance, examinations, drop/adds, course
withdrawals, learning disabilities, and academic integrity. Equipped with an
understanding of the myriad ways a learning-centered syllabus can function, you
can begin to use it in your course.

133

The Value of Writing a Course Portfolio

For most teachers, starting to explore students' learning can be a bit daunting.
You ask yourself some tough questions: Are my students truly learning what I
think I am teaching them? Am I meeting my course goals? Are my course goals
right for this course? Is the work that students do having my impact on their
learning? Do the materials I have chosen build connections and perspective?

Where do you look for the answers to these questions? You might turn on your
computer, collect all of your course notes on your desk, and grab a stack of
student papers that you have just finished grading. But you would probably find
yourself wondering how to get started. Even though over the years you have given
much thought to your course, this is probably the first time you have ever tried
to create a written document that makes visible the intellectual effort you put
into designing it and measuring its impact on student learning.

You are not along. A professor of art and art history found herself in a similar
predicament:

I am a new teacher and an untenured faculty member. I teach intuitively. I go by
how the class feels to me, and the overall atmosphere, and the general level of
student response. I have a plan for each class day and I always vary it to
respond to what arises in the studio. I used to feel strongly that the methods I
used in a given situation were effective, but I never articulated why. I never
voluntarily used the word "pedagogy" and was quite sure I would. I was insecure
about the intellectual underpinnings of my teaching and fearful I wouldn't be
able to justify how I teach if necessary.

After developing a course portfolio, she wrote, "I found to my enormous relief
that many of the methods I had chosen intuitively are used by other teachers and
that they even have a pedagogical basis, which I am beginning to be able to
articulate."

The course portfolio provides a framework within which you think about your
course design, ask yourself if your classroom practices are working, and assess
the level and range of student learning that goes on in your classroom. Unlike a
teaching portfolio, which might summarize all of the courses that you teach, a
course portfolio is focused on a single course. More importantly, a course
portfolio seeks to minimize the wheelbarrow effect of simply collecting all of
your homework, handouts, and examinations into one unexamined pile. Creating a
portfolio for a single course can often be more valuable than a broad teaching
portfolio since it is a concise and reflective document that can be shared with
peers for their review of what student learning looks like in your particular
course. For example, if you were to write portfolios on different courses, the
insights that you gained in your analysis of each course could form the basis of

134

the teaching statement that is the core of the more substantial teaching
portfolio.

What constitutes a course portfolio is as individual as the instructor doing the
teaching and the course being taught. Hutchings (1995) describes three common
elements of a course portfolio: 1) explanation of the course design, 2)
description of the enactment or implementation of the design, and 3) analysis of
student learning resulting from the first two dimensions. Our model of a
portfolio is similar and consists of the following essential parts:

* A reflective discussion of the content and goals of your course
* A description of your plans to accomplish key objectives in student learning
* Evidence, assessment, and evaluation of student achievement of these goals
* A reflective narrative on the relation among the above three elements

The raw material for the course portfolio is a set of three memos that you write
about your course and that you then draw from to create a finished course
portfolio that summarizes and analyzes student learning. The course portfolio
emerges through the aggregation of the three memos about goals, methods, and
learning. The faculty member's reflection on the relations among those elements
is the connecting material that holds the portfolio together.

In this book we present models for two types of course portfolios: a benchmark
course portfolio and an inquiry course portfolio. Each of these portfolio models
offers a structure for exploring, reflecting on, and documenting a course. A
benchmark portfolio presents a snapshot of your students' learning that occurs
in one of your courses. This portfolio enables you to document your current
teaching practices and to generate questions about your teaching that you would
like to investigate further. An inquiry portfolio is useful for documenting
improvement in teaching your course over time and for assessing the long-term
impact of teaching changes, the success of teaching approaches, and the
improvement in student learning. This inquiry process often moves teachers
toward scholarship-of-teaching questions in their disciplines. In general, most
instructors find it valuable to begin making their teaching visible through
writing a benchmark portfolio. In subsequent offerings of the course, you might
document the results of course changes with an inquiry portfolio.

You might be thinking, "Generate questions for further investigation? Document
improvement over time? Looking at long-term impact of teaching changes? I don't
want to become an educational researcher. I simply want to see if my students
are learning what I think they are learning." This concern is common. But our
model for course portfolios has been used by hundreds of teachers from numerous
disciplines to provide a foundation on which to explore student learning. While
these teachers had different teaching objectives and valued different forms of
teaching, all of them found this process useful for thinking about their

135

students' learning in a structured and systematic way. For example, a professor
of English observes:

Having a structure for reflecting on my course has been very useful for me. I
have found that
ordinarily after I finish a class I might have some thoughts about it-what
happened and what I
could do better in presenting the materials. Ideally after every semester I'd
write these down,
though in reality only occasionally have I ever taken the extra effort. The
course portfolio
framework has allowed me to think more systematically about my course and the
activities that
were happening in the classroom. Having to write about it and then share my
writing with peers
really forced me to look very closely at the things I was doing.

According to a professor of political science,

Writing a portfolio required me to be very conscious about how I was designing a
syllabus, how I was evaluating students, and how I was approaching my teaching.
It serves as a foundation on which my colleagues and I often start discussions
about teaching and learning.

A professor of agronomy and horticulture emphasizes the variety of ways that a
portfolio can be useful:

As I was describing the purpose and activities of the portfolio development
profession to a colleague, I related that the process can serve many purposes,
e.g., the creation of a course portfolio, documentation of teaching activities
for promotion and tenure, a troubleshooting tool to assist in retooling an older
or troubled course, but to me, it principally is a vehicle for an instructor to
assess whether they are really teaching what they think they are teaching. I see
it as more of a process than a product.

As these three teachers suggest, the process of creating a portfolio is often as
valuable-or even more valuable-than the actual "product" generated in the end.
While we agree that not all teachers need to be educational researchers, we do
believe that if we want our students to be engaged in their learning, we
ourselves need to be systematically and continually engaged in our teaching.
Writing a course portfolio will help you become a better teacher, enhancing the
classroom experience for current and future student learners not only in the
course you are profiling but in all your courses.

136

Syllabus Elements

1.Course Information
• Title of course
• Course Number, course section, quarter, credit hours
• Prerequisites (if any)
• Time, location

2. Instructor Information
• Instructor’s name and title
• Office location, office hours, office phone number, e-mail address

3. Assigned texts, required course/lab materials
• Textbooks (titles, authors, editions)
• Course/Lab/Shop materials--binders, spiral notebooks, dictionaries,

calculator, flash drives, equipment, tools, access to computers, etc.
• Readings or other resources such as videos, CDs, DVDs, etc. (titles,

required or optional, where to locate the resources)
• Electronic resources--web sites, listserv, newsgroup, Blackboard, etc.

4. Course Description
• General description of the course from course outline and college catalog—

from Dean.
• Additional description of the course as instructor sees fit.

5. Statement of instructional methods
• Instructional methods (lecture, group discussion, teamwork projects, use

of online platform, etc.)

6. Course Specific Learning Outcomes
• Course outcomes/objectives should match those on the course outline.
• Global outcome requirements met by course
• You may add course outcomes/objectives of your own in addition to those on

the outline, but you may not omit any listed on outline.

7. Course Policies
• Attendance/lateness policy—clearly define
• Class participation policy –clearly define
• Missed exams or assignments
• Policies for dress during a lab, etc.
• Equal Opportunity Policy
• Computer, Cell phone, Pager usage
• Respect
• Student Code of Conduct
• Weather

137

• Safety Policies/Procedures as pertains to lab—listed on separate
handout

• A Statement Regarding Academic Honesty
The following is an example of language you can use in your syllabi
to address academic honesty.

Plagiarism occurs when you knowingly submit someone else's ideas or
words as your own. Plagiarism is an act of intentional deception
that not only is dishonest, it robs you of the most important
product of education---the actual learning. Should I suspect that
you have plagiarized, I will talk with you one-on -one and ask you
to prove that the work in question is your own. If you are found
guilty of academic dishonesty, you will automatically fail that
assignment. If you are caught plagiarizing again in the same
quarter, you will fail this class. Cite policy in student handbook.

8. Assessment and Grading
• Factors included in grade, how assessed and weighted
• Grading scale –Clearly explain how percentage and/or points are to be

calculated.
• An example of how student can compute his/her grade after receiving each

graded assignment.
• Inform students when to expect turn around on graded assignments.

9.Course Schedule/Calendar (may be attached on separate sheet)
• Schedule of daily topics to be covered
• Due dates for all assignments -- readings, projects, etc.
• Dates for exams, quizzes, papers, and other forms of assessment
• Dates of required or recommended participation at special events.

10. Support Services
• Library
• Academic Skills Centering
• Peer Tutoring
• Computer Lab
• Writing Center
• Security
• Bookstore

138

Things to consider for course construction

Ask yourself the following questions:

Schedule
 -- Will it be self-paced, following a set calendar, etc.?

Calendar
 -- Will you use a calendar with assignment and test due dates?

Sequencing
 -- Determine the logical progression of your materials.
 Will it be a linear or random order?
 -- Do you want students to see all the materials in the entire course?
 -- Does the content drive the organization?
 -- Will you restrict them to a segment at a time?
 -- Must a student master one segment before being allowed to move
 to the next?
 -- Must your material be taught in a step-by-step fashion?
 -- Can students perform course tasks in any order?

Content Segments
 -- How will you organize and split up your content?
 -- Will you allow students to print content?
 -- How will you present the course information?
 -- What is the best way to group your information?
 -- Will you use modules, weeks, lessons, units or something else?
 -- Will you use an orientation, help section or general resource?

Pre-test or remediation
 -- Will you pre-test students?
 -- Will you offer remedial material?

Types of activities the student will be required to complete
 -- Will you use written assignments, online self-tests, participation
 in the discussion board, group work, etc.?

Procedure for submission of electronic assignments
 -- What are the rules?
 -- Can they submit multiple copies?
 -- Can others view submissions?
 -- Will you use drop boxes?
 -- Must they use a specific format?
 -- Will you specify a deadline?
 -- How will you handle late submissions?
 -- How will you handle technological problems?

1

139

Assignments and Class Size
 -- Considering your class size, how much time can you devote
 to reviewing assignments?
 -- Do you have TA support?
 -- Will you use peer review?
 -- Will you use groups?

Testing Procedures and Assessments
 -- What kinds of assessments will you use?
 -- Will they be online, proctored, etc.?
 -- How many assessments will you use?
 -- What must the student do or perform to provide sufficient evidence that
 they have indeed comprehended the materials?
 -- Will you require memorization, analysis or skill performance?
 -- Are the assessments low-stakes or high-stakes?
 -- Will you use self-assessment?
 -- How do you feel about cheating?
 -- Will your assessments be driven by your opinions on cheating? Eg, you may
 choose not to use multiple-choice exams, but have them write a paper.
 -- Will you weight your various assessments differently?

Course Communications
 -- What is your preferred mode of having students communicate with you?
 Will you use email, discussion board, etc. and how?
 -- What is your preferred mode of having students communicate with other
 students? Will they use instant messages, phone, course mail, email,
 discussion boards, etc. and how?

Syllabus
 -- Does your syllabus reflect your course structure, segments, projects
 and grades?

Orientation
 -- Have you considered an online orientation to both the online tools
 and your course?
 -- Is completion of the orientation required to access the course material?

Evaluation
 -- Will you provide an evaluation after each segment?
 -- Will you poll and survey student opinion?
 -- What do you want feedback on?

2

140

Bloom's Taxonomy of Cognitive Objectives

Bloom's taxonomy of cognitive objectives, originated by Benjamin Bloom and
collaborators in the 1950's, describes several categories of cognitive learning.

Category Description

Knowledge Ability to recall previously learned material.
Comprehension Ability to grasp meaning, explain, restate ideas.
Application Ability to use learned material in new situations.
Analysis Ability to separate material into component parts and show
 relationships between parts.
Synthesis Ability to put together the separate ideas to form new whole,
 establish new relationships.
Evaluation Ability to judge the worth of material against stated criteria

Many people also call the analysis, synthesis, and evaluations categories
"problem solving."

Key Verbs
Using verbs is beneficial to writing effective learning objectives.

Behavioral Verbs Appropriate for Each Level of Blooms’ Taxonomy

Knowledge
 * Define * Identify * List * Name
 * Recall * Recognize * Record * Relate
 * Repeat * Underline/Circle

Comprehension
 * Choose * Cite examples * Demonstrate use * Describe
 * Determine * Differentiate * Discriminate * Discuss
 * Explain * Express * Use own words * Identify
 * Interpret * Locate * Pick * Report
 * Restate * Review * Recognize * Select
 * Tell * Translate * Respond * Practice
 * Simulates

Application
 * Apply * Demonstrate * Dramatize * Employ
 * Generalize * Illustrate * Interpret * Operate
 * Operationalize * Practice * Relate * Schedule
 * Shop * Use * Utilize * Initiate

1

141

Analysis
 * Analyze * Appraise * Calculate * Categorize
 * Compare * Conclude * Contrast * Correlate
 * Criticize * Deduce * Debate * Detect
 * Determine * Develop * Diagram * Distinguish
 * Differentiate * Draw conclusions * Estimate * Evaluate
 * Examine * Experiment * Identify * Infer
 * Inspect * Inventory * Predict * Question
 * Relate * Solve * Test * Diagnose

Synthesis
 * Arrange * Assemble * Collect * Compose
 * Construct * Create * Design * Develop
 * Formulate * Manage * Modify * Organize
 * Plan * Prepare * Produce * Propose
 * Predict * Reconstruct * Set-up * Synthesize
 * Systematize * Devise

Evaluation
 * Appraise * Assess * Choose * Compare
 * Critique * Estimate * Evaluate * Judge
 * Measure * Rate * Revise * Score
 * Select * Validate * Value * Test

2

142

Affective Domain Taxonomy

Affective domains deal with changes in attitudes and changes in behaviors
related to changes in attitudes. An example of a content areas with affective
objectives would be diversity awareness and relating to peoples from different
backgrounds.

Taxonomy levels indicate degree of commitment (affect)

TEMPLATE
Affective Domain Level
 Definition
 Example

1. Receiving
 Being aware of or attending to something in the environment
 Individual would read a book passage about software engineering.

2. Responding
 Showing some new behaviors as a result of experience
 Individual would answer questions about the book, read another book
 by the same author, read another book about software engineering

3. Valuing
 Showing some definite involvement or commitment
 The individual might voluntarily attend a software engineering lecture.

4. Organization
 Integrating a new value into one's general set of values, giving it some
 ranking among one's general priorities
 The individual might arrange a software engineering study group.

5. Characterization by Value
 Acting consistently with the new value
 The individual is firmly committed to the value, perhaps becoming
 a software engineer.

Krathwohl, D., Bloom, B., & Masia, B. (1956). Taxonomy of educational
objectives. Handbook II: Affective domain. New York: David McKay.

1

143

Psychomotor Domain Taxonomy

Psychomotor objectives focus on physical and kinesthetic skills (including
keyboarding, using technical instruments and other skills).

This domain is characterized by progressive levels of behaviors from observation
to mastery of a physical skill.

TEMPLATE
Psychomotor Domain Level
 Definition
 Example

1. Observing
 Active mental attending of a physical event.
 The learner observes a more experienced person in his/her performance
 of the skill. Asked to observe sequences and relationships and to pay
 particular attention to the finished product. Direct observation may be
 supplemented by reading or watching a video. Thus, the learner may read
 about the topic and then watch a performance.

2. Imitating
 Attempted copying of a physical behavior.
 The learner begins to acquire the rudiments of the skill. The learner
 follows directions and sequences under close supervision. The total act
 is not important, nor is timing or coordination emphasized. The learner
 is conscious of deliberate effort to imitate the model.

3. Practicing
 Trying a specific physical activity over and over.
 The entire sequence is performed repeatedly. All aspects of the act are
 performed in sequence. Conscious effort fades as the performance
 becomes more or less habitual. Timing and coordination are emphasized.
 Here, the person has acquired the skill but is not an expert.

4. Adapting
 Fine tuning. Making minor adjustments in the physical activity in order to
 perfect it.
 Perfection of the skill. Minor adjustments are made that influence the
 total performance. Coaching often very valuable here. This is how a
 good player becomes a better player.

Key Verbs
 * bend * grasp * handle * operate* reach * relax * shorten
 * stretch* write * differentiate (by touch) * perform (skillfully)

1

144

101 THINGS YOU CAN DO THE FIRST THREE WEEKS OF CLASS
by Joyce Povlacs Lunde
The Teaching and Learning Center - University of Nebraska - Lincoln

Introduction
Helping Students Make Transitions
Directing Students Attention
Challenging Students
Providing Support
Encouraging Active Learning
Building Community
Encouraging Active Learning
Feedback on Teaching

Introduction

Beginnings are important. Whether it is a large introductory course for freshmen
or an advanced course in the major field, it makes good sense to start the
semester off well. Students will decide very early--some say the first day of
class--whether they will like the course, its contents, the teacher, and their
fellow students.

The following list is offered in the spirit of starting off right. It is a
catalog of suggestions for college teachers who are looking for fresh ways of
creating the best possible environment for learning. Not just the first day, but
the first three weeks of a course are especially important, studies say, in
retaining capable students. Even if the syllabus is printed and lecture notes
are ready to go in August, most college teachers can usually make adjustments in
teaching methods as the course unfolds and the characteristics of their students
become known.

These suggestions have been gathered from UNL professors and from college
teachers elsewhere. The rationale for these methods is based on the following
needs: to help students make the transition from high school and summer
activities to learning in college; to direct students' attention to the
immediate situation forlearning--the hour in the classroom; to spark
intellectual curiosity--to challenge students; to support beginners and
neophytes in the process of learning in the discipline; to encourage the
students' active involvement in learning; and to build a sense of community in
the classroom.

Here, then, are some ideas for college teachers for use in their courses in the
new academic year:

Helping Students Make Transitions

145

1. Hit the ground running on the first day of class with substantial content.

2. Take attendance: roll call, clipboard, sign in, seating chart.

3. Introduce teaching assistants by slide, short presentation, or self-
introduction.

4. Hand out an informative, artistic, and user-friendly syllabus.

5. Give an assignment on the first day to be collected at the next meeting.

6. Start laboratory experiments and other exercises the first time lab meets.

7. Call attention (written and oral) to what makes good lab practice: completing
work to be done, procedures, equipment, clean up, maintenance, safety,
conservation of supplies, full use of lab time.

8. Give a learning style inventory to help students find out about themselves.

9. Direct students to the Academic Success Center for help on basic skills.

10. Tell students how much time they will need to study for this course.

11. Hand out supplemental study aids: library use, study tips,supplemental
readings and exercises.

12. Explain how to study for the kind of tests you give.

13. Put in writing a limited number of ground rules regarding absence, late
work, testing procedures, grading, and general decorum, and maintain these.

14. Announce office hours frequently and hold them without fail.

15. Show students how to handle learning in large classes and impersonal
situations.

16. Give sample test questions.

17. Give sample test question answers.

18. Explain the difference between legitimate collaboration and academic
dishonesty; be clear when collaboration is wanted and when it is forbidden.

19. Seek out a different student each day and get to know something about him or
her.

146

20. Ask students to write about what important things are currently going on in
their lives.

21. Find out about students' jobs; if they are working, how many hours a week,
and what kind of jobs they hold.

Directing Students' Attention

22. Greet students at the door when they enter the classroom.

23. Start the class on time.

24. Make a grand stage entrance to hush a large class and gain attention.

25. Give a pre-test on the day's topic.

26. Start the lecture with a puzzle, question, paradox, picture, or cartoon on
slide or transparency to focus on the day's topic.

27. Elicit student questions and concerns at the beginning of the class and list
these on the chalkboard to be answered during the hour.

28. Have students write down what they think the important issues or key points
of the day's lecture will be.

29. Ask the person who is reading the student newspaper what is in the news
today.

Challenging Students

30. Have students write out their expectations for the course and their own
goals for learning.

31. Use variety in methods of presentation every class meeting.

32. Stage a figurative "coffee break" about twenty minutes into the hour; tell
an anecdote, invite students to put down pens and pencils, refer to a current
event, shift media.

33. Incorporate community resources: plays, concerts, the State Fair, government
agencies, businesses, the outdoors.

34. Show a film in a novel way: stop it for discussion, show a few frames only,
anticipate ending, hand out a viewing or critique sheet, play and replay parts.

35. Share your philosophy of teaching with your students.

147

36. Form a student panel to present alternative views of the same concept.

37. Stage a change-your-mind debate, with students moving to different parts of
the classroom to signal change in opinion during the discussion.

38. Conduct a "living" demographic survey by having students move to different
parts of the classroom: size of high school, rural vs. urban, consumer
preferences.

39. Tell about your current research interests and how you got there from your
own beginnings in the discipline.

40. Conduct a roleplay to make a point or to lay out issues.

41. Let your students assume the role of professional in the discipline:
philosopher, literary critic, biologist, agronomist, political scientist,
engineer.

42. Conduct idea-generating brainstorming sessions to expand horizons.

43. Give students two passages of material containing alternative views to
compare and contrast.

44. Distribute a list of the unsolved problems, dilemmas, or great questions in
your discipline and invite students to claim one as their own to investigate.

45. Ask students what books they read over summer.

46. Ask students what is going on in the state legislature on this subject which
may affect their future.

47. Let your students see the enthusiasm you have for, your subject and your
love of learning.

48. Take students with you to hear guest speakers or special programs on campus.

49. Plan a "scholar-gypsy" lesson or unit which shows students the excitement of
discovery in your discipline.

Providing Support

50. Collect students' current telephone numbers and addresses and let them know
that you may need to reach them.

51. Check out absentees. Call or write a personal note.

148

52. Diagnose the students' pre-requisite learning by a questionnaire or pre-test
and give them the feedback as soon as possible.

53. Hand out study questions or study guides.

54. Be redundant. Students should hear, read, or see key material at least three
times.

55. Allow students to demonstrate progress in learning: summary quiz over the
day's work, a written reaction to the day's material.

56. Use non-graded feedback to let students know how they are doing: post
answers to ungraded quizzes and problem sets, exercises in class, oral feedback.

57. Reward behavior you want: praise, stars, honor roll, personal note.

58. Use a light touch: smile, tell a good joke, break test anxiety with a
sympathetic comment.

59. Organize. Give visible structure by posting the day's "menu" on chalkboard
or overhead.

60. Use multiple media: overhead, slides, film, videotape, audiotape, models,
sample materials.

61. Use multiple examples, in multiple media, to illustrate key points and
important concepts.

62. Make appointments with all students (individuallymn or in small groups).

63. Hand out wallet-sized telephone cards with all important telephone numbers
listed: office, department, resource centers, teaching assistant, lab.

64. Print all important course dates on a card that can be handed out and taped
to a mirror.

65. Eavesdrop on students before or after class and join their conversation
about course topics.

66. Maintain an open lab gradebook, with grades kept current, during lab time so
students can check their progress.

67. Check to see if any students are having problems with an academic or campus
matter and direct those who are to appropriate offices or resources.

149

68. Tell students what they need to do to receive an "A" in you, course.

69. Stop the world to find out what your students are thinking, feeling, and
doing in their everyday lives.

Encouraging Active Learning

70. Having students write something.

71. Have students keep three-week three-times-a-week journals in which they
comment, ask questions, and answer questions about course topics.

72. Invite students to critique each other's essays or short answers on tests
for readability or content.

73. Invite students to ask questions and wait for the response.

74. Probe students responses to questions and their comments.

75. Put students into pairs or "learning cells" to quiz each other over material
for the day.

76. Give students an opportunity to voice opinions about the subject matter.

77. Have students apply subject matter to solve real problems.

78. Give students red, yellow, and green cards (made of posterboard) and
periodically call for a vote on an issue by asking for a simultaneous show of
cards.

79. Roam the aisles of a large classroom and carry on running conversations with
students as they work on course problems (a portable microphone helps).

80. Ask a question directed to one student and wait for an answer.

81. Place a suggestion box in the rear of the room and encourage students to
make written comments every time the class meets.

82. Do oral, show-of-hands, multiple choice tests for summary, review, and
instant feedback.

83. Use task groups to accomplish specific objectives.

84. Grade quizzes and exercises in class as a learning tool.

85. Give students plenty of opportunity for practice before a major test.

150

86. Give a test early in the semester and return it graded in the next class
meeting.

87. Have students write questions on index cards to be collected and answered
the next class period.

88. Make collaborative assignments for several students to work on together.

89. Assign written paraphrases and summaries of difficult reading.

90. Give students a take-home problem relating to the day's lecture.

91. Encourage students to bring current news items to class which relate to the
subject matter and post these on a bulletin board nearby.

Building Community

92. Learn names. Everyone makes an effort to learn at least a few names.

93. Set up a buddy system so students can contact each other about assignments
and coursework.

94. Find out about your students via questions on an index card.

95. Take pictures of students (snapshots in small groups, mugshots) and post in
classroom, office or lab.

96. Arrange helping trios of students to assist each other in learning and
growing.

97. Form small groups for getting acquainted; mix and form new groups several
times.

98. Assign a team project early in the semester and provide time to assemble the
team.

99. Help students form study groups to operate outside the classroom.

100. Solicit suggestions from students for outside resources and guest speakers
on course topics.

Feedback on Teaching

101. Gather student feedback in the first three weeks of the semester to improve
teaching and learning.

151

Virtual World Development

SITUATED SYLLABUS

VR emphasizes the relationship between participant and environment. Theories
which recognize that content and context are inextricably interrelated
(intertwingled) are called situated. In AI, it's called situated automata;
in industrial engineering, it's ecological psychology; in mathematics, it's
general systems; in psychology, its Gestalt.

In traditional classes, what you are expected to learn is defined ahead of
time. In this class, we will respond to events dynamically. This is called
situated learning. The theory is that the dynamic context impacts what and
how we learn. As a consequence, the syllabus will change dynamically over
time, in response to class needs and evolving understandings.

In VR, you enter first into a void; you then load a constructed database
that is the world. In physical reality, you are born into a world that is
already full. The difference is that VR demands active participation, inside
and out. VR emphasizes constructivism, the theory that mind and body
coparticipate to construct our experience of reality. In education,
constructivism says that students build their own understanding through
experience. This means that students must actively engage in and work with
the subject matter, and that will be the general rule for this class. It
also means that each student will construct an essentially different
understanding of VR. In VR software terms, we all live in divergent
realities.

Finally, the essence of VR is direct interaction with information. Right
now, universities use a symbolic mediation strategy almost exclusively. To
learn something, we translate it into what it is not (symbols), study the
symbols (words, formulae, programs), then reconstruct the something. In this
class, we will attempt to engage in direct learning by constantly anchoring
the symbols we use with the reality they refer to.

Virtual World Development is a graduate seminar. Class grading will be based
on individual understanding, participation, and growth. You will be
required to attend class and to develop or improve a skill related to the
design and construction of virtual worlds. Each student will probably
develop a different skill, at a different rate, with different criteria of
success.

Students who are concerned about this approach to teaching should meet with
the instructor. An option of individual performance contracts is available.

152

Virtual World Development

POSSIBLE CONTENT (no particular order, not necessarily complete):

VR software architectures and functionalities

VR varieties and taxonomies

Theory of Inclusion

Systems oriented programming
 parallelism
 modularity
 partitioning

Situated agents (entities)
 reactivity and responsiveness
 dramatic theory
 embedded narrative
 dispositions
 autonomy

Building virtual worlds
 software tools
 CAD
 dynamics
 animation
 scientific visualization
 techniques
 enumeration
 decomposition
 CSG
 boundary models
 sweeps
 design
 participation who/what/why
 physiological constraints
 tight coupling

Display
 rendering choices
 adaptive refinement
 viewpoint control, navigation

Abstraction
 varieties of space
 networks
 form abstraction
 application specific construction kits
 semantics

153

Virtual World Development

Computation
 pattern matching
 constraints and possibility spaces
 inference
 history and statistics
 resource management
 editors
 molecular programming

Inclusive tools
 cursors
 backdrops and foredrops
 virtual body
 wand
 inhabitation
 artificial life

Multiple participation
 inconsistency maintenance
 uniqueness
 negotiation

Experiential mathematics
 logic blocks
 boundary mathematics
 spatial algebra

Teleoperation and telepresence
 presence
 out-of-body experience
 physical and sensory extension

Physiological modeling
 sensory models
 physical constraints
 plasticity

Cognitive modeling
 information processing
 gestalt
 situated intelligence

PROJECTS

Each student is expected to contribute to our state of knowledge about VR.
Projects document this contribution. Project work will be presented to the
class, so that the class can review the work. This list is suggestive:

154

Virtual World Development

Design and/or build a VR tool
 wand
 physiological model
 virtual body
 virtual community
 editor for entities
 form abstraction
 logic blocks
 mapping tools
 projection tools
 navigation tools
 divergent worlds
 conversational programming
 music

Research and design a VR language
 behavioral modeling
 construction from inside VR
 algebraic specifications
 gesture languages
 virtual machines
 sound

Write and publish a VR article
 VEOS
 entities
 social implications

Develop VR operating system tools
 FERN
 Linda
 device drivers
 graphics drivers
 world building maintenance tools
 UM

Explore an important VR issue
 access
 cognitive plasticity
 ecstasy machines
 cultural bias
 ownership and legalities
 philosophy and metaphysics

155

 Human-Computer Interaction

 1

Curriculum Exercises

1. Write down three questions that you would most like answered by this
class.

2. Write down two things that almost everybody in the class will understand
by June.

3. Write down the one thing that most concerns or worries you about taking
this class.

==

"HCI Overview"
 Make a chart/list of the major areas of HCI. Include what you think the subject is about,
and the areas you have had experience in.

"Curriculum Engineering"
 Draft your ideas of the curriculum for this course. What topics will we study, what
activities will we do, how shall we determine success? Include preferred and requested topics,
and what to avoid. I will build a group map focusing on general content and specific interests.

Emphasis? machines computer science
 humans psychology, physiology
 design art
 human groups sociology

156

Virtual World Development

JUST WHAT IS VIRTUAL REALITY ANYWAY?

What are the defining characteristics of virtual reality, of a virtual
reality system? Suggest techniques for "measuring" each characteristic.

Develop a taxonomy (hierarchy, state space) of partial and complete VR
systems.

 computer-generated, television or live image?
 inclusion or partial immersion or watching 3D?
 wearing a computer?
 how many dimensions? multisensory?
 input and output bandwidth?
 available system resources?
 responsiveness and timeliness?
 physical/virtual mixture?
 degree of presence and physical remoteness?
 occlusive, overlay or annotated?

Consider (some of) these issues:

 bandwidth
 sensory modality
 degree of coupling and feedback
 input and sensor types
 output and display types
 interactivity
 realtime responsiveness
 meaning
 human physiology
 presence
 telepresence
 dimensionality
 realism
 autonomy
 formality
 anthropomorphism

157

Virtual World Development

Classify (some of) the following systems in your taxonomy:

 Dataglove
 Heads-up display
 Inclusive display
 flight simulator
 computer animation
 stereo sound
 Nintendo games
 SIMNET
 computer aided design (CAD)
 Landsat database
 remote controlled robot
 voice recognition
 holographs
 email
 command line computer interfaces
 desktop metaphor (WIMP) computer interfaces
 electron microscope
 the physical world
 television
 telephone
 automobiles
 drawings
 sculpture
 thinking
 meditation
 dreaming
 books and reading
 photographs
 movies
 Disneyland
 this assignment
 [add your own]

158

 Data Structures and Algorithms

1

Wonderful Computer Science Books

Every subfield of Computer Science has several journals, dozens of text books, and
hundreds of technical books. The web makes this situation much worse by providing
course notes and technical discussion from hundreds or thousands of practitioners.
Below is the single best book or two (IMHO) in most of areas covered in this class.

Data Structures, Algorithms and Programming

 H. Abelson and G.J. Sussman (1996)
 Structure and Interpretation of Computer Programs, Second Edition
 McGraw-Hill. ISBN 0-07-000484-6

Comprehensive Reference on Algorithms

 T.H. Cormen, C.E. Leiserson, and R.L. Rivest (1990)
 Introduction to Algorithms
 MIT Press. ISBN 0-07-013143-0

Very High-level Programming

 S. Wolfram (1996)
 The Mathematica Book, Third Edition
 Wolfram Media, Cambridge U. Press. ISBN 0-521-58889-8

Mathematical Models of Data Structures

 Z. Manna and R. Waldinger (1985)
 The Logical Basis for Computer Programming, Volume 1
 Addison-Wesley. ISBN 0-201-18260-2

Old-style Procedural Algorithms

 R. Sedgewick (1988)
 Algorithms in C++, Third Edition
 Addison-Wesley. ISBN 0-201-35088-2

Theory of Computation Complexity

 J.E. Savage (1998)
 Models of Computation
 Addison-Wesley. ISBN 0-201-89539-0

Programming Theory

 N.D. Jones (1997)
 Computability and Complexity from a Programming Perspective
 MIT Press. ISBN 0-262-10064-9

159

 Data Structures and Algorithms

2

Philosophy of Computation

 B.C. Smith (1996)
 On the Origin of Objects
 MIT Press. ISBN 0-262-69209-0

Programming Languages

 B.J. MacLennan (1999)
 Principles of Programming Languages, Third Edition
 Oxford. ISBN 0-19-511306-3

 M.L. Scott (2000)
 Programming Language Pragmatics
 Morgan-Kauffman. ISBN 1-55860-442-1

Computer Architecture

 J.L. Hennessy and D.A. Patterson (1996)
 Computer Architecture: A Quantitative Approach, Second Edition
 Morgan-Kaufmann. ISBN 1-55860-329-8

Compilers

 S.S. Muchnick (1997)
 Advanced Compiler Design and Implementation
 Morgan-Kaufmann. ISBN 1-55860-320-4

Discrete Mathematics

 W.K. Grassmann and J. Tremblay (1996)
 Logic and Discrete Mathematics: A Computer Science Perspective
 Prentice-Hall. ISBN 0-13-501206-6

Understanding Computing in Simple Language

 R. P. Feynman (A.J.G. Hey and R.W. Allen, eds) (1996)
 Feynman Lectures on Computation
 Addison-Wesley. ISBN 0-201-48991-0

Computer Science Culture

 ACM Turing Award Lectures: The First Twenty Years (1987)
 ACM Press, Addison-Wesley. ISBN 0-201-07794-9

160

 Data Structures and Algorithms

3

Seminal Algorithms Text (recently updated!)

 D.E. Knuth (1997, 1997, 1998)
 Fundamental Algorithms, Third Edition, volume 1 of The Art of Computer
Programming
 Seminumerical Algorithms, Third Edition, v. 2 of The Art of Computer
Programming
 Sorting and Searching, Third Edition, v. 3 of The Art of Computer Programming
 Addison-Wesley, ISBNS 0-201-89683-4, 0-201-89684-2, 0-201-89685-0

Undergraduate Introduct ion to Data Structures and Algorithms

 F.M. Carrano, P. Helman and R. Veroff (1998)
 Data Abstraction and Problem Solving with C++
 Addison-Wesley. ISBN 0-201-87402-4

Mark Allen Weiss (1998)
Data Structures and Problem Solving Using JAVA
Addison-Wesley ISBN 0-201-54991-3

Historical First Textbooks

 Nicklaus Wirth (1976)
 Algorithms + Data Structures = Programs
 Prentice-Hall ISBN 0-13-022418-9

 A.V. AHo, J.E. Hopcroft and J.D. Ullman (1983)
 Data Structures and Algorithms
 Addison-Wesley ISBN 0-201-00023-7

Computer Art

A.M. Spalter (1999)
The Computer in the Visual Arts
Addison-Wesley. ISBN 0-201-38600-3

161

TEACHING FOR INNOVATION

TOPIC 6. STRUCTURING CONTENT

 Lesson Plan Outline

 How to Write Clear Objectives

 Matching Objectives to Learning Styles

Teaching Examples (Bricken):

 Formal: Proof Techniques, An Extended Example

 Programming: A Small Interpreted Language

 Programming: Pseudocode Assignment Package

162

LESSON PLAN

1) Outcome—tell the students the skills and information they will learn by the
end of the lesson. How does this learning fit into the big picture of this
content?

2) Set the stage—draw relationship between new and previous learning. Statements
starting with “remember when we talked about….” Draw analogies all students
can relate to.

3) Purpose—why should the learner listen to you today?? How will this learning
benefit him/her on the job?

4) Content (Concept/idea OR Process/demonstration)

INSTRUCTOR BEHAVIORS
Strategies used to teach lesson taking into account students’ learning styles

STUDENT BEHAVIORS
Students engage in activities, assignments, feedback, discussion, etc.

5) Feedback –-instructor preplanned questions, CATS, short assignments—every
15-20 minutes

6) Supplies/Equipment—

7) Practice—Planned assignments, activities, demonstrations to initially be
monitored by instructor.

8) Evaluation—formal (quiz, test) informal (feedback)

163

Factors to consider in pedagogy design

 * Motivation for the student: Why learn this? Where and when is this used?
What are the payoffs for learning?

 * Motivation for the faculty: What are the reasons for developing this
course? How can you create the best learning experience for the students?

 * Time: Preparing all materials ahead of time requires significant time
commitment.

 * Pedagogical considerations: What pedagogical models and learning therories
will you be incorporating into the teaching of the material?

 * Orientation: Help the student adjust to the environment or content being
taught, i.e., preview, objectives, overviews, summaries, prerequisites, and
schedule.

 * Information: The content the student needs to master, i.e., facts and
evidence, demonstrations and skill steps, definitions and examples, evidence and
cases, control and explain events, recall data, perform tasks, identify concepts
and infer outcomes.

 * Application: How will the student demonstrate learning, i.e., practice,
prompting, feedback, remediation?

 * Evaluation: How will you assess what the student has learned, whether the
content was relevant, or whether the instructional method was appropriate?

 * Technical Competency: Are you comfortable with the technology used to
deliver your course content? Will you need training or support?

164

How to Write Clear Objectives

 Jones, 1997 – "Clear objectives can help the instructor design lessons that
will be easier for the student to comprehend and the teacher to evaluate".

 Lohr, no date – "A properly written objective tells you what specific
knowledge, skill, or attitude is desired and what method of instruction and
criteria for learner achievement are required."

Writing clear course objectives is important because:

 * Objectives define what you will have the students do.
 * Objectives provide a link between expectations, teaching and grading.

Questions you need to think about

 * Who are your students? Freshman? Senior?
 A mix of different prior knowledge and experience?
 * Is this course a general education course or required for the major?

The A.B.C.D. method

The ABCD method of writing objectives is an excellent starting point for writing
objectives (Heinich, et al., 1996). In this system, "A" is for audience, "B" is
for behavior, "C" for conditions and "D" for degree of mastery needed.

 1. Audience – Who? Who are your learners?

 2. Behavior – What? What do you expect them to be able to do? This should be
an overt, observable behavior, even if the actual behavior is covert or mental
in nature. If you can't see it, hear it, touch it, taste it, or smell it, you
can't be sure your audience really learned it.

 3. Condition – How? Under what circumstances or context will the learning
occur? What will the student be given or already be expected to know to
accomplish the learning?

 4. Degree – How much? How much will be accomplished, how well will the
behavior need to be performed, and to what level? Do you want total mastery
(100%), do you want them to respond correctly 80% of the time, etc. A common
(and totally non-scientific) setting is 80% of the time.

1

165

Examples of Well-Written Objectives

Audience (A), Behavior (B), Condition (C) and Degree of Mastery (D).

Cognitive Objectives (comprehension level)

(C) Given a paragraph in a newspaper article,
(A) the student
(B) will be able to accurately identify the grammatical subject of each sentence
and explain his or her decision
(D) for all sentences given.

Cognitive Objective (application level)

(C) Given a foreign language sentence written in the past or present tense,
(A) the student
(B) will be able to rewrite the sentence in future tense
(C) with no grammatical errors

Cognitive Objective (problem solving/synthesis level)

(C) Given a set of current meteorological conditions taken from a weather
station
(A) the student
(B) will write a weather forecast
(D) covering the next six hours.

Psychomotor

(C) Given an geometric object in Photoshop software,
(A) the student
(B) will be able to use the computer mouse and lasso tool to trace a usable
outline
(D) which can be used to define the object for a montage.

Notes on Objective Writing

When reviewing example objectives above, you may notice a few things.

 1. As you move up the "cognitive ladder," it can be increasingly difficult to
precisely specify the degree of mastery required.

 2. Affective objectives are difficult for many instructors to write and
assess. They deal almost exclusively with internal feelings and conditions that
can be difficult to observe externally.

2

166

 3. It's important to choose the correct key verbs to express the desired
behavior you want students to produce. See the pages on a page on cognitive
objectives (Blooms' Taxonomy), affective objectives and psychomotor objectives
to see examples of key words for each level.

Typical Problems Encountered When Writing Objectives

TEMPLATE
Problems
 Error Types
 Solutions

Too vast/complex
 The objective is too broad in scope or is actually more than one objective.
 Use the ABCD method to identify each desired behavior or skill
 in order to break objectives apart.

No behavior to evaluate
 No true overt, observable performance listed. Many objectives using verbs
 like "comprehend" or "understand" may not include behaviors to observe.
 Determine what actions a student should demonstrate in order for you to
 know of the material has been learned.

Only topics are listed
 Describes instruction, not conditions. That is, the instructor may list the
 topic but not how he or she expects the students to use the information.
 Determine how students should use the information presented. Should it
 be memorized? Used as background knowledge? Applied in a later project?
 What skills will students need?

Vague Assignment Outcomes
 The objective does not list the correct behavior, condition, and/or degree,
 or they are missing. Students may not sure of how to complete assignments
 because they are lacking specifics.
 Determine parameters for assignments and specify them for students.

3

167

Matching objectives to learning styles

Here are three common theoretical approaches to learning objectives.

 * The behavioral approach to learning objectives is consistent with
behavioral perspectives on learning and with teacher-centered teaching styles.

 * The cognitive approach to learning objectives is consistent with cognitive
perspectives on learning and an emphasis on teaching and learning knowledge and
concepts.

 * The constructivist approach to learning objectives is consisent with
constructivism and situated learning frameworks and is more likely to accompany
student-centered approaches to teaching.

Behavioral learning objectives

Behavioral objectives focus on identifying measurable, observable student
behavior by specifying the following:

 * conditions under which behavior will be performed
 * the student behavior (using a verb to describe a measurable behavior)
 * acceptable level or criteria for success

For example, after reading this page, you should be able to accurately name and
define three different kinds of learning objectives, 100% of the time.

Cognitive learning objectives

Cognitive learning objectives are broader and less measurable. They may better
reflect the goals some professors have for their course. Assessment is more
challenging with this approach. Bloom's (1956, 2001) taxonomy of cognition is
often used to help generate cognitive objectives:

 * knowledge (remember and recall)
 * comprehension (understand)
 * application (use of concept in a new situation)
 * analysis (break something down into its parts, interpret)
 * synthesis (generate something new applying the ideas)
 * evaluation (make judgments about value, appropriateness, other attributes)

For example, after reading this page, you should be able to identify the
intended learning style of your course and write corresponding learning
objectives. (application)

1

168

Constructivist learning objectives

The goals of a constructivist teacher are not to cover the curriculum, but
instead to engage students as active learners constructing their own knowledge
and beliefs within a content domain. Constructivist teachers start with very
broad learning objectives and may even negotiate with the class to identify more
specific learning goals. Constructivist teachers gather resources and set the
stage to challenge learners to explore their existing beliefs, expose them to
new ideas, and assign tasks which encourage learners to re-evaluate, re-define,
and apply their emerging understandings. For example:

Our starting objectives are:

 * consider your personal history of learning experiences
 * explore and react to new theories and examples of teaching and learning
 * reconsider your original beliefs
 * form teams, plan, and develop a real world learning object for a client
 where the learning object is consistent with your new revised
 perspective on how technology can enhance learning
 * justify your design choices based on the principles you have learned

2

169

 Applied Formal Methods

1

Proof Techniques, an Extended Example

Here is an example from relational calculus to illustrate each of the four methods of proof (case-
analysis or truth tables, natural deduction, resolution, and boundary logic) The example can be
viewed as a knowledge-base query. A knowledge-base (KB) is a collection of facts (which
contain no variables) and rules (which contain variables, and are usually stated in an if...then...
format). Both the fact-base and the rule-base have been greatly simplified for this example. The
deductive processes are essentially the same, regardless of the complexity of the knowledge-base.

A Relational Calculus (Database Query) Example

Facts:
 F1. (George is-the-father-of Harry)
 F2. (Rita is-the-sister-of Harry)
 F3. (Rita is-never-married)
 F4. (Harry is-a-male)

Rules:
 R1. If (_1_ is-the-father-of _3_)
 and (_2_ is-the-sister-of _3_)
 then (_1_ is-the-father-of _2_)

 R2. If (_4_ is-the-father-of _5_)
 and (_5_ is-a-male)
 then (_5_ is-the-son-of _4_)

 R3. If (_6_ is-the-son-of _7_)
 then (_6_ has-same-last-name-as _7_)

 R4. If (_8_ is-the-father-of _9_)
 and (_9_ is-never-married)
 then (_9_ has-same-last-name-as _8_)

 R5. If (_10_ has-same-last-name-as _11_)
 and (_10_ has-same-last-name-as _12_)
 then (_11_ has-same-last-name-as _12_)

 R6. If (_13_ has-same-last-name _14_)
 then (_14_ has-same-last-name _13_)
Query:
 Q. (Harry has-same-last-name-as Rita)

Abbreviations:
 George = g
 Rita = r
 Harry = h
 (_1_ is-the-father-of _2_) = 1F2
 (_1_ is-the-sister-of _2_) = 1T2
 (_1_ is-the-son-of _2_) = 1S2
 (_1_ has-same-last-name-as _2_) = 1L2
 (_1_ is-a-male) = 1M
 (_1_ is-never-married) = 1N

 Variables will be integers = {1, 2, 3, ...}

170

 Applied Formal Methods

2

Abbreviated knowledge-base:

 F1. gFh
 F2. rTh
 F3. rN
 F4. hM

 R1. if 1F3 and 2T3 then 1F2
 R2. if 4F5 and 5M then 5S4
 R3. if 6S7 then 6L7
 R4. if 8F9 and 9N then 9L8
 R5. if 10L11 and 10L12 then 11L12 transitivity
 R6. if 13L14 then 14L13 commutativity

 Q0. hLr

This particular example was designed with these objectives in mind:

 1. Intuitive semantics, easy for a human to understand
 2. Tractable size but enough to illustrate both natural and algorithmic processes
 3. Simple but non-trivial proof in natural deduction
 4. Easy forward-chaining proof in case-analysis (as a consequence of this, a complex
 backward chaining proof)
 5. Surprising proof in algorithmic resolution
 6. Illustrative proof of minimal boundary techniques, including more complex set
 techniques.
 7. Difficulty general transitivity and commutativity rules
 8. Tricky and subtle knowledge engineering issues.

Note: in pattern-matching systems, there is no substantive difference between algebraic
functions (ie. functions which are not evaluated) and relations.

Natural Deduction

The natural deduction approach is to use reason to show that Harry and Rita have the same
last name because George is their common father and Rita has never married. We show that
George is the father of both Harry and Rita, then we show that George has the same last name
as both Harry and Rita, then we conclude that Harry and Rita have the same last name.
Although the logic is clear, the syntactic transformations to get the rules to confirm the logic
require the additional skill of pattern-matching through unification.

Show gFh F1. gFh given
Show gFr F2. rTh
 R1. gFh and rTh therefore gFr
Show gLh R3. gFh and hM therefore hSg
 R3. hSg therefore hLg
 R6. hLg therefore gLh
Show gLr R4. gFr and rN therefore rLg
 R6. rLg therefore gLr
Show hLr R5. gLh and gLr therefore hLr

171

 Applied Formal Methods

3

Case-analysis and Chaining

Truth tables list all possible facts. In a KB, rules can be seen as sets of facts that have yet to
be enumerated. The identifying characteristic of case-analysis is that no variables are included
in the final form of rules or queries. One approach is to substitute all possible variable bindings
into the rules in all possible combinations. Since we have three people {George, Rita, Harry} in
the KB, and all variables refer to these three people, each variable has 3 cases, and each rule
would have 3^n cases, where n is the number of different variables in the rule. In the example,
this would generate (3^3 + 3^2 + 3^2 + 3^2 + 3^3 + 3^2) = 90 rule cases for the six rules.

A more efficient procedure would be to use the known facts to constrain the generation of
cases. We begin with the known facts and then use the rules to (indiscriminately) generate all
the other possible facts that are consistent with both the initial facts and the rules. The
forward generation of facts from initial conditions and rules is called forward-chaining. We
attempt to unify each fact with the premise of each rule; when unification is successful, the
conclusion of the rule is asserted as a new fact.

The order of enumeration of facts (the enumerat ion strategy) is a significant issue. The
order in which facts are applied to rules determines which new facts get enumerated first. Since
new facts themselves may trigger applications of rules, a choice can be made between depth-
first enumeration (following new facts first) or breadth-first enumeration (following old facts
first). Often a single fact may unify with one premise of a rule which requires two or more
facts to fulfill its premise. In this case, a new, shorter rule is asserted.

Below we use the following strategy: first all new facts are generated, then they are in turn
used to generate more facts. Duplications has been suppressed (this is called an occurs-
check). Using the current facts to generate more facts is called a set-of-support strategy,
since the set of known facts support the conclusions.

 F5. F1+F2, R1: gFr
 F6. F1+F4, R2: hSg no other rules unify, use new facts
 F7. F5+F3, R4: rLh
 F8. F6, R3: hLg
 F9. F7, R6: hLr QED

Note that this algorithmic proof is shorter than the natural deduction proof. It is still not
optimal, since step F8 was unnecessary. Algorithmic proof is always committed to following a
blind strategy, trading thought and efficiency for ease of implementation. There is a general
computational heuristic here: almost always it is better to implement blind brute force rather
than subtle computational intelligence. The corollary to this heuristic is that brute force only
works with the appropriate data structure. It is almost always better to apply design
intelligence to the representation of a problem than to the algorithm.

172

 Applied Formal Methods

4

Another strategy is to use the query to generate all possible queries stemming backwards from
the target query, until the existing facts terminate the search. Queries are matched with the
conclusions of rules; the premises of these rules are then the new queries. This technique is
called backward-chaining. We first generate queries which can be answered by single facts,
then queries which require more than one fact, finally trying to bind queries which contain
variables to the initial fact base. The example follows:

 Q0. hLr ?
 Q1. Q0, R3: hSr ?
 Q2. Q0, R6: rLh ?
 Q3. Q2, R3: rSh ? No other simple queries
 Q4. Q0, R4: rFh and hN ?
 Q5. Q0, R5: 20Lh and 20Lr ? Introduce new variable numbers
 Q6. Q1, R2: rFh and hM ? => rFh using F4
 Q7. Q2, R5: 21Lr and 21Lh ? duplicate of Q5
 Q8. Q3, R2: hFr and rM ?
 Q9. Q6, R1: rF22 and hT22 ? No more bindings or ground Qs
 Q10. Q5a, R3: 23Sh ? Begin using variable Qs
 Q11. Q5b, R3: 24Sr ?
 Q12. Q10, R2: hF25 and 25M ?
 Q13. Q11, R2: rF26 and 26M ?
 Q14. Q5a, R6: hL27 ?
 Q15. Q5b, R6: rL28 ?
 Q16. Q14, R3: hS29 ?
 Q17. Q15, R3: rS30 ?
 Q18. Q16, R2: 31Fh and hM ? => 31Fh using F4
 Q19. Q17, R2: 32Fr and rM ?
 Q20. Q18, F1: gFh ? bind 31 to g using fact F1

At this point we have back-chained to an initial fact, gFh. Reversing the logic, this fact
combined with F4 and R2 (see line Q18) answer line Q16, binding variable 29 to g. This answers
Q14, binding 27 to g. Q14 answers the first part of Q5 (that is Q5a), binding 20 to g, and
leaving the query sequence below as Q5b. (While we are at an interrupt, note that if the below
sequence fails, the queries would pick up where they left off, at Q12 where 25 would bind to h
using F4. This would create the query hFh ? and so on)

 Q21. Q5b: gLr ?
 Q22. Q21, R3: gSr ?
 Q23. Q21, R6: rLg ?
 Q24. Q23, R3: rSg ? No other simple queries
 Q25. Q21, R4: rLg and gN ?
 Q26. Q21, R5: 33Lg and 33Lr ?
 Q27. Q22, R2: rFg and gM ?
 Q28. Q23, R4: gFr and rN ? => gFr using F3
 Q29. Q23, R5: 34Lr and 34Lg ?
 Q30. Q28, R1: gF35 and rT35 ? No other grounded queries
 Q31. Q30, F1: gFh and rTh ? Bind 35 to h using F1
 Q32. Q31, F2: rTh ? => True using F2

We have now reached a final conclusion, since all queries have been answered. Reconstructing
the path in reverse order:

173

 Applied Formal Methods

5

 Q32: rTh
 Q31: Q32 and gFh
 Q30: Q31
 R1 thus gFr
 Q28: Q30 and rN
 R4 thus rLg
 Q23: Q28
 R6 thus gLr
 Q21: Q23

 Q20: gFh
 Q18: Q20 and hM
 R2 thus hSg
 Q16: Q18
 R3 thus hLg
 Q14: Q16
 R6 thus gLh

 Q5: Q14 and Q21
 R5 thus hLr
 Q0: Q5 QED

Note that this proof is similar to the natural deduction, and not as direct as the forward-chaining
proof. These differences are an artifact of the particular KB, and are not general. Some KBs are
particularly efficient for forward-chaining and some are particularly efficient for backward-
chaining. In general, which method is best depends on the specific query, on the particular KB,
and on the way in which each rule is formulated (see the Addendum). Usually the methods
need to be mixed. The resolution technique accomplishes this mixing.

Resolution

In resolution, the KB is converted into sets of clauses. A clause is a set of both positive or
negative atoms joined by disjunction. A KB is a set of clauses. New clauses are added by
matching and deleting positive and negative atoms which unify across two clauses. For
instance, the logical form (if A then B) is converted into the equivalent form ((not A) or
B), which then is turned into a set of atoms {~A, B}. Resolution looks like this:

 {~C, A} resolve-with {~A, B} ==> add {~C, B}

This can be read for logic as ((C implies A) and (A implies B) therefore (C implies B)).
Since resolution is an algorithm, we proceed down the list of clauses in a linear fashion. The query
is negated, and we hope to resolve it with an assertion of the positive fact to end the resolution
with an empty clause. This looks like:

 {A} resolve-with {~A} ==> { }

Several resolution strategies are possible, based on the structure of each clause. For instance
facts (clauses with single positive atoms) could be resolved first. Or clauses with single atoms
regardless of polarity could be resolved first. Another strategy might be to resolve all instance
of a particular relation first. The strategy used below is to resolve all singular clauses first.

174

 Applied Formal Methods

6

 F1. {gFh}
 F2. {rTh}
 F3. {rN}
 F4. {hM}
 Q. {~hLr}

 R1. {~1F3, ~2T3, 1F2} if 1F3 and 2T3 then 1F2
 R2. {~4F5, ~5M, 5S4} if 4F5 and 5M then 5S4
 R3. {~6S7, 6L7} if 6S7 then 6L7
 R4. {~8F9, ~9N, 9L8} if 8F9 and 9N then 9L8
 R5. {~10L11, ~10L12, 11L12} if 10L11 and 10L12 then 11L12
 R6. {~13L14, 14L13} if 13L14 then 14L13

 C1. {~20Th, gF20} F1, R1 rename varaibles
 C2. {~hM, hSg} F1, R2
 C3. {~hN, hLg} F1, R4
 C4. {~21Fh, 21Fr} F2, R1
 C5. {~22Fr, rL22} F3, R4
 C6. {~23Fh, hS23} F4, R2
 C7. {~hSr} Q, R3
 C8. {~rFh, ~hN} Q, R4
 C9. {~24Lh, ~24Lr} Q, R5
 C10. {~rLh} Q, R6
 C11. {gFr} F1, C4
 C12. {hSg} F1, C6
 C13X {gFr} F2, C1 duplicate of C11
 C14X {hSg} F4, C2 duplicate of C12

 C15. {~rFh, ~hM} C7, R2 begin using new facts
 C16. {~rFh} C7, C6
 C17. {~rSh} C10, R3
 C18. {~hFr, ~rN} C10, R4
 C19X {~25Lr, ~25Lh} C10, R5 duplicate of C9
 C20X {~hLr} C10, R6 duplicate of query
 C21. {~hFr} C10, C5
 C22. {~26Tr, gF26} C11, R1
 C23. {~rM, rSg} C11, R2
 C24. {~rN, rLg} C11, R4
 C25. {rLg} C11, C5
 C26. {hLg} C12, R3
 C27X {~hFr} F3, C18 duplicate of C21
 C28X {rLg} F3, C24 duplicate of C27
 C29X {~rFh} F4, C15 duplicate of C16

 C30. {~rF27, ~hT27} C16, R1 begin with new facts again
 C31. {~hFr, ~rM} C17, R2
 C32. {~hF28, ~rT28} C21, R1
 C33. {~hFh} C21, C4
 C34. {~rL29, gL29} C25, R5
 C35. {~rL30, 30Lg} C25, R5
 C36. {gLr} C25, R6
 C37. {~hL31, gL31} C26, R5
 C38. {~hL32, 32Lg} C26, R5
 C39. {gLh} C26, R6
 C40X {~hFh} F2, C32 duplicate of C33
 C41. {gLg} C25, C34
 C42X {gLg} C25, C35 duplicate of C41
 C43X {gLg} C26, C37 duplicate of C41

175

 Applied Formal Methods

7

 C44X {gLg} C26, C38 duplicate of C41
 C45. {~hFh, ~hTh} C33, R1 begin with new facts again
 C46. {~gL33, rL33} C36, R5
 C47. {~gL34, 34Lr} C36, R5
 C48X {rLg} C36, R6 duplicate of C27
 C49. {~gLh} C36, C9 resolves with C39 to {}
 C50. {~gL35, hL35} C39, R5
 C51. {~gL36, 36Lh} C39, R5
 C52X {hLg} C39, R6 duplicate of C25
 C53. {~gLr} C39, C9 resolves with C36 to {}
 C54. {~gL37, gL37} C41, R5
 C55. {} C54 QED.

The proof terminated with a clause which has a negative and a positive instance of the same
atom. There are many observations to be made in this example. Let's begin by unwinding the
logic of the proof. When the non-productive resolutions are pruned, the proof is quite straight
forward and short.

 C54: {~gL37, gL37}
 R5: {~10L11, ~10L12, 11L12}
 C41: {gLg}
 C34: {~rL29, gL29}
 C25: {rLg}
 proof below
 R5: {~10L11, ~10L12, 11L12}
 C25: {rLg}
 C5: {~22Fr, rL22}
 F3: {rN}
 R4: {~8F9, ~9N, 9L8}
 C11: {gFr}
 F1: {gFh}
 C4: {~21Fh, 21Fr}
 F2: {rTh}
 R1: {~1F3, ~2T3, 1F2}

First, the resolution proof adopted a non-intuitive strategy, arguing from absurdity that a
person cannot both have the same last name as someone (variable 37 in C54) and not have the
same last name as that someone. This approach does not rely on any semantic knowledge
about last names, obviously the computation does not understand naming conventions. The
consequence is built into the transitivity rule (R5) itself.

Note the recursive use of C25. The established fact rLg (from C25) is used with R5 to
construct the smaller rule (if rL29 then gL29), if Rita has the same last name as someone,
then so does George. It is then used again with that rule (C25 + C34) to show that the
unknown person is George himself! Finally R5 is used again with the fact that George has his
own last name to terminate the proof. Non-intuitive proofs and proof strategies are
characteristic of algorithmic proof systems.

The proof would have been substantively different if R6, the commutative rule for last-names
had not been included. In fact, it is not necessary for a proof. In this resolution proof, it is
surprising that R2, R3, R6, and F4 were not used at all, even though from a natural deduction
perspective they appear mandatory.

176

 Applied Formal Methods

8

Note also the many convergent proofs toward the end. Had C54 not occurred, both C49 and
C53 would have terminated the proof during the next cycle. Again, multiple paths with high
redundancy are characteristic of algorithmic techniques.

Note also that the distinction between forward and backward chaining is largely lost, since
matching positive facts and negative facts uses the same algorithm without distinction. The
algorithmic proof followed all paths at the same time, taking small steps along each possible
path without regard to conclusions or duplications.

Other control strategies for the resolution would have resulted in different proofs and even
different proof strategies. It may have been more efficient, for example, to resolve the new
facts with the shorter new rules first, before using the original rules, since the original rules R1
and R5 introduced excess variables.

In resolution, it is possible to resolve rules together, as well as just to follow facts. For example:

 R2. {~4F5, ~5M, 5S4}
 R3. {~6S7, 6L7} ==> {~20F21, ~21M, 21L20}

This generates a new rule, which is more direct for the purposes of the question that has been
asked. When to do this becomes clear in the following boundary logic approach.

Boundary Logic

Again we transcribe the rules into a new, boundary, notation:

 R1: (((1F3) (2T3))) 1F2 if 1F3 and 2T3 then 1F2
 R2: (((4F5) (5M))) 5S4 if 4F5 and 5M then 5S4
 R3: (6S7) 6L7 if 6S7 then 6L7
 R4: (((8F9) (9N))) 9L8 if 8F9 and 9N then 9L8
 R5: (((10L11) (10L12))) 11L12 if 10L11 and 10L12 then 11L12
 R6: (13L14) 14L13 if 13L14 then 14L13

In this notation, some redundant logical structure can be seen at the level of individual rules.
We simplify the rules individually using Involution:

 R1: (1F3) (2T3) 1F2
 R2: (4F5) (5M) 5S4
 R3: (6S7) 6L7
 R4: (8F9) (9N) 9L8
 R5: (10L11) (10L12) 11L12
 R6: (13L14) 14L13

The boundary approach is based on reducing the entire collection of rules and facts as a whole.
Rather than accumulate new facts, all the facts are combined into a single "conjunction of facts
and rules implies conclusion" form. The general template is:

 (((fact1) ... (factn) (rule1)... (rulen))) query

which simplifies to

177

 Applied Formal Methods

9

 (fact1) ... (factn) (rule1)... (rulen) query

For the example, the template is

 (F1) (F2) (F3) (F4) (R1) (R2) (R3) (R4) (R5) (R6) Q

and the specific structure is

 (gFh) (rTh) (rN) (hM) facts
 ((1F3)(2T3) 1F2) R1
 ((4F5)(5M) 5S4) R2
 ((6S7) 6L7) R3
 ((8F9)(9N) 9L8) R4
 ((10L11)(10L12) 11L12) R5
 ((13L14) 14L13) R6
 hLr query

The boundary approach has taken yet another step away from intuition, now rules and facts are
no longer distinguished. Like resolution, there is only one primary transformation, Pervasion.
The idea is use the forms on the outside to extract their matching forms from the inside. Again,
the matching technique is unification. Unlike resolution, the primary boundary transformation of
Pervasion is augmented with two other transformations. Involution cleans up irrelevant logical
distinctions, and Dominion tells the process when to stop.

Rule simplification and compilation

It is a good idea to simplify rules first, since they are abstractions applying to all facts, and are
the source of complexity.

The first observation is that transitivity (R5) and commutativity (R6) apply all the time. They
are not specific enough to help with deductions, but they do help to broaden the generality of
facts. Use these rules only to generate new facts, not as part of a deduction.

Since the S relation shows up only once as a premise (in R3) and once as a conclusion (in R2), it
can be compiled away. There is only one way to use (that is, to instantiate) the S relation,
going from the premises of R2 to the conclusion of R3. In general we do not want to lose the
ability to use either R2 or R3 by themselves (for instance in the case that the query is about an
S relation), so we compile the S relation dynamically, in the presence of a known query.

Compile rules R2 and R3 into R23, using resolution (A B) ((B) C) ==> (A C)

 S: 6 => 5, 7 => 4
 ((4F5)(5M) 5S4) ((6S7) 6L7) ==> ((4F5)(5M) 5L4)

178

 Applied Formal Methods

10

The new knowledge base:

 (gFh) (rTh) (rN) (hM) hLr
 ((1F3)(2T3) 1F2) ((4F5)(5M) 5L4) ((8F9)(9N) 9L8)
 ((10L11)(10L12) 11L12) ((13L14) 14L13)

Should a rule have more than one premise, the ability to branch using the simple rule is lost in
compiling. So, for instance, it is not possible to compile the F relation, even though it shows up
only once as a conclusion (in R1).

Forced bindings

Now we make all forced bindings between the facts and the remaining rules. The Pervasion
transformation says that a form on the outside of a boundary must match a form on the inside
of a boundary, using unification as the matching technique. When a match is found, bind the
variables and extract the inner form:

 xAy (1A2 1B3) ==> xAy (xB3)

In the example KB, we have the fact (rN) on the outside which matches the inner form of R4
((6F8) (9N) 9L8), binding the variable 9 to the atom r and erasing the (9N):

 (rN) ((8F9)(9N) 9L8) => (rN) ((8Fr) rL8)

There is only one (rN) form on the outside and only one in all the insides, so there is only one
possible extraction of an N relation. In this example, extracting (rN) leaves the knowledge
base looking like:

 N: 9 => r (rN) ((8F9)(9N) 9L8) => (rN) ((8Fr) rL8)

New KB:

(gFh) (rTh) (rN) (hM) hLr
 ((1F3)(2T3) 1F2) ((4F5)(5M) 5L4) ((8Fr) rL8)
 ((10L11)(10L12) 11L12) ((13L14) 14L13)

In general, there will be more than one fact matching each inner form, and more than one
binding for each variable. This is what makes query management hard. The boundary approach
lets us bind all possible variables, using sets of facts rather than individual facts. The set-based
boundary approach would extract all matches, binding the variable to a *set* of matches.

We continue the forced (only one choice) bindings, using the strategy of binding the least
number of variables first (ie using facts to their full extent). Portions of rules can be deleted
when there is no possible way of using them again.

 M: 5 => h (hM) ((4F5)(5M) 5L4) => (hM) ((4Fh) hL4)

New KB:
 (gFh) (rTh) (rN) (hM) hLr
 ((1F3)(2T3) 1F2) ((4Fh) hL4) ((8Fr) rL8)
 ((10L11)(10L12) 11L12) ((13L14) 14L13)

179

 Applied Formal Methods

11

There are several different strategies now available, the worst of which is to use either of the
general transitivity or commutativity rules. (gFh) could extract (4Fh), but this is premature
since the rule portion could not be deleted in the presence of other F relations in the KB (in
particular R1 may generate a need for the remaining portion of R23). Again seeking uniqueness
and specificity, the best approach is to select the T relation which has only single occurrences
on the outside and the inside of the KB.

 T: 2 => r, 3 => h (rTh) ((1F3)(2T3) 1F2) => (rTh) ((1Fh) 1Fr)

New KB:

(gFh) (rTh) (rN) (hM) hLr
 ((1Fh) 1Fr) ((4Fh) hL4) ((8Fr) rL8)
 ((10L11)(10L12) 11L12) ((13L14) 14L13)

Now the F relation in both R1 and R23 should be extracted. Neither R1 nor R23 can be deleted.
Along the way, a third possible F extract is generated and taken.

 F: 1 => g (gFh) ((1Fh) 1Fr) => (gFh) (gFr)

New KB:

(gFh) (rTh) (rN) (hM) hLr
 (gFr) ((4Fh) hL4) ((8Fr) rL8) ((1Fh) 1Fr)
 ((10L11)(10L12) 11L12) ((13L14) 14L13)

 F: 4 => g (gFh) ((4Fh) hL4) => (gFh) (hLg)

New KB:
 (gFh) (rTh) (rN) (hM) hLr
 (gFr) (hLg) ((8Fr) rL8) ((4Fh) hL4) ((1Fh) 1Fr)
 ((10L11)(10L12) 11L12) ((13L14) 14L13)

 F: 8 => g (gFr) ((8Fr) rL8) => (gFr) (rLg)

New KB:
 (gFh) (rTh) (rN) (hM) hLr
 (gFr) (hLg) (rLg) ((8Fr) rL8) ((4Fh) hL4) ((1Fh) 1Fr)
 ((10L11)(10L12) 11L12) ((13L14) 14L13)

There remains only one path for implication of F relations, that is the backward binding of hLr
to the remains of R23. By taking this step, we are then free to erase all F rules.

 F: 4 => r hLr ((4Fh) hL4) => hLr ((rFh)) => rFh

New KB:
 (gFh) (rTh) (rN) (hM) hLr (gFr) (hLg) (rLg) rFh
 ((10L11)(10L12) 11L12) ((13L14) 14L13)

We have used the "query" hLr to generate another query rFh. There are now no more forced
bindings, so we must use transitivity or commutativity of L to generate new facts. Finally we
must use the branching rules, but with the comfort that every step thus far was without choice.
Note that we can now focus on generating only new L facts.

180

 Applied Formal Methods

12

The pair of facts (hLg)(rLg) provide a set match for either of the transitivity premises, but
there is still a minimal approach to be taken. The commutativity rule has only one match, and
further the hLr form only matches one form within the commutativity rule. We make that
binding:

 L: 14 => h, 13 => r hLr ((13L14) 14L13) => hLr ((rLh)) => rLh

New KB:
 (gFh) (rTh) (rN) (hM) hLr (gFr) (hLg) (rLg) rFh
 ((10L11)(10L12) 11L12) ((13L14) 14L13) rLh

Above, we used the query hLr to extract a conclusion from R6. The resulting form which is not
inside a boundary is also a query; that is, we would know hLr if we could show rLh. The critical
point here is that we cannot collapse the commutativity rule out of the KB because there are
facts present which could use it again. R6 can be used in either direction, forward or backward.
The appropriate strategy now is to go ahead and make full use of R6 in the forward direction,
with the set of bindings from (hLg) and (rLg):

 L: 13 => h, 14 => g (hLg) ((13L14) 14L13) => (hLg) (gLh)
 L: 13 => r, 14 => g (rLg) ((13L14) 14L13) => (rLg) (gLr)

New KB:
 (gFh) (rTh) (rN) (hM) hLr (gFr) (hLg) (rLg) rFh
 ((10L11)(10L12) 11L12) (gLh) (gLr) rLh ((13L14) 14L13)

We now face many branches, but we have constrained them to only one rule, R5. There are two
uses of transitivity in the backward direction, reasoning from queries, so we bind them both,
without eliminating the rule.

 L: 11 => h, 12 => r hLr ((10L11)(10L12) 11L12) => hLr
((10Lh)(10Lr))
 L: 11 => r, 12 => h rLh ((10L11)(10L12) 11L12) => rLh
((10Lr)(10Lh))

New KB:
 (gFh) (rTh) (rN) (hM) hLr (gFr) (hLg) (rLg) rFh
 ((10L11)(10L12) 11L12) (gLh) (gLr) rLh

((13L14) 14L13) ((10Lh)(10Lr)) ((10Lr)(10Lh))

L: 10 => g (gLh) ((10Lh)(10Lr)) => (gLh) ((gLr)) => gLr

New KB:
 (gFh) (rTh) (rN) (hM) hLr (gFr) (hLg) (rLg) rFh
 ((10L11)(10L12) 11L12) (gLh) (gLr) rLh

((13L14) 14L13) gLr ((10Lr)(10Lh))

 L: gLr (gLr) => gLr () => ()

New KB:

 (gFh) (rTh) (rN) (hM) hLr (gFr) (hLg) (rLg) rFh
 ((10L11)(10L12) 11L12) (gLh) () rLh

((13L14) 14L13) gLr ((10Lr)(10Lh))

181

 Applied Formal Methods

13

The boundary deduction has concluded in its characteristic manner by asserting a () into the
KB. By the Dominion rule, this truth symbol erases all other forms in the problem space, leaving
a mark of proof. Notice in the second to last step, the selection (gLr) was also available for
binding. It would have been chosen next, should the current choice have failed. And it too
would have terminated the proof process.

The signature characteristic of this boundary proof is its minimality. In contrast to resolution,
very little search was conducted because the problem was structured as a global statement
rather than as a collection of fragments. Thus the available strategies addressed the entire
problem at all times. To reconstruct the logic of the boundary proof, we trace the binding
processes of steps which are used to reach the conclusion (only the step which generated rFh
was unnecessary):

((4F5)(5M) 5S4) ((6S7) 6L7) ==> ((4F5)(5M) 5L4) R2+R3 = R23

(rN) ((8F9)(9N) 9L8) => ((8Fr) rL8) F3+R4 = R4a

(hM) ((4F5)(5M) 5L4) => ((4Fh) hL4) F4+R23 = R23a

(rTh) ((1F3)(2T3) 1F2) => ((1Fh) 1Fr) F2+R1 = R1a

(gFh) ((1Fh) 1Fr) => (gFr) F1+R1a = (gFr)

(gFh) ((4Fh) hL4) => (hLg) F1+R23a = (hLg)

(gFr) ((8Fr) rL8) => (rLg) (gFr)+R4a = (rLg)

hLr ((13L14) 14L13) => ((rLh)) => rLh Q+R6 = rLh

(hLg) ((13L14) 14L13) => (gLh) (hLg)+R5 = (gLh)
(rLg) ((13L14) 14L13) => (gLr) (rLg)+R5 = (gLr)

hLr ((10L11)(10L12) 11L12) => ((10Lh)(10Lr)) Q+R5 = R5a
rLh ((10L11)(10L12) 11L12) => ((10Lr)(10Lh)) rLh+R5 = R5b

(gLh) ((10Lh)(10Lr)) => ((gLr)) => gLr (gLh)+R5a = gLr

gLr (gLr) gLr+(gLr) = QED

182

 Applied Formal Methods

14

Addendum

The phraseology and structure of rules in a knowledge-base is extremely critical to the success
of an inference engine. Examples:

1. To generate a sequence of numbers, it may be tempting to put in a integer generation rule
such as

 if (_1_ is-an-integer) then ((_1_ + 1) is-an-integer)

This rule could immediately generate an infinite string of integers, which would, of course, be
expressed computationally as an over-flow crash.

2. Similar recursive overflows can occur with quite common rules such as transitivity and
commutativity. Both of these rules occur in the example KB above (R5 and R6 for the has-
same-last-name relation). Implicit in the actual transforms is an "occurs-check" which stops
rules from being called when they generate items which duplicate already existing items.

3. Some rules can be expressed in different ways. The forms of these rules strongly effect
both the sequence of fact generation, and the efficiency of the deductive process. For
instance, transitivity is commonly expressed as

 if (1R2 and 2R3) then 1R3

In the example KB, R5 expresses transitivity as

 if (1R2 and 1R3) then 2R3

This design choice was made because of the natural semantics of the has-same-last-name
relation. The design choice has a strong effect on the sequence of generated facts in each
example.

4. Some rules implicitly incorporate other rules, in that the other rules are strictly redundant. If
we let the variable 3 be equal to "1" in the above transitivity rule, (and we omit the trivial fact
that a person has their own last name), we get the commutative R6.

 if (1R2 and 1R1) then 2R1 ==> if 1R2 then 2R1

Again, the choice of whether to include rules specifically, or let them be implicit in other rules
has a strong and unpredictable effect on the performance of the engine.

5. Rules should take care to exclude unwanted cases, although it is often a difficult choice
between simple rules with fast cycling time, or larger rules which take effort to compute. This
issue also shows up in programming as choices about function decomposition, and in CPU design
as RISC vs CISC architectures. In the example, we elected not to exclude the fact that a person
has their own last name, but we could have expressed R1 as:

 if (1F2 and 1≠2 and 2T3 and 2≠3) then 1F3

183

 Applied Formal Methods

15

Alternatively, the deduction might have been able to make use of the same-last-name-as-
yourself rule, and we may have wanted to include it as

 if (1 = 2) then 1L2
or as
 if 1L2 then 1L1
 if 1L2 then 2L2

These decisions are quite difficult to make, and depend on the expected types of queries, the
structure and frequency of facts in the KB, and the other rules in the KB.

6. Rule ordering plays a critical role in algorithmic transformations. When a decision has to be
made about what rule to bind next, it is often the case that a general strategy like set-of-
support or simplest-first still results in several equally likely choices. Algorithms tend to take
the next rule in sequence, but this may not be best or be most efficient. When having to
answer a query like "Which people are a child of a President?" it is imperative that the search
engine know something about the size of the domains. It is far better to approach this by
looking for Presidents first, then looking for their children, than it is to look at all the children in
the country and ask each if their parent is a President. You can play with this issue yourself by
querying a web search engine for pages which have some common word, such as "set", and
some rarer word such as "recursion". Do your results depend on the order of the query words?

7. Finally, the reason for this addendum is that I wasted many hours (and distributed faulty
code to the class) with a poorly designed R1. This design flaw was subtle, since both the
original and the final form of the rule were valid. R1 originally said "if person A is your father
and you are the sister of person B, then person A is the father of person B". This makes sense,
but logically it needs the support of another rule, "if you are the sister of person C, then person
C is the brother-or-sister of you" in order to converge with the other rules. That is, there was
no way for the inference engine to turn around the idea that you are a sister, making it a sibling
relation. This inversion was necessary basically due to the structure of the fact-base, in that
the constant "Harry" never found its way to a position where it could be matched. The solution
in this case was to change the form of R1:

 if (1F2 and 2T3) then 1F3 NO
 if (1F3 and 2T3) then 1F2 YES

Note that this artifact is due to the very limited rule-base. A more acceptable and correct
solution would be to include the entire spectrum of relationships:

 if (1 is-sister-of 2) and (2 is-male) then (2 is-brother-of 1)
 if (3 is-brother-of 4) and (4 is-female) then (4 is-sister-of 3)
 if (5 is-father-of 6) and (6 is-sister-of 7) then (5 is-father-of 7)
 if (8 is-father-of 9) and (9 is-brother-of 10) then (8 is-father-of 10)

184

 Programming Methods

1

A Small Interpreted Language

What would you need to build a small computing language based on mathematical principles?
The language should be simple, Turing equivalent (i.e.: it can compute anything that any other
language can compute) and relatively easy to use. Assume the computing hardware is
constrained to vonNeumann processes, with memory, an ALU, and appropriate registers. We
will also assume that we know about formal mathematical languages and the necessary
mathematical pieces: representation, recognizer, constructor, accessor, invariants/facts,
functions, and induction/recursion.

Base Representation of Atoms

First, the alphabet of a language is simply a collection of unique identifiers, called atoms. The
essential memory management trick is to divide each memory cell into two parts, an address
part (call it First) and a contents part (call it Rest). Addresses are also called pointers. We
begin with an array of empty cells, each having some empty representation in both the First
and the Rest parts. This is the free list of memory cells.

The ground: We need an atom which means nothing, the null atom. Call it ni l.

The symbol table: This table consists of a collection of non-empty memory cells, one cell for
each atom in the language. The First part of an atom cell contains nil. The actual literal
representation of the atom is in the Rest of the cell. The symbol table is a dynamic array.

Constructor of Compound Expressions

We need to construct compound expressions. Consider an expression which uses two atoms,
say FOO BAR. The symbol table contains each atom, so all we need is a way to connect them.
This can be done simply by building another memory cell which contains the two addresses of
FOO and BAR. We put all atom addresses in the First part of a cell (see cell 005 below) and
connecting addresses in the Rest part. The instruction to build connecting cells is called Cons.
The end of an expression has ni l in the Rest.

If we build the expression (TRUE BAR TRUE FOO) in cell 007, memory would look like this:

 Address First Rest

 000 nil nil symbol table
 001 nil FOO
 002 nil BAR
 003 nil BAZ
 004 nil TRUE end of symbol table
 005 001 006 the expression (FOO BAZ)
 006 003 000 end of expression
 007 004 008 the expression (TRUE BAR TRUE FOO)
 008 002 009
 009 004 010
 010 001 000 end of expression
 011 empty empty begin free list
 ...

185

 Programming Methods

2

To construct an expression, we Cons smaller pieces together. For instance:

 Cons JOHN (TRUE BAR TRUE FOO) ==> (JOHN TRUE BAR TRUE FOO)

The operational memory changes are:

 011 nil JOHN the atom JOHN
 012 011 007 connect JOHN to (TRUE BAR TRUE FOO)
 013 empty empty

Consider Consing two compound expressions together:

 Cons (FOO BAZ) (TRUE BAR TRUE FOO) ==> (FOO BAZ TRUE BAR TRUE FOO)

This operation is slightly more complex. For the entire expression to begin in cell 012, we need
memory to end up as

 011 003 007 (BAZ TRUE BAR TRUE FOO)
 012 001 011 (FOO BAZ TRUE BAR TRUE FOO)
 013 empty empty

Several design decisions are involved with this result. Technically, we have used structure
sharing for (TRUE BAR TRUE FOO) since both the original four atom expression and the final six
atom expression use some of the same memory cells. However, the front of the expression,
(FOO BAZ) is not engaged in structure sharing, and this may seem a little unsymmetrical. As it
is, (TRUE BAR TRUE FOO) is confounded with Rest (Rest (FOO BAZ TRUE BAR TRUE FOO)).

An alternative which would allow us to continue to refer to the original would be to duplicate
the four atom expression entirely in constructing the six atom expression.

Note also that the construction is slightly different, rather than adding a symbol cell, as in the
case of JOHN, we have added a cons cell. To acknowledge these differences, we might consider
Cons of two compound expressions to be a different operation. Call it Append. Now the
first object in a Cons operation is restricted to be an atom. Append is used when the first
object is compound. To keep the language simple, we would want to be able to build new
operations out of the existing ones. For this, we use a recursive definition:

 Append <obj1> <obj2> =def=
 If Isa-atom <obj1>
 then ERROR
 else if Is-empty <obj1>

 then <obj2>
 else Cons (First <obj1>)(Append (Rest <obj1>) <obj2>)

This recursive definition first does a type-check on <obj1>. It then tests the base case, that
<obj1> is nil. Appending nothing onto <obj2> results in <obj2>. Otherwise we proceed one
piece at a time. The recursion bottoms-out when Rest <obj1> is nil . For this to be the case,
<obj1> must have only one atom, as in (BAZ), which is Consed onto <obj2>. At that time, BAZ
is the First of <obj1>. Just prior to this case, <obj2> is actually (BAZ TRUE BAR TRUE FOO),
since we have Consed BAZ to (TRUE BAR TRUE FOO). <Obj1> is (FOO BAZ), and we are about
to Cons First <obj1>, i.e. FOO, onto (BAZ TRUE BAR TRUE FOO).

186

 Programming Methods

3

This description has backed up from the end to the beginning. Tracing the events in memory:

Append nil (TRUE BAR TRUE FOO) ==> (TRUE BAR TRUE FOO)

 011 000 007 Append nil
 012 empty empty begin free list

By definition, cell 011 is the same as 007, so operationally this step is not necessary to take.
We leave 011 free, treating Appending ni l as a no-op.

Cons BAZ (TRUE BAR TRUE FOO) ==> (BAZ TRUE BAR TRUE FOO)

 011 003 007

Cons FOO (BAZ TRUE BAR TRUE FOO) ==> (FOO BAZ TRUE BAR TRUE FOO)

 012 001 011
 013 empty empty

What we have done here is to specify exactly the sequence of operations on memory that result
in the action of Appending. And we have used the single construction tool of Cons.

This example illustrates the close connection between a software program, the attendant
changes in memory, and the hardware architecture which unites both.

Recognizer of Atoms

The recognizer of each atom is a function which looks in the symbol table for the memory cell
which contains that atom. For instance, the predicate Isa-atom is true if its argument can be
found in the Rest portion of the symbol table. At this point, we have three separate memory
areas (or uses): free cells, atom cells, and cons cells.

Isa-atom: Atom cells are recognized by having nil in the First part.
Is-empty: Empty expressions can be uniquely recognized

because they have nil in the Rest part.
Equal: Tests if two atoms are the same atom.
Isa-expression: Cons cells are recognized as those cells having two addresses.

An expression ends with nil in the Rest part.

The above are close to operational definitions. Here are some slightly more elaborated
operational definitions. We will assume that each part of a memory cell (address, first, rest) has
eight bits.

Is-empty <obj>:

Assign nil a special binary code, 00000000, and put it in address 00000000.
 An object is empty, that is, it is equal to nil , if the Rest part is equal to the code of nil .

To distinguish nil from an empty cell on the free list, we could put a special code in free
list cells, perhaps 11111111. A better approach is to use only seven bits of the
address for address information, and use the eighth bit for marking if a cell is
free. This is the basis for many garbage collection algorithms.

Is-empty <obj> =def= Equal (Rest <obj>) 00000000

187

 Programming Methods

4

Isa-atom <obj>:
Test the encoding of <obj> against all the encodings in the Rest part of memory which
also have nil in the First part.

 Isa-atom <obj> =def= for some memory cell
 (Equal (First <obj>) nil) and (Equal (Rest <obj>) <obj>)

Here is another design choice: is ni l an atom or not? If it is not an atom, we will have to have
special tests for atoms vs nil . For simplicity, let’s say it is an atom:

(Isa-atom nil) is True

This design choice is our first fact, or invariant.

More generally:

 Isa-atom (Is-empty <obj>) =def=
 True iff (Is-empty <obj>) is True

Recognizer of Expressions

We can use the instructions First and Rest to access and decompose all expressions.
(First <obj>) looks at the first part of memory for the specific object, (Rest <obj>) looks at
the rest part.

To recognize compound expressions, we test to see if each part of that expression is in the
memory table, and the linking structure of the expression matches the rules for constructing
that expression. Operationally:

Isa-expression <obj> =def=
 (Isa-expression (First <obj>)) and
 (Isa-expression (Rest <obj>))

Since we know that decomposing an expression will end in either atoms or nil, we will have to
add those rules:

 Isa-expression (Isa-atom <obj>) =def=
 True iff (Isa-atom <obj>) is True

 (Isa-expression nil) is True.

This is another application of recursive decomposition. The rules specify the base cases, while
the definition specifies the general recursive case. The two together specify a program.

The definition above is another example of pseudo-code, that is, machine specific instructions
written in a mathematical style that is independent of the specifics of any programming
language, yet specific enough to be implemented in any language. Of course, a high level
programming language accepts something very close to pseudo-code specification as valid
input. Another strong advantage of pseudo-code is that it can be proven to be correct using
the Induction Principle.

188

 Programming Methods

5

The primary reasons that current programming languages appear to be very different than
pseudo-code are

 1. Many programming tasks lack a formal model (i.e. they are hacks).

 2. Many programming languages lack mathematical structure (i.e. they are machine
architecture specific.)

Accessors of Atoms and Expressions

First and Rest are the accessors. They let us take apart an expression. In this implementation,
First and Rest have simple mappings onto the idealized physical structure of memory.

All objects except nil are constructed by Cons. Since Cons uses two objects as arguments,
this means that all First and Rest parts are also objects. Eventually all objects end in ni l, so
nil is also an object, although a very special kind.

Cons is related to First and Rest by the following invariant, or rule:

 <obj> = Cons (First <obj>) (Rest <obj>)

This says that all valid objects have been constructed by Cons to have a First part and a Rest
part in memory. Alternatively, all objects in memory can be accessed through their First and
Rest parts. The essential mathematical condition is that all valid objects are decomposable into
unique subcomponents which bottom-out at the base cases. This is simply to say that all
compound expressions are defined recursively.

Although recursive composition and decomposition are necessary to define data structures and
algorithms, the more important aspect of recursive definition is to provide access to proof
through the Induction Principle. Procedural languages do not provide this capability; they are
thus immature. Declarative, functional, and mathematical programming languages all provide
the capability of abstract proof (minimally in pseudo-code).

Note that recognizing, constructing, and accessing an expression involve almost the same
steps. The difference is in the initial goal and the final result.

 GOAL PROCESS RESULT

Constructor:
 build a pattern rearrange memory the pattern is in memory

Recognizer:

test a pattern access memory true if the pattern is accessible

Accessor:
 get a pattern access memory return the pattern if found

189

 Programming Methods

6

SUMMARY of the ABSTRACT DATA STRUCTURE FUNCTIONS

First <obj> returns the expression indicated by the First of the <obj>

Rest <obj> returns the expression indicated by the Rest of the <obj>

Is-empty <obj> returns True if the cell containing <obj> has ni l in Rest.

Isa-atom <obj> returns True if the <obj> is in the Rest part of a cell

and nil is in the First part.

Isa-expression <obj> returns True if the <obj> has either ni l or any address in the

First part.

Equal <obj1> <obj2> In the case of atoms, returns True if both objects are in the Rest

of the same symbol cell. In the case of compound expressions,
returns True if following the addresses in the First leads to the
same set of Rest symbol cells.

Cons <obj1> <obj2> builds an expression by adding <obj1> to the front of <obj2>

Invariants

The equality invariant (also called the Uniqueness Axiom) assures that each object is
unambiguous. That is, objects are the same object when they are equal; equal objects are
constructed and deconstructed in exactly the same way. This is a physical kind of equality,
structural equality, in that the structure of memory is the same for two objects. It is not
necessary that the same memory cells are used for both objects (structure-sharing), just that
the contents of memory for both objects are the same. Recursively,

 Equal <obj1> <obj2> =def=
 (Equal (First <obj1>) (First <obj2>)) and
 (Equal (Rest <obj1>) (Rest <obj2>))

We need to support this definition with base cases. For instance,

 (Equal nil nil) is True

This is also an example of the Induction Principle at work in our implementation. To implement
an equality test for expressions, the computation will test for identical structure over all
memory cells of both objects. The Induction Principle is the only guarantee that this recursive
process will end. The only end point is (Equal nil nil), all other cases are failures.

Note that equality for atoms is also covered in the above definition. What happens, though,
when we have two atoms which have the same encodings, but each is in a different memory
cell? This is an inconvenience for an implementation, since testing each object would require
looking through the entire symbol table. A better approach is to insist that each atom is unique
and occurs only once in the symbol table. This is why Equality and Uniqueness are the same
ideas.

190

 Programming Methods

7

The uniqueness of atoms is implemented by having each new atom register itself in the symbol
table. In the background, when an unrecognized, new atom is entered, the implementation
verifies that it is new, and then puts it in the symbol table. To do this is to intern the atom. If
the atom already exists, then the address of the cell which contains that object is associated
with the new input.

 A different kind of equality refers to equality under transformation. The actual expressions
may be different, but transformation rules allow us to say that the meaning of the different
expressions is the same. This is semantic equality, also called algebraic equality and
mathematical equality. Only defined transformations are allowed; all transformations (with the
exception of Cons) are required to keep meaning consistent. It takes a special symbolic
architecture to implement mathematical equality, mainly because transformations refer to sets
or classes of objects rather than to specific objects. In the above, we have designed a literal
architecture, as yet it has no capacity for dealing with sets of objects.

Now on to the functional part of the language. We will elect to use lambda calculus as the
mathematical model.

Funct ions and Recursions

A function is an expression with the function name first and then the arguments. (The order of
operators and arguments is somewhat arbitrary, just so long as it is consistent and
unambiguous.) For example:

 + 3 4

The Arithmetic Logic Unit (ALU) can process logical and arithmetic operators when applied to
atoms. Internally, both arithmetic and logic are encoded by binary sequences, so it is the
responsibility of the operator, or of a type test, to make sure that expressions meant to
represent numbers are channeled to the arithmetic units and expressions intended to represent
logic are channeled to the logic units.

One way to implement the difference between logic and arithmetic is to assign another single bit
in the memory cell that records the type of object in that cell. Note that silicon gates process
only logic. Thus arithmetic objects must be encoded into a logical form for processing. In
computation, logic is fundamental, arithmetic is derivative.

All logic functions can be defined in terms of a single function, so we need only one primitive
logic function. Let's use IfThenElse (Nand and Nor are alternatives).

 IfThenElse <obj1> <obj2> <obj3>

IfThenElse will evaluate <obj1> and then either evaluate <obj2> (if <obj1> is True) or evaluate
<obj3> (if <obj1> is False). Here we have another function which uses different types of
objects (the first example was Cons). In particular, <obj1> must be a logical type, returning
either True or False.

Function composition permits complex sequences of operations. A function expression can be
put in any place that an atom can be put, since all functions will reduce to single atoms. To
separate composed functions, we can use parentheses to contain each function expression. We
will choose to evaluate all inner arguments first, then use these results to evaluate outer

191

 Programming Methods

8

functions. Lambda calculus permits another order of evaluation, outermost first. This choice is
a design decision, and is based on mathematical characteristics of each form of evaluation.

For example, an innermost evaluation:

 (* (+ 3 4) (+ 1 2)) or ((3 + 4) * (1 + 2))

means that expressions with atoms as arguments are evaluated, or reduced, first.

The memory for this object would look like this:

 Address First Rest
 000 nil nil symbol table
 001 nil 1
 002 nil 2
 003 nil 3
 004 nil 4
 005 nil +
 006 nil * end of symbol table
 007 006 008 expression ((3 + 4) * (1 + 2))
 008 005 009
 009 003 010
 010 004 011
 011 005 012
 012 001 013
 013 002 000 end of expression
 014 empty empty begin free list
 ...

There are several things to note about the above memory configuration.

Operators and numbers are not distinguished in memory, they are distinguished by what
happens when they are handed to the ALU.

Each operator has two arguments, but we have no way to have two references in one memory
cell. The solution is to order the expression so that operators are followed by their arguments.
When an operator is fetched for evaluation, the machine code recognizes that that operator
requires two more fetches. Should a fetch return another operator, then the first operator
waits until the second operator converts its two arguments into one result.

Fetches occur by following the addresses in sequence. This is efficient since the address
register (the register which keeps track of what to fetch next) need only be decremented by
one to find the next memory cell.

It is possible to turn all functions into one argument functions (the technique is called currying).
This is effectively what has happened by storing the expression in the operator first form (also
known as reverse Polish notation).

Finally, consider how close the syntax of many programming languages is to what actually
happens at the register transfer level of the computer. We are still at the very early stages of
development of computing languages, since the syntax reflects low level data shuffling rather
than high level task requirements. Progress means moving our profession toward human
capabilities, and moving away from low level machine details.

192

 Programming Methods

9

We need a way to define arbitrary functions and a way to bind the variables of functions to
values for the ALU to process. For example

 Square <obj> =def= (* <obj> <obj>)

so that Square 4 => (* 4 4) => 16

First consider variables, names which stand for any valid object. We have been using the names
<obj1>, <obj2>, etc. as variables names. The angle brackets notate that the name in question
is not the name of a single thing, but rather it is the name of a class, or set, of things, all of
which are of a particular type.

Variables (or parameters, when the names are arguments of a function) are atoms also, so they
are simply added to the symbol table. To assign a value to a variable symbol, we can put a
reference to the location of the value we wish to associate with the variable in the First part of
the memory cell for the variable. Thus variables are distinguished from objects representing a
specific value because their F irst part is not nil . It is an error to access a variable which has nil
as the First part. Objects which do have nil in the First part are called ground objects.

The function which assigns ground objects to variable objects is called Let.

We can use this same mechanism to store the definitions of functions. The memory cell which
contains the name of the function in the Rest part can contain the address of the definition of
the function in its First part. Consider the memory configuration for the above definition of
Square:

 Address First Rest
 000 nil nil symbol table

010 nil OBJECT
 011 nil * end of symbol table
 012 013 SQUARE function definition
 013 011 014
 014 010 015
 015 010 000 end of function definition

When the call Square 4 is added to memory we get:

 016 nil 4 symbol table
 017 012 018 function call (Square 4)
 018 016 000

To bind OBJECT to the value 4, we use the call Let object 4:

 019 nil LET symbol table
 020 019 021 function call (Let object
4)
 021 010 022
 022 016 000

Finally we need to get the processor to actually evaluate the function call. Let's call this Eval .
We can actually make Eval the default. Whenever a new expression is added it can be
automatically evaluated. This just shifts the issue to needing an instruction to stop evaluation.
Let's call this evaluation stopper Quote.

193

 Programming Methods

10

What the above memory configuration contains is Quote (Square 4), which simply puts the
data structure Square 4 into memory. If we write the function Square 4, then evaluation will
happen automatically. This process consists of changing the value of object from nil to 4, and
following the sequence until a single atom is returned. That is, the function Let says to the
processor: go to the symbol which immediately follows Let and put the address of the second
symbol which follows Let (i.e. 4) in its First part. This results in

 010 016 OBJECT

Now the definition of Square will find the value of OBJECT and use it rather than using the
symbolic variable “OBJECT”. And, of course, symbolic variables are the only items in the symbol
table which can contain something other than nil .

There is a slight problem here because the symbol “OBJECT” might be used in more than one
function. This can be handled in one of two ways:

 1) make sure all of the symbols are unique, or
 2) divide the symbol table into subtables which associate and isolate each function with

its own variables.

Finally, we simply use recursion directly as repeated actions of the same sort, since nothing in
the above structuring stops this from working.

The Function Eval

In the above description, evaluation is an implicit action of the ALU. By claiming evaluation is
automatic, we are committed to wiring the ALU in a specific way. However the above
mechanism for handling memory can be made flexible by defining Eval in the programming
language itself. This process is called meta-circular evaluation, cause it uses a language itself to
define how that language should behave. All we have to do is to define the evaluation function
by telling the system what to do when an expression is typed in. The function Eval takes two
arguments, the expression to be evaluated and the binding environment, that is, an address of
the memory array which contains all of the primitive functions and atoms (and any other
symbols which we may have added) in the language. The binding environment contains the
definitions of all user defined functions, and the values of each of the variables (function
arguments).

Since the binding environment does not change in this example, (i.e. we have not designed the
language to establish separate environments for each function call), we will treat the token Eval
to mean “Eval-in-environment”. The definition of Eval which follows uses only primitive
functions introduced above. Some of the syntax has been changed to make it more readable.

This Eval function recognizes seven operators:

 First Rest Cons
 IfThenElse Equal Quote Let

In addition, Eval uses built-in tests to determine the types of objects, as operationalized above.

 Is-empty Isa-atom Isa-expression

194

 Programming Methods

11

Eval exp =def=

If Isa-atom exp
 Then ;process atom
 If ((Is-empty exp) or (Equal exp (Quote True)))
 Then ;return the SYMBOL
 exp
 Else ; or its VALUE
 Get-value-in-env exp
 Else ;process expression
 If Isa-atom (First exp)
 Then ;process Atom in First*
 Let token (First exp) ;naming the atom
 If Equal token (Quote Quote)
 Then ;return what follows
 Second exp
 Else ;other operators
 If Equal token (Quote IfThenElse)
 Then ;process logic operator
 EvalLogic (Rest exp)
 Else ;other operators
 If Equal token (Quote First)
 Then ;First of Eval of Rest
 First (Eval (Second exp))
 Else ;other operators
 If Equal token (Quote Rest)
 Then ;Rest of Eval of Rest
 Rest (Eval (Second exp))
 Else ;other operators
 If Equal token (Quote Isa-atom)
 Then ;Isa-atom Eval of Rest
 Isa-atom (Eval (Second exp))
 Else ;other operators
 If Equal token (Quote Cons)
 Then ;Cons Eval of Rest**
 Cons (Eval (Second exp))
 (Eval (Third exp))
 Else ;other operators
 If Equal token (Quote Equal)
 Then ;Equal Eval of args
 Equal (Eval (Second exp))
 (Eval (Third exp))
 Else ;replace the token with
 Eval (Cons ;its value
 (Get-value-in-env token) (Rest exp))
 Else ;compound First
 If Isa-expression (First exp)
 Then ;process expression
 EvalExp exp
 Else ERROR

195

 Programming Methods

12

EvalLogic exp =def=

If Equal (Eval (First exp)) (Quote True) ;if First is TRUE
 Then ;Eval second argument
 Eval (Second exp)
 Else ;Eval third argument
 Eval (Third exp))

EvalExp exp =def=

If Is-empty exp ;if at the end
 Then ;return ground
 nil
 Else ;Eval the parts
 Cons (Eval (First exp)) (Eval (Rest exp)) ; and put them together

Notes:

* process Atom in First: Here we have defined a syntax for parsing. Every expression begins

with an atom or is an atom. If an expression begins with an atom, that atom is taken by
the processor to be an operator, and thus a processing instruction. The operator Quote
is the no-op.

** Cons Eval of Rest: This is again a syntax constraint. Once we have removed the beginning

operator of an expression, what follows is either an atom, or another expression which
itself begins with an atom operator.

The syntax of the language is thus:

 Expression ::= Atom | (Atom Expression*)

The Kleene star means that an operator atom can have any number of following arguments.
Note that this BNF specification is one of a regular language.

Finally, note that a meta-circular language can evaluate its own definition of Eval, since the
above definition is self-consistent.

The Punch Line

The above programming language actually exists, it is one of the very few oldest programming
languages still in active use. Its name is LISP.

In 1955, John McCarthy followed a similar line of reasoning in developing LISP. Currently LISP
stands uniquely among programming languages in that it is rigorous, efficient, largely machine
independent, and permits simulation of all other programming language models (such as
procedural, functional, object-oriented, logical, and mathematical). As well, when the function
Eval is processing input, LISP is interpreted, responding dynamically to new inputs and
definitions, and requiring no compilation or linking. It thus provides a powerful interactive
programming environment which supports real-time debugging and symbolic proof of
correctness.

196

 Programming Methods

1

Assignment 1

A short oral presentation in class.

Tell a detailed story about a programming experience you have had.

A good story revolves around a character and a life experience. It might have some tension,
some humor, a critical event, and some learning.

A programming story should be about or include code, before and after the critical event.

You should include what you learned from the experience, and perhaps how you would like
things to change.

Tell why you chose the particular story that you did choose. Why is it interesting or important
to tell? Is there a moral?

197

 Programming Methods

2

Assignment II: Pseudocode Syntax

Hand in to instructor at beginning of class.

Pseudocode is a computing language which is designed to convey ideas, specifications, and
algorithms. It eliminates as many implementation details as possible. In theory, a pseudocode
program should be executable, given that the lower-level details are provided.

Design the syntax of a pseudocode programming language.

You will need to:

1. Select a small set of primitives for abstracting control, data, and names.
2. Decide upon a lexical form for your language primitives
3. Decide upon a syntax which structures how primitives are combined.
4. Use standard techniques to define acceptable lexical and syntactic forms.

Standard syntax specification techniques include task decomposition, regular languages, finite
state acceptors, formal grammars, BNF and/or diagrammatic BNF.

Language primitives can be seen as addressing control, data, or naming. Control primitives are
included in imperative languages to steer the course of program evaluation. Data primitives
provide typing and abstraction. A language may provide a single data type, or several basic
built-in types, or user-defined types. Naming primitives determine the binding of names to
values, and the location of names and values in memory. Primitives that we have discussed in
class include loop, logic, let, and domain theories. Others may include sequence, order
comparisons, subroutines, hierarchy, and i/o.

Important:

1. The task is to think clearly and carefully about the meaning of the 19 Principles of
Programming Languages (handed out in the first week). Check your design decisions for
conformance to each of these principles.

2. You must be explicit about the tasks which your pseudocode is intended to address. Ask
why each primitive and each structure is included in the design. What part of the task does
each particular structure address?

3. Attempt to avoid structures which are intended to enhance implementation efficiency.
Pseudocode is not intended to address implementation efficiency, rather it should maximize
readability, comprehension, and absence of ambiguity.

4. The most difficult part of language design is minimizing interactions between primitives when
they are combined.

Challenge: Implement a lexical scanner and syntactic parser for your language.

198

 Programming Methods

3

Assignment III: Pseudocode Emulation

Nothing to hand in.

Implement an emulator for your pseudocode formal syntax.

An emulator of a program is a different program, usually in a different language, that does the
same thing as the target program. Emulators are often built for hardware: a software module
performs the same functionality as the target hardware, but in software. Software emulation is
usually much slower. Another example is programs which simulate, say, a Windows environment
on a Mac OS; these programs emulate Windows on a Mac.

In Assignment II, you designed a language fragment and formalized it with BNF or another
structuring tool. In this assignment, you will implement the syntax of your language. (You may
elect to use a different fragment, or a completely different formal specification.)

The assignment is simple if there is a one-to-one correspondence between your specification
and some existing language. For example, if you specify a WHILE construct, then the
specification language can translate directly to WHILE is some existing language like C. What
gets tricky is verifying that the correspondence holds for all cases and for all implementation
strategies.

You can view the assignment as one of metaprogramming. You will be writing a program in say
language A. This program takes another program in language B (the BNF spec for example) as
input and translates it into a third program as output which is in language A but does the
functionality of the input in language B.

A good emulator will include a lexical scanner and a syntactic parser to assure structural
properties of the output.

199

 Programming Methods

4

Assignment IV: Pseudocode Semantics

A three-minute presentation to the class.

Describe the semantics of a small pseudocode fragment.

There is no generally agreed upon model of the semantics, or meaning, of computation. This
assignment may require research and creativity.

1. Select a small pseudocode fragment.

2. Define the way it behaves at the register-transfer level. Ie: what interactions with memory
occur; what parts are moved and to where; what processes change the configuration of
memory. What are the exact changes? This is the operational semantics.

3. Describe the assurances that the fragment does what it is supposed to do. Develop a set of
preconditions and postconditions. Attempt to use the postconditions to prove the
preconditions, and thus to prove the correctness of the program fragment. This is the
axiomatic semantics.

4. Think about other possible ways that you can clearly and unambiguously define or describe
the intended functionality of your code fragment.

200

 Programming Methods

5

Assignment V: A New Method

One written page recounting your experiences.

Explore a new style of programming.

1. Select a programming language and metaphor that you have not previously used. Obtain a
copy of the appropriate programming language (this can be time-consuming).

2. Select a small fragment of code that you have written (alternatively you can use your
pseudocode fragment from previous assignments, or you can select some code from a published
source).

3. Transcribe and implement your code fragment in the new language.

4. What did you learn? Prepare a one to two page report on your experiences. Concentrate on
the differences between the languages you are using.

Language Sources:

JAVA (pure object oriented): http://jave.sun.com

Haskell (pure functional): http://haskell.org

Scheme (functional): http://www-swiss.ai.mit/ftpdir/scheme-7.4/

Forth (tiny, threaded) http://chemlab.pc.maricopa.edu/pocket.html

LISP: http://www.franz.com/downloads/

Prolog:

http://www.cs.cmu.edu/Groups/AI/html/faqs/lang/prolog/prg/part2/faq-doc-2.html

ATLAST (tiny, embedded) and DIESEL (tiny, string-based): http://fourmilab.ch/

Screamer (constraint-based extension of LISP, untested):

http://www.cis.upenn.edu/~screamer-tools/index.html

In general: http://dir.yahoo.com/Computers_and_Internet/Programming_Languages/

201

TEACHING FOR INNOVATION

TOPIC 7. PROJECTS AND ASSIGNMENTS

Teaching Examples (Bricken):

 HCI: HCI Assignments

 HCI: Interface Design Simulation

 AI: LISP Program Modification Exercises

 Management: Formal Model: Card Games

 HCI: Complete Window System

 VR: 3D Interactive Virtual Worlds

 VR: Expandable Virtual Cube World

 DS&A: Exam Package

202

 Human-Computer Interaction

 1

HCI Assignments

In addition to readings in the text, (option 2) students are expected to complete two
assignments, described below. We will work out the exact content for each student in class.

MID-TERM ASSIGNMENT IN-DEPTH RESEARCH

Select a small area of HCI that you have interest in and explore it. Prepare a report back to the
class about what you learned. Summarize the area in a discussion or oral report of 5-15
minutes.

You can use the web addresses provided earlier to locate writings on your topic of interest.

Content should be some small topic which you can find three or four articles/books on. (I will
make suggestions to everyone who asks.) Best would be content that you encountered at work
or in school. Another good idea is to select an issue which bothers you about some software of
hardware system that you use regularly.

FINAL ASSIGNMENT DESIGN CRITIQUE

Select one application or system interface that you are quite familiar with. Using the design
principles discussed in class, in the lecture notes, and in the textbook readings, analyze and
critique this interface. Consider:

 the cognitive model
 the visual layout
 the dialogue management
 the interactivity model
 the information structure
 the integration with i/o devices
 the task appropriateness

Build a model of the information structure, following the content being presented and its
organizational structure.

Build a model of the interactivity, following the flow of control and communication throughout a
dialog transaction.

Then redesign the interface in any areas that you think could be improved. Be specific about
what you think is wrong and why your redesign is an improvement.

Justify your critique and your redesign by citing references from the HCI literature.

203

 Human-Computer Interaction

 1

Interface Design Simulation

Objectives:

Experience HCI design using a detailed task specification. Integrate suggestions for design in
the text into a task-oriented design context. Provides a context to discuss design
methodology and choices.

Task:

A programming team in your organization has developed a new deductive engine which allows
application programmers to manipulate data for expert systems. Your job is to design a
prototype interface for this engine.

The engine provides functions for a knowledge engineer to restructure, optimize, verify, and in
general manipulate the components of a knowledge base of logical and arithmetic constraints.
What is neat about this engine is that it maintains a graphic, network description of the logical
transformation processes, and like a circuit, distributes logic over many network nodes.

However, different departments in your organization have different formats for their knowledge-
bases, want to do different things to their data, and require different outputs and views of their
data. Furthermore, some users want automated functionality and some want fine-grain
interactivity with transformations.

Due to organizational preferences, the interface is to be constructed by three separate teams,
one team for each of the following aspects:

 Aspect 1: function calls to the interface (programming, API)
 Aspect 2: screen layout and interactivity (interface, dialog)
 Aspect 3: hardware i/o devices and functionalities (architecture)

Fortunately, some members of each team can cross development boundaries and work with the
other teams as advocates of their design process.

You are to add appropriate interface controls for things like opening and closing the system,
trapping and notifying about input errors, and improper control configurations. Also, you should
select appropriate names, labels, and displays for both naive and sophisticated users. You are
not responsible for
 explaining how the engine works,
 the help system, or
 the editors which allow databases to be constructed,
although you should include interface hooks to all three subsystems.

You are free to modify and enhance interface specifications to make the engine easy to use, so
long as the requested functionality is available.

204

 Human-Computer Interaction

 2

Below is a (loosely) structured listing of some of the requirements for your interface.

* Backend processor assignment: single, distributed

* Input language: logic, Prolog, Lisp

* Input form: files, keyboard

* Display: linear (textual) view in any input syntax,
 graphic (network) view,
 internal computational view if requested

* Simple transformations: absorb, clarify, extract, coalesce

* Compound transformations: subsume, cancel, collect

* High-level transformations:
 optimize relative to specified time and complexity parameters
 identify contradictions, verify consistency
 delete irrelevant facts
 cluster facts in groupings relative to a particular set of variables

* Network display controls:
 select an active subnetwork to perform transformation on
 rearrange network by hand
 rearrange network using energy minimization algorithm
 parameterized by spring coefficient, spring divisor,
 repulsion coefficient and relaxation stepsize
 labels on or off

* Network animation:
 show animation in forward or reverse order
 stop and start animation freely
 show active network components and their activity
 specify rate of animation by
 frames per second
 transformations per second
 specific transformations per second
 activity indications per second

* Trace:
 show engine activity by transformations performed and
 by animation instructions performed

* Users also want to be able to :
 focus on any display with full screen, especially the network display
 reset display at any point load and display new logical databases
 refresh display select textual parts of a database for analysis

205

 Human-Computer Interaction

 3

The engine transformations can be applied individually or in any grouping. The backend
engine(s) are much faster than the display, so the display manager collects engine activity and
structures a display which makes sense to a person. It is important that the users of the engine
understand the logic of the transformations. The engine transformations use an internal coding
that is not easy to understand.

Here is the functional architecture of the system:

user interface frontend backend(s)

input

controls

trace

display

parser

animation

network

manager

display

manager

parallel

engines

Backend(s):
 Computational machinery on which transformations are done; can be a parallel,
distributed array of processors

Frontend:
 Manages the interface and coordinates assignment of and communication with backend.
Backend coordination can be organized by synchronous or asynchronous message-passing or by
shared memory.

Interface:
 The information and controls seen by the user.

206

 Artificial Intelligence

LISP Program Modification Exercises

The following exercises are in approximate order of difficulty. Students wishing to achieve an
"A" grade should attempt most of these exercises. These exercises constitute the bulk of
homework and test assignments for the entire course. Most of these exercises ask you to
extend the examples. As well as the exercises below, write your own examples. Explore!

All students: Load and run
 1. Eliza 5. Streams and filters
 2. the recursive Unification algorithm 6. Logic Programming
 3. GPS for Blocks World 7. Object-oriented
 4. Parcil 8. Parse

The Programs

1. Eliza, by Joseph Weizenbaum, transcribed by Peter Norvig.
A famous interactive dialog program, in the form of a Rogerian counselor. Contains a pattern-
matcher. Consider how to extend the dialog manager.

2. Unification and Search, by Mark Kantrowitz, CMU.
Unification is an extended form of pattern-matching which is integral to inferences engines and
query languages. Recursive and iterative versions are included for comparison. read the code,
do not worry about the details. The search package is pedagogical, intended to show the
similarities across all search algorithms. Although the code is complete, the knowledge
representation is missing, so do not expect to run the entire code sample.

3. GPS, by Newell and Simon, CMU. Transcribed by Peter Norvig.
The first, famous General Problem Solver. Runs blocks world, so get familiar with the code.
Don’t forget to use debug mode.

4. Parc il, by Erann Gat, JPL.
A C syntax to LISP code recursive descent parser. Not industrial strength.

The next four programs focus on abstraction in coding. They are described in detail in another
handout.

5. Filters and Streams, by Lugar and Stubblefield, from ideas by Curtis, Waters, and Steele.
Fundamentals of dataflow programming style.

6. Logic Programming, by Lugar and Stubblefield, with examples by Bricken.
Fundamentals of declarative logic programming style; an example of meta-linguistic abstraction.

7. Object-oriented Programming, by Lugar and Stubblefield.
Fundamentals of object-oriented programming style.

8. Parse, by students in Stanford LISP classes.
A recursive descent parser (similar to Parcil), for semi-natural English sentences.

207

 Artificial Intelligence

Exercises

1. El iza:

Extend the Eliza program to talk about your favorite subject.

2. Unify:

Describe the difference between
 a. pattern matching for equality
 b. pattern matching with variables
 c. unification

3. GPS:

Extend the blocks world example to
 a. use 4, 5, and 6 blocks
 b. have limited table space (the trick is to name blocks which must stay on the

table, and disallow moving to the table)
 c. do the Towers of Hanoi puzzle
 d. use other representations, such as an explicit Hand, an OnTable predicate,

a ClearTop predicate.
 e. Fix the Sussman anomaly.
 f. Use boundary block representations (or others of your choice).

4. Search:

Write the missing generic-search functions for Optimal Paths.

5. (harder) GPS:

Modify GPS to use smarter search strategies, such as Hill-climbing, Best-first, or Branch-
and-Bound.

6. (harder) Search:

Use the Kantrowitz generic-search functions to solve Blocks World by providing the
knowledge representation as functions for initial-state, goal-p, and children. Evaluate which
method is best, either by using the function TIME, or by counting the calls to TRACE.
 Use generic-search or GPS to search the state space of some other problem domain,
such as Missionaries-and-Cannibals, Sliding-Tiles, Tic-Tac-Toe, Cryptoarithmetic, or N-Queens.

208

 Artificial Intelligence

7. (harder) Parc il :

Test Parcil on some real but restricted C code. Extend it to include some high-level C
constructs.

8. Streams:

 A. Write a stream/filter program to generate the first N prime numbers.

 B. (harder) If you are fluent in another programming language, write the same function in that
language and compare the ease of writing, the maintainability/extendibility and modularity, and the
readability of each version. Write your other language program so that it handles an arbitrary N.

 C. Change your program(s) to find the first N prime numbers with two occurrences of the digit 9.

 D. Change your program(s) to find the first N prime Fibonacci numbers.

9. Logic Programming:

 A. Substitute the normal FIRST/REST/CONS/EMPTYP functions for the (simulated) stream
functions in the logic code. That is, expand the simulated stream abstraction inline to remove it. Does
this improve readability for you?

 B. Look at the problem of people liking themselves in the liking examples. Is there a better fix
than the one proposed? Write some other liking rules which expose this problem.

 C. Add some other facts (not rules) to the three animal databases to exercise the rules which are
not used when asking questions about zeke, fred, and tony. What would you do if you wanted to know
about types of animals (the animal taxonomy) but not about a particular named animal?

 D. There is a major problem with the INFER function. What is it? Simplify the (first, smaller)
addition database by removing commutative facts, and add the commutative rule:

 (rule if ((var a) + (var b) = (var c) (var d))
 then
 ((var b) + (var a) = (var c) (var d)))

Figure out what is happening. (harder) Can you fix it?

 E. Ask a question about ancestors in the relatives database and figure out what is happening.
Ancestor is an example of a transitive relation. (This is related to question D.)

 F. Write some other relative rules like GRANDMOTHER, GRANDPARENT, UNCLE.

 G. Fix the sibling rule so that a person is not their own sibling.

 H. Why is the fact

209

 Artificial Intelligence

 (1 + 0 = 0 1)

"out-of-order" in the first addition database? Organize the order of the facts and rules for maximum
efficiency.

 I. Write an addition rule which abstracts the carry operation out of the database. The trick is to
use a carry-flag ((var x) = 1) which unifies with the fact (1 = 1).

 J. (harder) Design an addition rulebase which handles addition of numbers of arbitrary magnitude.

 K. (harder) Write a rulebase which solves Cryptoarithms (e.g. SEND+MORE=MONEY). The essence
is to add rule(s) which enforce different numbers to be associated with each different letter. Then you
might need rules to improve the efficiency of the solution process.

 L. (longer but not harder) Write a rulebase for doing multiplication. For doing elementary algebra.
For doing differential calculus.

10. Object-oriented Programming:

 A. Get other object-oriented examples (from OO textbooks perhaps) and build them in the simple
LISP system.

 B. (harder) Figure out what you would need to do to include multiple inheritance.

11. Language Parsing:

 A. Extend the grammar to include adverbs and pronouns. This will be (harder) if you have
difficulty following the lambda forms in the code.

 B. Incorporate PARSE-FIND into the code in place of FIND-* and FIND-?.

 C. (harder) Write GENERIC-PARSE.

12. Miscel laneous:

 A. Write at least five different versions of REVERSE. (harder) Write fifteen significantly different
implementations.

 B. (harder) Write a semantic net traversal algorithm. This is not hard if you use either the Logic
Programming code or the Object-oriented code as a base.

 C. Implement the simple robot-in-maze problem. Add the suggested extensions. When
you get to adding the Wumpus, it gets (harder).

210

Management Decision Models

FORMAL MODELS

We'll learn five card games today. Identify the formal organization of each.

FORMAL ORGANIZATION

 mathematics: domain, operations, axioms
 algebra: pattern, match and substitute, equations
 modeling: state space, state transitions, decision models
 human factors: functional problem space, tasks, strategies
 life: events, property maps, behaviors

THE GAMES

1. Pick a Card:
 Each player draws a card from a standard deck, without looking and
without replacement. Everyone looks.

2. War:
 Each player picks a card. Everyone looks. Highest card wins all the
other cards.

3. Indian Poker:
 Each player picks a card. Without looking, hold the card to your
forehead so that all other players can see it. Simultaneously, every player
either folds or bets. Highest betting card wins all bets.

4. Psychout:
 Each player's hand consists of one suit. A different suit defines the
point cards (A = 1, ..., K = 13). A point card is exposed. Each player
selects a card from the hand, without replacement, as a bid for the point
card. Highest bid card wins the point card. Repeat for 13 plays. Highest
accumulation of point cards wins.

5. Elusis:
 The game master writes down a secret pattern rule for a sequence of
cards. In turn, each player freely selects a card from the deck, without
replacement. The game master tells if the card fits the secret pattern. The
player to name the secret pattern wins.

211

 Programming the Interface

 1

A Complete User Interface System

Primary Examples:
 MacOS, Visual Basic, NeXTStep, Java, Common Lisp Interface Manager

• windowing abstraction
 containers, views

• display components
 button, checkbox, choice box, label, list, table,
 scrollbar, textarea, textfield, window, menu, dialog box

• display tools
 fonts and points
 color
 graphics system (drawing, clipping, 3D)
 image handling
 layout management

• temporal data tools
 time and synchronization model
 sound manager
 video manager
 animation manager

• interactivity tools
 event handling and management (mouse, keyboard, arbitraty input devices)
 streams and buffers
 scripting language

• programming interface tools
 object-oriented class, instance, and message system (initialize-, make-)
 load, compile, link, and evaluate
 language-specific text editor
 interface construction toolkit
 debugging and exception handling
 namespaces and packages
 foreign function interface

• operating system tools
 threads and multitasking
 concurrency, switching, scheduling, and synchronization
 memory management
 file system interface
 network interface and security
 low level: internal data structures, pointers, memory blocks, traps

212

 Programming the Interface

 2

Extended Examples (Java, CLIM)
using widget interactions as a simple example

Generic object operators/funct ions:
 constructors: make-, initialize-, set-
 assessors: get-
 queries: ?-
 functions: act-on-
 relations: constrain-

Turnkey dialog boxes
 throw-cancel and catch-cancel <aborts>
 message-dialog
 yes-or-no-dialog
 get-string-from-user-dialog
 select-item-from-list-dialog

Windows
 nested-views, size, position, scroller, click-handler
 title, font, color, active?, layer, zoom, grow, drag

Mac Common Lisp Menu Class structure
menu-element
 menubar (class, variable, function)
 set-menubar
 find-menu
 <color-functions>
 default-menubar
 menu
 initialize-, set-
 menu-title, menu-items, menu-colors
 update-function
 help-spec (balloon-help system)
 install, deinstall, installed?
 enable, disable, enabled?
 font-style, <color-functions>
 add-menu-item, remove-menu-item, get-menu-item, find-menu-item
 menu-item
 initialize-, set-, get-, query?-
 owner, title
 command-key, checked
 action, action-function (call vs get)
 colors, font-style
 disabled?, update-function, help-spec
 window-menu-item
 close, save, save-as, save-copy-as, revert, hardcopy
 cut, copy, paste, clear, select-all, undo, undo-more
 load/evaluate-selection, load/evaluate-whole-buffer

213

 Programming the Interface

 3

Mac Common Lisp Dialog- items
 initialize-, set-, get-, make-
 view-size, view-container, view-position, view-nickname, view-font
 dialog-item-text, dialog-item-handle, dialog-item-enabled?
 part-color-list, dialog-item-action, help-spec, window-pointer
 install, activate, activate-event-handler, default

 button-dialog-item
 press-button, default-button-dialog-item (make-, get-, set-, ?-)
 static-text-dialog-item
 editable-text-dialog-item
 <key-stroke-handlers>
 check-box-dialog-item (check-box-check, -uncheck, -checked?)
 radio-button-dialog-item (radio-button-cluster, -push, -unpush, -pushed?)
 table-dialog-item
 <table-constructors>, <cell-contents-handlers>, sequence-dialog-item
 pop-up-menu (<handlers>)
 scroll-bar (<handlers>)

Interface Toolkit
 The toolkit provides a drag-and-drop interface for constructing display interfaces. After
selecting and positioning the interface, the toolkit writes the appropriate source code for that
interface. Toolkit components:

 Menubar Editor
 Add Menu
 Add Menu Item
 Command key, Disabled, Check Mark
 Menu Item Action (provide function), Menu Item Colors
 Menu Colors
 Print Menu Source
 Rotate Menubars
 Add New Menubar
 Delete Menubar
 Menubar Colors
 Print Menubar Source
 Use Dialogs (toggle with Design Dialog)
 Design Dialogs
 Document
 Document with Grow
 Document with Zoom
 Tool (with title bar and close button)
 Single Edge Box
 Double Edge Box
 Shadow Edge Box
 Design Dialog Methods
 Include Close Box
 Color Window

214

 Programming the Interface

 4

 Add Dialog Item
 Static Text
 Editable Text Field (Allow Returns, Allow Tabs, Draw Outline)
 Button (Default Button)
 Radio Button (Radio Button Pushed, Set Item Cluster)
 Checkbox (Checkbox Checked)
 Table (Set Cell Size, Horizontal Scroll Bar, Vertical Scroll Bar
 Set Table Sequence, Set Wrap Length, Orientation)
 Add Dialog Item Methods
 Dialog Item Text
 Enabled/Disabled
 Set Item Action
 Set Item Font
 Set item Name
 Set Color
 Print Item Source
 New Dialog
 Add Horizontal Guide (for alignment during editing)
 Add Vertical Guide
 Edit Dialog
 Print Dialog Source

Java Code for constructing some widgets

Named Button:
 public void okButton() {
 Button b = new button("OK"); add(b); }

Unnamed button:
 add(new Button("OK"))

Label:
 add(new Label("Look at me"))

Checkbox:
 add(new Checkbox("Check here if hungry"))
 Checkbox Methods:
 getLabel(), setLabel(String), getState(), setState(boolean)

Choice Menu:
 {Choice myClassesMenu = new Choice;
 myClassesMenu.addItem("SE101");
 myClassesMenu.addItem("SE561");
 myClassesMenu.addItem("Special Project");
 add(myClassesMenu); }
 Choice Menu Methods:
 getItem(int), countItems(), getSelectedIndex(),
 getSelectedItem, select(int), select(String)

215

 Programming the Interface

 5

 PRODUCTION LISP CODE for a WINDOWING SYSTEM

Unedited, little documentation, good style.
This code is what you would have to write if you were developing an application
windowing system without a toolkit or a class library.
Redundant code templates are omitted.

First the class structure for the windowing environment,
next the menu system with its corresponding action functions,
then the control panel with its corresponding action functions,
finally the event handler for text entry into the control window.

;;;
;; PARENT-WINDOW

(defclass parent-window (window)
 ((children :accessor children :initarg :children :initform nil)
 (common-data :accessor common-data :initarg :common-data :initform nil)))

(defmethod initialize-instance ((self parent-window) &rest rest)
 (apply #'call-next-method self rest)
 (map-children self #'set-child-parent self))

(defmethod find-parent-child ((self parent-window) type)
 (car (member type (children self) :key #'type)))

(defmethod add-parent-children ((self parent-window) &rest children)
 (setf (children self) (append children (children self))))

(defmethod remove-parent-children ((self parent-window) &rest children)
 (setf (children self) (set-difference (children self) children)))

(defmethod parent-children ((self parent-window) &rest children)
 (apply #'add-parent-children self children)
 (mapcar #'(lambda (child) (set-child-parent child self)) children))

(defmethod map-children ((self parent-window) func &rest args)
 (mapcar #'(lambda (child) (apply func child args)) (children self)))

(defmethod open-child ((self parent-window) type &rest rest)
 (cond
 ((eq type 'entry) self)
 ((find-parent-child self type))
 ((eq type 'database)
 (apply #'make-instance 'database-window :parent self rest))
 (T
 (apply #'make-instance 'display-window
 :type type :parent self rest))))

216

 Programming the Interface

 6

(defmethod window-close ((self parent-window))
 (call-next-method self)
 (map-children self #'window-close))

(defmethod set-window-title ((self parent-window) new-title)
 (map-children self #'set-window-title new-title)
 (call-next-method self new-title))

;;;six window subclasses and methods omitted here

;;;
;; DISPLAY-WINDOW

(defclass display-window (child-window)
 ((display-view :accessor display-view :initform nil)
 (title :accessor title :initform "Display"))
 (:default-initargs
 :window-type :document-with-zoom
 :view-font '("Monaco" 9)
 :view-size #@(300 150)))

(defmethod initialize-instance
 ((self display-window) &rest rest &key (type 'display-view))
 (declare (dynamic-extent rest))
 (apply #'call-next-method self :type type rest)
 (let ((view (make-instance type
 :view-container self
 :view-size (subtract-points (view-size self) #@(15 15))
 :view-position #@(0 0)
 :draw-scroller-outline nil)))
 (setf (display-view self) view)
 (setf (title self) (title view))
 (when (parent self)
 (set-window-title self (window-title (parent self))))
 (mapcar #'(lambda (x) (setf (scroll-bar-scroll-size x) 12))
 (view-scroll-bars view))
 (set-common-data view (common-data self))))

(defmethod set-view-size ((self display-window) h &optional v)
 (declare (ignore h v))
 (without-interrupts
 (call-next-method)
 (let* ((new-size (subtract-points (view-size self) #@(15 15))))
 (set-view-size (display-view self) new-size))))

(defmethod window-zoom-event-handler ((self display-window) message)
 (declare (ignore message))
 (without-interrupts
 (call-next-method)
 (let* ((new-size (subtract-points (view-size self) #@(15 15))))
 (set-view-size (display-view self) new-size))))

(defmethod clear ((self display-window))
 (call-next-method self))

217

 Programming the Interface

 7

(defmethod save-to-eval ((self display-window))
 `(make-instance 'display-window
 :type ',(type self)
 :window-title ,(window-title self)
 :view-position ,(view-position self)
 :view-size ,(view-size self)))

(defmethod window-close ((self display-window))
 (when (parent self)
 (remove-parent-children (parent self) self))
 (call-next-method self))

(defun make-trace-output-window (parent)
 (make-instance 'display-window
 :type 'trace
 :parent parent
 :close-box-p nil
 :window-title "Trace Output Window"))

;;;
;;; LOSP-MENU

(defvar *losp-menu* nil)
(defvar *db-edit-menu* nil)

(defun initialize-losp-menu ()
 (menu-install (setq *losp-menu* (make-losp-menu)))
 (menu-install (setq *db-edit-menu* (make-db-edit-menu))))

(defun make-losp-menu ()
 (MAKE-INSTANCE 'MENU
 :MENU-TITLE "Losp"
 :MENU-ITEMS
 (LIST (MAKE-INSTANCE 'MENU-ITEM
 :MENU-ITEM-TITLE "About..."
 :MENU-ITEM-ACTION #'make-losp-ABOUT-WINDOW)
 ;(MAKE-INSTANCE 'MENU-ITEM
 ; :MENU-ITEM-TITLE "Load"
 ; :MENU-ITEM-ACTION #'menu-load-losp)
 (MAKE-INSTANCE 'MENU-ITEM
 :MENU-ITEM-TITLE "Entry Window"
 :MENU-ITEM-ACTION #'menu-make-entry-window)
 (MAKE-INSTANCE 'MENU-ITEM
 :MENU-ITEM-TITLE "Control Panel"
 :MENU-ITEM-ACTION #'make-losp-CONTROL-PANEL
 :COMMAND-KEY #\=
 :MENU-ITEM-CHECKED nil)
 (MAKE-INSTANCE 'MENU-ITEM
 :MENU-ITEM-TITLE "Test Minimizer"
 :MENU-ITEM-ACTION #'run-min-test)
 (MAKE-INSTANCE 'MENU-ITEM
 :MENU-ITEM-TITLE "Quit Losp"
 :MENU-ITEM-ACTION #'close-LOSP
 :command-key #\Q))))

218

 Programming the Interface

 8

;;;
;;; MENU ACTION FUNCTIONS
;;;
;;; Menu items: Activation function:
;;; About... make-losp-about-window
;;; Load menu-load-losp [in initialize file]
;;; Entry Window make-entry-window
;;; Control Panel make-losp-control-panel
;;; Test Minimizer run-min-test
;;; Quit Losp close-losp

(defun menu-make-entry-window ()
 (setq *current-entry-window* (make-entry-window))
 ;(make-losp-control-panel))

(defun close-losp ()
 (if *current-entry-window* (window-close *current-entry-window*))
 (menu-deinstall *db-edit-menu*)
 (menu-deinstall *losp-menu*))

;;;several menu functions omitted here

;;;
;;; ABOUT-LOSP

(defun make-losp-about-window ()
 (modal-dialog
 (MAKE-INSTANCE 'COLOR-DIALOG
 :WINDOW-TYPE :DOUBLE-EDGE-BOX
 :WINDOW-TITLE "about-losp"
 :VIEW-POSITION #@(426 60)
 :VIEW-SIZE #@(370 185)
 :CLOSE-BOX-P NIL
 :VIEW-FONT '("Chicago" 12 :SRCOR :PLAIN)
 :VIEW-SUBVIEWS
 (LIST (MAKE-DIALOG-ITEM
 'STATIC-TEXT-DIALOG-ITEM #@(58 8) #@(260 16)
 "Losp Boolean Minimization Engine 1.0" 'NIL)
 (MAKE-DIALOG-ITEM
 'STATIC-TEXT-DIALOG-ITEM #@(146 31) #@(73 16)
 "May 1995" 'NIL)
 (MAKE-DIALOG-ITEM
 'STATIC-TEXT-DIALOG-ITEM #@(8 58) #@(345 32)
 "Copyright (C) 1995, OZ...International, Ltd. and Interval
Research Corporation, All Rights Reserved." 'NIL)
 (MAKE-DIALOG-ITEM
 'STATIC-TEXT-DIALOG-ITEM #@(20 102) #@(345 16)
 "Authored by William Bricken and Jeffrey James." 'NIL)
 (MAKE-DIALOG-ITEM
 'BUTTON-DIALOG-ITEM #@(130 140) #@(114 23)
 "OK"
 #'(lambda (item) (declare (ignore item))
 (return-from-modal-dialog t))
 :DEFAULT-BUTTON T)))))

219

 Programming the Interface

 9

;;;
;;; CONTROL-PANEL

(defun make-losp-control-panel ()
 (setq *problem-number-comtab* (make-comtab))
 (comtab-set-key *problem-number-comtab*
 '(#\Newline) 'accept-problem-number-text-entry)
 (setq *isolate-variable-comtab* (make-comtab))
 (comtab-set-key *isolate-variable-comtab*
 '(#\Newline) 'accept-isolate-variable-text-entry)
 (setq *losp-control-panel*
 (MAKE-INSTANCE 'control-panel-window
 :WINDOW-TYPE :TOOL
 :WINDOW-TITLE (format nil "Losp Control Panel")
 :VIEW-POSITION '(:TOP 208)
 :VIEW-SIZE #@(230 254)
 :VIEW-FONT '("Chicago" 12 :SRCOR :PLAIN)
 :parent *current-entry-window*
 :VIEW-SUBVIEWS (losp-control-panel-subviews)))
 (set-radio-buttons-when-opened)
 (set-logic-check-box-when-opened)
 (set-circuit-check-box-when-opened)
 (set-trace-check-box-when-opened)
 (set-database-check-box-when-opened))

(defun losp-control-panel-subviews ()
 (LIST (MAKE-DIALOG-ITEM
 'STATIC-TEXT-DIALOG-ITEM #@(10 5) #@(56 16)
 "Analysis"
 'NIL)
 (MAKE-DIALOG-ITEM
 'BUTTON-DIALOG-ITEM #@(70 3) #@(60 18)
 "Apply"
 #'(LAMBDA (ITEM) (apply-button-action item))
 :VIEW-FONT '("Courier" 12 :SRCOR :PLAIN)
 :view-nick-name 'apply-button
 :DEFAULT-BUTTON NIL)
 (MAKE-DIALOG-ITEM
 'RADIO-BUTTON-DIALOG-ITEM #@(10 28) #@(110 16)
 "Transcribe"
 #'(LAMBDA (ITEM) (transcribe-radio-button-action item))
 :VIEW-FONT '("Geneva" 12 :SRCOR :PLAIN)
 :view-nick-name 'transcribe-radio-button
 :RADIO-BUTTON-PUSHED-P nil)
 (MAKE-DIALOG-ITEM
 'EDITABLE-TEXT-DIALOG-ITEM #@(160 222) #@(52 15)
 ""
 #'(LAMBDA (ITEM) (case-variable-text-action item))
 :VIEW-FONT '("Geneva" 12 :SRCOR :PLAIN)
 :view-nick-name 'isolate-variable-text-box
 :comtab *isolate-variable-comtab*
 :ALLOW-RETURNS T)))

;;;18 other dialog-item specifications omitted here

220

 Programming the Interface

 10

;;;
;;; ACTIONS
;;;
;; see process file for usage of the globals
;; *valid-analysis-levels* *current-analysis-level*
;; *active-displays* *most-recent-analysis-result*
;; *current-entry-window*

(defun set-radio-buttons-when-opened ()
 (cond
 ((eq *current-analysis-level* '*TRANSCRIBE*)
 (radio-button-push
 (view-named 'transcribe-radio-button *losp-control-panel*)))
 ((eq *current-analysis-level* '*CLEAN*)
 (radio-button-push
 (view-named 'clean-radio-button *losp-control-panel*)))
 ((eq *current-analysis-level* '*SORT*)
 (radio-button-push
 (view-named 'sort-radio-button *losp-control-panel*)))
 ((eq *current-analysis-level* '*EXTRACT-LITERALS*)
 (radio-button-push
 (view-named 'extract-literals-radio-button *losp-control-panel*)))
 ((eq *current-analysis-level* '*CANCEL-BOUNDS*)
 (radio-button-push
 (view-named 'cancel-bounds-radio-button *losp-control-panel*)))
 ((eq *current-analysis-level* '*INSERT-BOUNDS*)
 (radio-button-push
 (view-named 'insert-bounds-radio-button *losp-control-panel*)))
 ((eq *current-analysis-level* '*MINIMIZE*)
 (radio-button-push
 (view-named 'minimize-radio-button *losp-control-panel*)))
 (T nil)))

(defun transcribe-radio-button-action (self)
 (setq *current-analysis-level* '*TRANSCRIBE*)
 self)

(defun clean-radio-button-action (self)
 (setq *current-analysis-level* '*CLEAN*)
 self)

(defun sort-radio-button-action (self)
 (setq *current-analysis-level* '*SORT*)
 self)

(defun database-display-box-action (self)
 (let ((win (when *current-entry-window*
 (find-parent-child *current-entry-window* 'database))))
 (if win
 (window-close win)
 (make-database-window *current-entry-window*)))
 self)

;;;20 other action specifications omitted here

221

 Programming the Interface

 11

;;;
;;; ENTER LOSP-ENTRY-WINDOW
;;;
;; Controls the behavior of the 'return' key in the entry buffer.
;; If the cursor is not on the last line of the buffer, 'return' copies
;; the current line (without the prompt) to the end and moves the cursor
;; there too. No error handling is provided here.

(defun accept-entry (entry-window &optional force)
 (let* ((bmark (fred-buffer entry-window))
 (end (buffer-line-end bmark))
 (eob (buffer-size bmark))
 (entry (string-left-trim *entry-prompt*
 (buffer-substring bmark (buffer-line-start bmark) end)))
 (symbol-entry (string2symbol-boxed entry)))
 (cond ;; accept input
 ((or force (= end eob))
 (set-mark bmark eob)
 (ed-insert-char entry-window #\Newline)
 (if (null symbol-entry)
 (buffer-insert-at-end bmark "return")
 (let ((logic-type
 (intersection (flat symbol-entry) *valid-logic-functions*))
 (assertion-type (member *assertion-token* symbol-entry)))
 (cond
 (logic-type
 (buffer-insert-at-end bmark *multiple-form-message*))
 (assertion-type
 (buffer-insert-at-end bmark "Assert: ")
 (buffer-insert-at-end bmark
 (assert-entry entry-window (remove-assert-mark symbol-entry))))
 (T (let ((result (process-entry entry-window symbol-entry)))
 (buffer-insert-at-end
 bmark (prepare-text-out result)))))))
 (ed-insert-char entry-window #\Newline)
 (buffer-insert-at-end bmark *entry-prompt*))
 ;; otherwise copy entry to the end of the buffer
 (T (buffer-insert-at-end bmark entry)))))

(defun force-accept (entry-window) (accept-entry entry-window T))

(defun buffer-insert-at-end (bmark string)
 (buffer-insert bmark string (buffer-size bmark))
 (set-mark bmark (buffer-size bmark)))

(defun prepare-text-out (form)
 (cond
 ((null form) "")
 ((marked form) "()")
 (T (let ((string-form (symbol2string form)))
 (remove #\) (remove #\(string-form :count 1)
 :count 1 :from-end t)))))

;;;many other handlers and functions omitted here

222

 Computer Ethics

1

3D Interactive Virtual Worlds

Below is a list of several on-line virtual worlds. Your assignment:

• Select one or several virtual worlds to visit.

• Go inside a world (be careful, most are free, but some require a fee to join). You will
probably have to download some specialized interactivity software (free).

• Build an avatar.

• Explore the environment.

• Make a list of the ethical issues that occur to you.

* http://habbo.com
 Very easy to explore.

* http://www.gcoj.com/english/index.html
* http://www.activeworlds.com
* http://www.everquest.com
* http://www.uo.com
* http://www.furcadia.com
 Adventure worlds

* http://www.ntts.com/ispace.html
* http://www.worlds.com
 Commercial worlds

* http://www.sics.se/dive
 One of my UW students built this world.

* http://ultravixen.com
 CAUTION: pornographic adventure world

Want to read about it?
 * http://imaginaryrealities.imaginary.com/article_index.html
 * http://www.rider.edu/users/suler/psycyber/psycyber.html

223

Virtual World Development

THE STRUCTURE OF A CUBE

The key idea is that the structure (geometry) of an object is an intrinsic
property. Structure should make no reference to external relations.

Note that translation, rotation, scale, and orientation are Relations between
an object and an external coordinate system, and are thus not part of a
cube's geometry.

Fortunately, there are established conceptual tools (Cartesian geometry, unit
vectors) for describing "cube space".

EMBED THE CUBE IN A SPACE

Assume unit vectors i, j, and k. Associate each with an orthogonal side of
the Cube.

Given rules for ijk: i*j = i*k = j*k = 0

Assume a local origin (0i 0j 0k).

 i = (1i 0j 0k)
 j = (0i 1j 0k)
 k = (0i 0j 1k)

DIFFERENTIATE PARTS

Cubes have 27 parts: 8 vertices, 12 edges, 6 faces, 1 volume.

Notation: (ai bj ck) for all parts.

Let {a, b, c} take on three possible states: {0, _, 1},

 where _ is any value 0 =< _ =< 1

Let d = {0, 1} (Knonecker delta, either 0 or 1)

 Vertices: {di dj dk}
 Edges: {di dj _k} or {di _j dk} or {_i dj dk}
 Faces: {di _j _k} or {_i dj _k} or {_i _j dk}
 Solid: {_i _j _k}

224

Virtual World Development

More notation:

Let i, j, and k be symmetrically equivalent, and thus unlabeled.

 Vertices: {d d d} (all three states are Kronecker)
 Edges: {d d _} (one state is not Kronecker)
 Faces: {d _ _} (only one state is Kronecker)
 Solid: {_ _ _} (no state is Kronecker)

Let u stand for any of i, j, or k.

PROPERTIES

Parallel(e1_ e2_) = e1{d d _} = e2{d d _} _ in same location
Parallel(f1_ f2_) = f1{d _ _} = f2{d _ _} _ _ in same location

Perpendicular(e1_ e2_) = not(Parallel(e1 e2))
Perpendicular(f1_ f2_) = not(Parallel(f1 f2))

On(v_ e_) = v{du} = e{du} values of d equal
On(v_ f_) = v{du} = f{du} value of d equal
On(e_ f_) = e{du} = f{du} value of d equal

Meets(e1_ e2_) = e1{du} = e2{du} some d equal
Meets(f1_ f2_) = not(Parallel(f1 f2))

Distance(v1_ v2_) = number of different {du}
Distance(e1_ e2_) = number of different {du}

225

Virtual World Development

PICTORIALLY

 011 _11 111
 0_1 __1 1_1
 001 _01 101

 01_ _1_ 11_
 0__ ___ 1__
 00_ _0_ 10_

 010 _10 110
 0_0 __0 1_0
 000 _00 100

 back = __1
 top = _1_

 011 ----------_11------------ 111
 / | / |
 / | / |
 / | / |
 01_ | 11_ |
 / | / |
 / 0_1 / 1_1
 / | / | rside = 1__
 010 -----------_10----------- 110 |
 | | | |
 | | | |
 lside = 0__ | | | |
 | 001 ----------_01----|------- 101
 | / | /
 0_0 / 1_0 /
 | / | /
 | 00_ | 10_
 | / | /
 | / | /
 | / | /
 000 -----------_00----------- 100

 bottom = _0_
 front = __0

 solid = ___

226

Virtual World Development

MULTIPLICATION TABLES

To determine vertex of intersection of two edges (or edge of intersection of
two faces, or more generally, lower dimensional element defined by two other
elements), down-multiply representation:

* 0 _ 1

0 0 0 _
_ 0 _ 1
1 _ 1 1

To determine edge formed by two vertices (or general up element), up-multiply
representations:

% 0 _ 1

0 0 _ _
_ _ _ _
1 _ _ 1

Note than non-intersecting vertices identify faces (or solids)

NOTES ON REPRESENTATION

By multiplying i, j, or k by a scalar, the cube generalizes to an arbitrary
block.

ijk provides lots of established mathematical support.

{0 _ 1} provides unification of different parts of a cube and visual imagery.

Binary Kronecker delta provides easy implementation, but could be renamed (0
= low, 1 = high, _ = any) for understanding.

Properties are trivial calculations.

Generality of notation is difficult to express algebraically. In general, the
more abstract, the more powerful and the harder to express.

227

Virtual World Development

ALGEBRAIC SPECIFICATION EXAMPLES, CUBE

GenericCube = {

 ;the structure of the SPACE embodying cubeness

 USE[UnitVector] = { i j k }
 V = { 0 - 1 }
 D = { 0 1 }
 < vi_V, vj_V, vk_V > = [vi, vj, vk] * [i, j, k]T
 < di_D, dj_D, dk_D > = [di, dj, dk] * [i, j, k]T

 origin = < 0, 0, 0 >
 center = < .5, .5, .5 >

 ;the PARTS of a cube, the DOMAIN of elementary elements

 PART = { < vi_, vj_, vk_> }
 VIRTEX = { < di_, dj_, dk_ > }
 EDGE = { <di_, dj_, -> <di_, -, dk_> <-, dj_, dk_> }
 FACE = { <di_, -, -> <-, dj_, -> <-, -, dk_> }
 SELF = { <-, -, -> }

 ;the operator which yields properties of the cube

 (p1_PART ^* p2_PART) = < ^*[p1.i p2.i] ^*[p1.j p2.j] ^*[p1.k p2.k] >

 ^*[0 0] = 0
 ^*[0 -] = 0
 ^*[0 1] = -
 ^*[1 -] = 1
 ^*[1 1] = 1
 ^*[- -] = -

 ;properties

 parallel[p1_PART p2_PART] = {

 p1_EDGE ^* p2_EDGE = _FACE
 p1_EDGE ^* p2_EDGE = _SOLID
 p1_EDGE ^* p2_FACE = _EDGE
 p1_EDGE ^* p2_FACE = _FACE
 p1_FACE ^* p2_FACE = _SOLID
 }

228

Virtual World Development

 perpendicular[p1_PART p2_PART] = {

 p1_EDGE ^* p2_EDGE = _VIRTEX
 p1_EDGE ^* p2_FACE = _VIRTEX
 p1_FACE ^* p2_FACE = _EDGE
 }

 skew[p1_PART p2_PART] =

 p1_EDGE ^* p2_EDGE = _EDGE

 on[p1_PART, p2_PART] = {

 p1_VIRTEX ^* p2_VIRTEX = _VIRTEX
 p1_VIRTEX ^* p2_EDGE = _VIRTEX
 p1_VIRTEX ^* p2_FACE = _VIRTEX
 }

 connectedby[p1_PART, p2_PART] = {

 p1_VIRTEX ^* p2_VIRTEX = _EDGE
 p1_VIRTEX ^* p2_VIRTEX = _FACE
 p1_VIRTEX ^* p2_VIRTEX = _SOLID
 p1_VIRTEX ^* p2_EDGE = _EDGE
 p1_VIRTEX ^* p2_EDGE = _FACE
 p1_VIRTEX ^* p2_FACE = _FACE
 }

GenericBlock = {

 USE[GenericCube] = { cube }
 BLOCK = { [a1_ARITH, a2_ARITH, a3_ARITH] * [cube.i, cube.j, cube.k]T }
 IsCube[b_BLOCK] = (b.a1 = b.a2 = b.a3)
 }

229

Virtual World Development

CubesInaCube = {

 USE[GenericBlock] = { world b1 ... }
 worldscale = [1000, 1000, 1000]
 bigworld = worldscale * world
 location[b_] = < bi, bj, bk >
 InWorld[b_] =
 ((<0,0,0> <= location[b] >= worldscale * <1,1,1>) = true)
 location[b1] = <0,0,0>
 location[b2] = <1,0,0>
 }

StackOfBlocks = {

 USE[GenericBlock] = { world b1 ... }
 STACK = { [[b1_ ...]] }
 CONFIGURATION = { [[b1___]]__ }

 emptytable = [[]]
 [[]] [[]] = [[]]
 location[emptytable] = < _, 0, _ >

 PutBlockOnStack[b1_, s_CONFIGURATION] =
 ([[b1]] [[s]] = [[b1, s]])

 TakeBlockOffStack[b1_, s_CONFIGURATION] =
 ([[b1, s]] = [[b1]] [[s]])

 On[b1_, b2_] =
 ([[___, b1, b2, ___]] = true)

 Above[b1_, b2_] =
 ([[___, b1, ___, b2, ___]] = true)

 OnTable[b_] = ([[___, b]] = true)

 OnTopOfStack[b_] = ([[b, ___]] = true)

230

Virtual World Development

EXPANDABLE VIRTUAL CUBE WORLD
 DESIGN/DEVELOPMENT/SPECIFICATION ASSIGNMENT

Using the VR specification language, do as many of the following tasks as
you can. Those working in groups should attempt more.

1. Specify the geometry of a cube.

2. Specify some properties of a cube. Choose properties that permit some
specific cube functionality.

3. Specify some transformations on a cube.

4. Specify an environmental cube and a contained object cube.

5. Specify some form of interaction with a cube, using a defined device such
as the glove, the wand, or the spaceball.

6. Add some more cubes and specify some ways in which they relate.

7. Specify some multisensory viewpoints on a cube.

8. Specify a disposition of a cube. Choose behaviors that permit some
specific cube goals.

Combine the above specifications to build a world:

9. Block and Wand: A wand (or a spaceball, or ...) is used to manipulate a
block.

10. Blocks World: pick up blocks and build structures with them.

11. Logic blocks: block structures map onto propositional calculus and prove
theorems.

12. Block structure builder: name a particular configuration of blocks, the
existing configuration will rearrange itself to form the target
configuration.

13. Block structure builder + restructuring baby: Blocks will take steps to
rearrange into a particular configuration while a baby dynamically changes
the existing configuration.

231

Virtual World Development

14. Block obstacles: Move a virtual body through a maze of blocks.

15. Topple blocks: Remove blocks from a block structure until it falls down.

16. Architectural blocks: Configurations of blocks represent architectural
spaces. Write design constraints for a building or a community.

17. Creative blocks: make up your own block world interactions.

232

 Data Structures and Algorithms

1

Assignment I

Mapping Your Knowledge of Data Structures and Algorithms

One or two pages to be handed in to the instructor at classtime.
Time allocation: two hours thinking, two hours writing

Construct an outline of what you know about data structures and algorithms.

A data abstract ion is a way to organize computational information and consequently
computer memory. It usually consists of a storage representation and a set of operations to
construct, access, modify, delete, deconstruct, test for membership, and/or display stored
instances.

An algorithm is the structured computational process which converts data into a solution to a
particular set of problems. Useful algorithms usually apply to large classes of problems.

These concepts can be understood at different levels of the design hierarchy. Data
structures and algorithms can be seen
 • as ways of implementing low level computational processes,
 • as ways of structuring an implementation in a programming language,
 • as ways of organizing pseudo-code in preparation for implementation,
 • as ways of constructing the mathematical model of a problem, and
 • as ways of thinking about and coming to understand a problem space.

How to outline your knowledge:

There are many different ways to collect and organize what you know about a particular topic.
The most important thing to recognize is that each person is unique and has a unique
understanding of the world. Therefore you should use an outlining technique which feels most
comfortable to you. Some choices include
 • list major topics and minor topics, similar to the chapter organization of a textbook
 • collect words which you can define, and how they relate to each other, similar to a
semantic network of object nodes and relational links
 • form clusters of similar ideas
 • rank the topics covered in the textbook in order of your confidence of understanding
 • write down all the things that you have heard about but do not understand
 • copy someone else's organization of the topic, marking what you understand and
don't
 • draw a picture of what you see when you visualize the topic

Remember: Outlines are short. This assignment is not asking you to demonstrate what you
know, only to indicate strong and weak areas of knowledge. You do not need to include any
form of justification, rationale, or documentation.

Final suggestion: It is often very useful to indicate the degree of confidence you may have for
your understanding of a particular topic, as well as the degree of understanding itself. Be sure
to test your understanding by asking things like:

233

 Data Structures and Algorithms

2

 • what is the definition? how is this used?
 • have I ever actually used this in an implementation? was it successful?
 • do I know when not to use this? do I know how to select between alternatives?

234

 Data Structures and Algorithms

3

 Assignment 2: Data Structure Hierarchy

You will not be turning in this assignment.
Time allocation (max): thinking, 2 hour; mapping, 3 hours

Build a type hierarchy for the common data structures.

Many data structures depend on other data structures for their definition. For example, rational
numbers depend upon integers, since rational numbers are composed of two integers.

Here is a listing of most common data types. Can you construct an inheritance hierarchy which
defines their dependencies? You can claim that some entries are not data structures. It will
also help if you divide the task into subgroups such as elementary data structures, efficient
storage structures, mathematical structures, exotic structures, implementation hacks, etc.

bit array font
byte sequence screen image
bit stream list point
character linked list 2D graphic
string doubly linked list 3D graphic
stream association list (bucket) sound bite
 circular list video image
truth value video stream
boolean (proposition) stack color
propositional sentence queue
function priority queue hyperlink
relation vector URL
equality relation matrix socket
partial ordering relation table button
total ordering relation dictionary checkbox
 panel
set tree window
bag (multiset) binary search tree scrollbar
infinite set balanced binary tree menu
ordering (ranking) red-black tree
non-negative integer B-tree equation
integer splay tree procedure
rational number binomial heap buffer
real number (specific precision) fibonacci heap error (exception)
complex number graph file
random number directed graph directory
 directed acyclic graph continuation
object inheritance graph namespace
class package
pattern tuple script
persistent object hash table pointer

235

 Data Structures and Algorithms

4

Challenge problem: include all of the data structures above in the inheritance hierarchy,
noting the arbitrary design decisions (ie some forms support a choice of subcomponents).

236

 Data Structures and Algorithms

5

Assignment 3: ADS for SUBSTRINGS

You will not be turning in this assignment.
Time allocation (max): thinking, 1 hour; pseudocode, 3 hours

Design an abstract data structure for the data type SUBSTRING.

1. Select a set of tokens to represent constants and variables in the domain.

2. Identify the component parts (the subtypes) of the data structure, and the functions used
to recognize those parts (eg empty-substring, character, substring).

3. Identify the decomposition axiom which specifies how to construct and take apart
SUBSTRING objects. This axiom will include the definition of accessor functions which access
parts of a SUBSTRING.

4. Identify a constructor function (again defined in the decomposition axiom) which permits
building compound substrings out of simple substrings. Consider the difference between a
proper substring (A proper subcomponent is a component which is always smaller than its
container.)

5. Identify some rules, or invariants, which hold between component parts of the data
structure. These define the “methods” of the object type.

6. Name some facts which are true of this data structure. These define the type hierarchy and
the other constraints on the object.

7. Identify the induction principle for SUBSTRINGS.

8. Using the induction principle, write pseudocode for some simple recursive functions/methods
which implement the invariants of the structure.

9. Finally, suggest some computational data structures which would be appropriate for
implementing the SUBSTRING ADS.

237

 Data Structures and Algorithms

6

Here are some axioms you may need:

 The definition of a substring:

x sub y =def= z1*x*z2 = y

 The empty string is a substring of every string

E sub y

 No string is a substring of the empty string

not(y sub E)

 Prefixing a character to a string maintains the substring relation

 if (x sub y) then (x sub u•y)

The following three properties of the substring relation establish that substring is an ordering
relation.

 transitivity if s1 is a substring of s2, and s2 is a substring of s3,

then s1 is a substring of s3

 antisymmetry if two strings are substrings of each other, they are equal

 reflexivity a string is a substring of itself

Prove or define the above relations. Then prove:

 • A string is a substring of itself when a character is prefixed.
 • A string is a substring of the empty string when it is the empty string.
 • Substring implies all the characters in the substring are in the string.
 • The length of a substring is equal to or less than the length of the string.

Extend the results:

 The definition of a proper substring:

 x proper-sub y =def= not(z1=E and z2=E) and z1*x*z2 = y

Prove the properties of proper substrings (transitivity, irreflexivity, asymmetry)

238

 Data Structures and Algorithms

7

Assignment 4: ADS for a Square

Turn in the assignment at the beginning of class.
Time allocation (max): thinking, 1 hour; design, 3 hours; implementation, 5 hours

Implement an abstract data structure for the object “square”.

CONCEPTUALIZATION

 Define the object and the invariant relations between its parts.
 Select a mathematical formalism which suits your conceptualization.
 Separate internal and external transformations.
 An external transformation refers to an external coordinate system or origin.

MODELING

 Identify:
 Domain
 the component parts of the object
 the appropriate recognizers, accessors, and constructors
 Properties
 the uniqueness relation which defines equality tests
 the containment relationships between the components
 the relevant relations between components at the same level
 Functions
 all relevant functions between components
 some interesting functions between the object
 and an external coordinate system

IMPLEMENTATION

 Select:
 a data structure for the object and its components
 data structure transformations between components
 implementation language or algorithm strategy for functions
 Write:
 a make function which builds accessors automatically
 a get function for locating each part of the object
 methods/functions and predicates defined above
 use the Induction Principle to write the recognizer isa-square

EFFICIENCY

 Translate your implementation into bit manipulations.

CHALLENGE ASSIGNMENT

 Implement the object “cube”,

239

 Data Structures and Algorithms

8

 or more generally still, the object “N-dimensional cube”.

240

 Data Structures and Algorithms

9

Final Assignment: Control Structures

A three to five minute presentation to the class on your approach.
Time allocation (max): thinking, 8 hours; designing, 8 hours; implementing 20 hours

HAND IN YOUR WORK (notes, code, comments, results)

Select from and complete as many of the exercises as you can
within the time allocation.

I. Sort ing

Comprehension exercise: Implement several sorting algorithms (possibly by copying
algorithms from the book). Design and implement a record generator which generates random
collections of record indices (ie numbers or key words). Design and implement a simple test
statistics package which counts the number of sorting steps for each sorting algorithm.
Answer these questions:

1. Make a graph of sorting steps (record swaps or relocations) vs size of input (number of
records) for each sorting algorithm. Do your algorithms perform as the book predicts?

2. Characterize the essential difference between each algorithm. Why do some algorithms
perform better or worse than others?

3. Design several different input orderings to sharpen the difference in performance between
your algorithms. That is, build input sets which are almost completely ordered, almost
completely out-of-order, in some random ordering, each value duplicated once, all the same
value, etc. Vary the size the input sets and their ordering characteristics, and test the
efficiency of your algorithms.

4. For all experiments, abstract the performance in terms of asymptotic notation.

5. Characterize the stability of each algorithm. That is, differentiate between sorting which
may move elements with the same key, and those that will not move them.

6. Hybrid algorithm (chal lenge): mix what appear to you to be the best parts of your
algorithms, to build a hybrid sorting algorithm with better characteristics than the ones you
started with.

II. Algorithm Variety

1. Factoria l: Implement many substantively different versions of the factorial algorithm
(factorial computes the product of 1..n integers). Compare each for efficiency and for ease of
writing and maintenance.

241

 Data Structures and Algorithms

10

If you look on the web, there are collections of dozens of ways to implement factorial (that is,
this problem can be addressed with research as well as with creativity). Some methods require
an appropriate engine, which you may or may not have. For example, an object-oriented
implementation requires an object-oriented language. Don't implement engines, do use different
languages when appropriate.

Can you find the fastest possible algorithm?

2. Fibonacci : Implement many substantively different versions of the Fibonacci algorithm
Fibonacci computes the sum of the previous two Fibonacci numbers:

Fib[0] = 0
Fib[1] = 1
Fib[n] = Fib[n-1] + Fib[n-2]

Compare for efficiency and ease of use. Identify three classes of algorithm (highly inefficient,
efficient, and highly efficient) with an implementation of each.

3. Generalization (challenge): Design and implement an abstract procedure which
computes any simple recursive function, given the base and the recursion relation.

II I. Tree Searching

Assume that you have a tree data structure and you have to search it for a leaf with a particular
value.

1. Searching: Design and implement several search algorithms for visiting the leaves of the
tree. Standard techniques include depth-first, breadth-first, best-first, hill-climbing, iterative
deepening, and iterative broadening. Which are most efficient and why?

2. Structured search: In what ways can specialized tree data structures (such as balanced
search trees) help to improve the efficiency and ease of programming search algorithms?
Analyze the tradeoff between complex data structures for search and complex search
algorithms.

3. Generic search: Design and implement a single algorithm which takes the type of search
as a parameter. Other generalization parameters which may be of interest include

 • the goal predicate which tests when the leaf being sought after is found
 • a function which returns the children of an interior node in the tree. (This is used for
determining the cost of various search strategies.)
 • a priority function which determines which node to search next.

4. Smart search (challenge): Design and implement an algorithm which dynamically
determines which kind of search is best for the particular context, given the depth, branchiness,
and other characteristics of the tree at the node currently being explored.

242

 Data Structures and Algorithms

11

Final Assignment (option): ADS for Control Structures

Design an abstract data structure for program control structures.

Caution: This exercise is too difficult to assign a legitimate due date or time allocation, because
of its exploratory nature. No one has been able to do the task of control structure abstraction
well. Thus, this exercise requires a research mentality. Think about how to do it, what the task
requires, the tools you have available, and where the hard and easy parts are. Sketch a partial
solution and do the parts that you believe are possible. Almost all time should be spent puzzling
about what the exercise means. Do not expect to complete any subparts of this assignment.

Definition: Program control structures are those components of a program which determine
the sequence and style of program execution. The semantics, or meaning, of a program is
defined by its behavior, which is guided by control structures. The major program-level control
structures are:

 • logic (Boolean primitives such as AND, OR, NOT, EQUALS, IF-THEN-ELSE, CASE)
 • assignment (assigning names to return values)
 • loops (structures which repeat instructions a specific number of times) including
 iteration, recursion, and {DO, FOR, WHILE, UNTIL}
 • sequencing (calls that are executed sequentially as they are written in the program)
 • function invocation (calls to specific functions)
 • mapping (applying a function to a collection of items)
 • catch and throw (jumps from one part of the program to another, usually in
 exceptional circumstances)

Level of effort: First try to design and implement an ADS which generalizes one of the above
control structures. The above structures are elementary, similar to the elementary data
structures of bits, arrays and pointers. The idea is to build higher-level control structures from
these primitives. The following discussion may help you to choose a difficulty level.

Logic is expressed by propositional calculus or by Boolean algebra. An ADS for logic would
identify possible Boolean structures (the propositions in propositional logic can be functions that
return a specific value). Most languages extend the semantics of logic so that any return is
viewed as True. But how would you specify a logic structure abstractly?

Assignment looks simple, but has been one of the most difficult concepts to understand.
Naming is inherently tricky, and naming to a memory location is trickier still. Scoping rules make
the duration of assignment tricky also. Several languages do not use assignment, it is not an
essential concept. Good programming isolates all assignments. ASSIGNMENT is still very much in
use, but it is beginning to look like a bad idea. It is being replaced by LET and by parameter
passing in FUNCTION INVOCATION.

Loops are a dominant tool for repetitive actions. They come in many varieties. It is easy
translate between FOR, DO, WHILE and UNTIL. Converting between iteration and recursion is
significantly harder, but not tricky. Iteration repeats over a data structure (the loop index);
recursion repeats over a function invocation. Newer repetitive techniques use an iterator

243

 Data Structures and Algorithms

12

data/control structure which generates items as needed. Streams and mappings can also drive
a repetitive call without introducing looping.

244

 Data Structures and Algorithms

13

Sequencing is fairly easy if it is not mixed with other control structures. Assignment and goto
make sequencing particularly difficult.

Funct ion invocation is captured by the rules of lambda calculus, and is not difficult. Since
lambda calculus provides two evaluation regimes, there are significant design decisions about
what to evaluate when. This has driven the debate between eager and lazy evaluation.

Mapping is easy and is widely under utilized in languages. It is very similar to implicit looping.

Catch and throw are dynamic exits into non-local environments. They are principled and easy
to model since they essentially throw away intermediate results. But since they cross
algorithmic boundaries, they have very limited use (ie for exception handling and occasionally
when a loop must be interrupted). GOTO (jumps out of a program without encapsulation) is a
control structure which is antiquated and no longer in use.

Algorithms: When the simple control structures above are combined to make a compound
program, that program is an algorithm. Your ADS should be able to handle algorithms. The
essential utility of the control structure ADS is to convert algorithms which do the same task
into different programming approaches or metaphors. This is called a meta-protocol. We all
know that we can choose between different ways of implementing a specification, iteration vs
recursion for example. Your ADS should be able to isolate the choice of a particular control
structure from the meaning of the specification.

Examine several SORT algorithms. How do they differ in control structure? How can the concept
of sorting be separated from the implementation of sorting? How can the concept of sorting be
separated for the various sorting algorithms?

Examine several tree traversal algorithms. How do they differ? How can they be abstracted into
one algorithm which steers the search based on a parameter?

What other compound control structures do you commonly use? How would you design a
program which could switch between members of a family of algorithms (e.g. the SORT family)
depending on the incoming data structure, expectations about the average data structure being
processed, and the available computing resources?

Discussion: This assignment is intended to let you think about a hard problem, to use the ADS
template on difficult structures in unique ways. Be sure to follow the ADS guidelines. Be sure
that you understand the limitations of your language of choice; often language design will
preclude your access to manipulating control structures (this is because it is easier to implement
languages when control is fixed by a design choice). For example, C++ uses assignment,
sequence (or compound), logic, and for-loops as elementary control structures.

Stick to a subset of your programming language which avoids the difficult constructs. (Then
learn to program like this all the time, never using the problematic ideas of assignment, goto, and
possibly loops and variables.) Assume a pure language which does not include very tricky
concepts like memory allocation and deallocation, destructive operations on memory, dynamic
scoping, global variables, and non-local jumps.

245

TEACHING FOR INNOVATION

TOPIC 8. SMALL GROUP ACTIVITIES

 Managing Learner-Instructor Interaction and Feedback

 TP: Group Presentations

 TP: Establishing Ground Rules for Groups

 TP: Integrating Team Exercises with Other Course Work

 TP: Peer Instruction

 TP: Difference Between Cooperative and Collaborative Learning

Teaching Examples (Bricken):

 Management: simulation game

 Management: archeologist, telephone drawing, consensus

246

Managing Learner-instructor Interaction and Feedback

Garrison, 1990 – "It has been found that students who interacted regularly with
their instructor and with other students were more motivated and had better
learning experiences."

Oliver & McLoughlin, 1997 – "Communicative interactions can be used to engage
learners, to cause them to reflect on and to articulate ideas. Interactions
encourage and facilitate cognition and play an important part in promoting
learners' intellectual operations and thinking processes."

Rationale

 * Students should not have to wait until after failing a midterm exam to
find that they aren't learning what the instructor expects them to learn.
 * Instructors do need to be available and therefore need to have a sensible
plan for interacting with students and providing feedback.
 * "few chances to interact with the instructor limits students' ability to
clarify and negotiate instructional goals, explore alternative methods, or
construct meaning within in a social context based on personal
knowledge" (Garrison, 1993).

Types of Instructor-Student Interaction

The type of interaction on the Web site refers to learner-instructor
interaction. The goal of the section is to make instructors consider how they
can manage and regulate interaction with students so that interaction is not
excessively time-consuming.

Learner-instructor Interaction in a course should:

 * Stimulate and maintain the learner's interest
 * Motivate the learner to learn
 * Provide counsel, support and encouragement to each learner
 * Provide timely feedback to learners to make sure they are making progress

Due to the busy schedule and multiple responsibilities of instructors in higher
education, they cannot be available at all times to students. They may not have
enough time to look at, use, grade, and give feedback for each activity.
Therefore, there much be a plan for learner-instructor interaction.

1

247

General Large Class Tips

To encourage more interaction even in larger classes, try the following

 * Walk around the lecture before class begins. You can even help handing out
notes.
 * Note if you will be staying a few minutes after class to answer questions.
 * Address questions to specific groups of students (e.g. freshmen, people
living off-campus).
 * Provide an inbox (a real box or a virtual discussion area online) for
student questions outside of class. You can also allow for anonymous
submissions.
 * Appropriately praise questions students may ask (e.g. "Good follow-up" or
"Yes, that's a typo...good catch").
 * Create a seating chart to learn student names.
 * Upload lecture notes into ANGEL or other course space. This ensures that
students have all data points, graphs, quotations or citations mentioned in the
class.
 * Avoid reading from a script (unless you are pre-recording audio for an
online presentation). Many instructors use bullet points as mental ticklers of
what they want to say in full.

Ideas for managing student feedback on assignments

It's important for students to receive feedback on how much course content they
have understood, yet grading a large number of assignments can be daunting. Here
are some tips to manage the load:

Fact Check Exercises

Students typically need to master basic facts before thay can move to more
advanced analytic topics

 * Low-stakes, self-scoring quizzes in ANGEL.
 * Short in-class polls or quizzes.
 * Require quizzes to check if students have read material

Discussion Board Assignments

Student posts should be monitored to ensure assignments are progressing as
expected.

 * Use a simple check/check-minus grading system for most posts (like in a
class discussion)
 * Summarize your comments instead of replying to each student

2

248

Weekly Assignments

For many courses, students need feedback before a midterm, and few students do
practice assignments unless they are graded.

 * Provide an answer key for simple problems, and grade only harder problems.
 * Require answers that require research, yet are easy for instructors to
scan (e.g. a specific number, derivation or fact).
 * Incorporate easier exercises into a class session to assess comprehension
and provide variety in the class session.

Student-Student Interactions

Another channel of communication is student-to-student. Encouraging students to
interact with each other can make classroom atmosphere friendlier and allow
students to explain concepts to each other (sometimes a student will be able to
put a different twist to a concept that is still accurate).

 * Break students into impromptu groups or pairs to solve more complex
problems in class.
 * Break up large classes into smaller online discussion sections so there's
a cohort who knows each other.
 * Create a policy to allow students to communicate with each other to get
help on assignments even if they are required to turn in their own formulations.
 * Use intro-surveys to determine if students are "experts" in related areas.
For example a linguistics class may want to know what dialects or languages
students natively speak. A geology class may want to know what geological
regions students grew up in.

More Student Involvement

Student Mentors: A higher level student may be able to tutor

 * Students may find another student less intimidating
 * A student mentor may have an alternate explanation that is more relatable.
 * Use undergraduates who have already taken the course.
 * Encourage more experienced students in class to answer basic questions.

Learning Teams: Students are assigned to small groups to work on problems
together.

 * Students are in a smaller cohort and may be more motivated to attend class
 * Students work together to interpret content

3

249

 * Assign permanent teams early in the semester.
 * Make sure team members have a chance to get to know each other before
high-stakes team work begins.
 * Make sure grade includes individual performance portion as well as team
participation.
 * Clarify expectations including how conflicts can be addressed.

Student Discussion Leaders

 * Student discussion leaders must read material more in-depth to prepare
questions.
 * Students are exposed to multiple perspectives in analysis.
 * Student leaders may ask questions in an original way.
 * Assign Leadership tasks on a rotating basis
 * Require students to respond to discussion leader questions.
 * Encourage additional questions from non-leaders.

Replace Lecture with Student Presentations

 * Students can practice their presentation and management skills.
 * Students learn to analyze content readings instead of just the pre-
digested lecture.
 * Instructor can monitor content presentation, but not have to create a full
set of lecture notes.
 * Students present main points in the lessons or readings.
 * Assign topics to students on a rotating basis.
 * Provide guidelines on how you want presentations to be structured.
 * Be available to answer questions from student presenters.

Peer Reviews: Students critique project work of others

 * Students get feedback from multiple perspectives
 * Students learn how to adjust projects for multiple audiences.
 * Create a peer evaluation rubric for students to use.
 * Make quality of critiques part of the critiquer's grade.
 * Allow students to respond constructively to critiques.

4

250

GROUP PRESENTATIONS

In the group presentation or lecture method, the instructor tells, shows,
demonstrates, dramatizes, or otherwise disseminates subject content to a group
of learners. This pattern can be utilized in a classroom, an auditorium, or a
variety of locations through the use of radio, amplified telephone, closed-
circuit television transmission, interactive distance television, or satellite
communication (teleconferencing).

While lecturing, the teacher may include media materials, such as
transparencies, recordings, slides, video recordings, or multimedia
presentations, either singly or in multi-image combination. These
activities illustrate the one-way transmission of information from instructor to
learners, often for a set period of time (generally a 40- to 50-minute class
period). In small classes there may be some degree of two- way communication
between teacher and learners, but most frequently, learners are passively
listening and watching.

Strengths

The benefits of choosing a group presentation method to accomplish certain
learning objectives include the following:

-A lecture format is familiar and conventionally acceptable to both instructor
and learners. This method is the most common form of instructional delivery.

-Lectures can often be fairly quickly designed since the instructor is familiar
wit the material and will make the actual presentation. The designer often works
with the subject-matter expert to provide the instructor with a list of
objectives and a topic outline with the unwritten agreement that the instructor
will follow the outline. The assumption is that the instructor can make the
necessary strategy decisions. This strength is a particular advantage when
instruction is needed to address a critical, short-term need.

-A lecture places the instructor in direct control of the class and in a visible
authority position. For some instructors and in many teaching contexts, these
factors are advantageous for achieving the objectives.

-Large numbers of learners can be served at one time with a lecture. The group
is limited only by the size of the room; thus, lectures can be highly
economical.

-As instructional needs change, a presentation can be easily modified by
deleting content or adding new content just before or even during the delivery.
Also, the presentation can be easily adapted for a specific group of learners
(e.g., made longer or shorter, more or less difficult).

251

-Lectures are a feasible method of communicating when the information requires
frequent changes and updates or when the information is relevant for only a
short time period, such as the implementation of a new travel policy.

-A good lecture can be motivating and interesting for students.

Limitations

The group presentation method of instruction suffers from the following
limitations:

-Learning is typically very passive, involving listening, watching, and taking
notes, with little or no opportunity for exchanging ideas with the instructor.

-To maintain learners’ attention during a presentation, the lecturer needs to be
interesting, enthusiastic, and challenging.

-When an instructor lectures, demonstrates, shows a video, or otherwise presents
subject content to a class of learners, the assumption is made that all learners
are acquiring the same understanding, with the same level of comprehension, at
the same time. They are forced to learn at a
pace set by the teacher. Thus, lectures are not adaptive to individual
differences.

-If questioning is permitted, instruction stops and all learners must wait until
the question is answered before the presentation can proceed.

-In a large lecture class, it is difficult for the instructor to receive
individual feedback from learners pertaining to misunderstandings and
difficulties encountered during the presentation. Thus, some learners may leave
the class with incorrect learning.

-A presentation may be inappropriate for teaching psychomotor and affective
objectives, as these objectives typically require some form of practice or
active learning environment.

-A large-group presentation may vary from presentation to presentation. Thus,
the consistency of information and topics covered may not be the same for any
two groups. This problem is particularly relevant when the training needs to be
consistent, such as when teaching policies or
procedures.

-Students who have difficult with auditory learning will be at a disadvantage
throughout the presentation.

252

Applications

There are specific situations and times at which a presentation to a group of
learners is most valuable:

-As an introduction, overview, or orientation to a new topic

-To create interest for a subject or topic

-To present basic or essential information as common background before learners
engage in small-group or individual activities

-To introduce recent developments in a field, especially when preparation is
limited

-To provide such resources as a one-time guest speaker, a video, or other visual
presentation that can most conveniently and efficiently be shown to the whole
group at one time

-To provide opportunities for learners to make their own presentations as
reports to the class

-As a review or summary when the study of the topic or unit is concluded

-To teach a large group of learners in a highly economical manner

Guidelines for Effective Lecturing

Keep in mind that learning is enhanced when learners are actively involved.
Therefore, it is important to develop a plan for including learner participation
activities when lecturing. Also, to facilitate learners’ understanding of the
material, lectures should be clear and well organized. We recommend the
following components:

-Active interaction with the instructor. Prepare questions to use at various
points during the verbal presentation; encourage or direct learners to answer
and enter into discussion with the instructor. Decide on places to stop a
presentation (often at the conclusion of a section or
the end of information presented on a concept), and ask questions to measure
understanding and encourage discussion.

-Now taking. Encourage note taking by learners so that they will actively work
with the material. Notes taken in the students’ own words are useful in
producing meaningful learning rather than rote memorization.

253

-Handouts. Consider preparing structured notes on topics requiring the leaner to
(1) fill in an outline of content (e.g., structured notes), (2) complete
diagrams that accompany visuals used in the presentation, (3) write replies to
questions, (4) solve problems, and (5) make applications
of content and concepts as the presentation proceeds. Learners can also complete
self-check exercises or quizzes of the content presented. The key is to
stimulate active processing of the information. For this reason, detailed notes
are generally not recommended, since they eliminate
the need for the students to generate their own. Other forms of handouts include
slides from a multimedia presentation such as PowerPoint that allows you to
print three slides per page with room for notes.

-Other mental activity. Encourage thinking by helping learners verbalize answers
mentally to rhetorical or direct questions that you or another learner pose. You
can also ask learners to formulate their own questions relating to the materials
for use in follow-up, small-group sessions.

-Terminology. Use clear terminology and meaningful examples to illustrate
concepts.

-Organization. Organize the lecture by constructing an outline. Bring the
outline (or note cards) to the presentation and talk “from” it rather than
reading it verbatim (a guaranteed painful experience for listeners). Unless you
are very accomplished as a lecturer and highly familiar with
the presentation, do not try to speak extemporaneously; a frequent result is a
disorganized and rambling presentation.

-Enthusiasm. Show enthusiasm and interest in your subject.

-Format. A standard model (adapted from Slavin, 1994) is as follows:
1. Orient the students to the topics (an outline, story, or overview).
2. Review prerequisites.
3. Present the material in a clear, organized way.
4. Ask questions.
5. Provide independent practice.
6. Review and preview.

References

Slavin, R.E. (1994). Educational psychology (4th ed.). Needham Heights,
MA: Allyn & Bacon.

254

ESTABLISHING GROUND RULES FOR GROUPS

Ground rules can be very useful indeed in group work contexts. The following
suggestions include some of the issues and starting points from which groups can
be encouraged to agree their own set of ground rules.

1 Create ownership of the ground rules. The various ground rules agendas
suggested below should only be regarded as starting points for each group to
adopt or adapt and prioritize. It is important that groups feel able to include
ground rules which are appropriate for the particular people making up the
group.

2 Foster a culture of honesty. Successful group work relies on truthfulness.
Suggest that it is as dishonest for group members to 'put up with' something
they don't agree about, or can't live with, as it is to speak untruthfully.
However, it is worth reminding learners about the need to temper honesty with
tact.

3 Remind group members that they don't have to like people to work with them. In
group work, as in professional life, people work with the team they are in, and
matters of personal conflict need to be managed so they don't get in the way of
the progress of the group as a whole.

4 Affirm collective responsibility. Once issues have been aired, and group
decisions have been made as fully as possible, they convention of collective
responsibility needs to be applied for successful group processes. This leads
towards everyone living with group decisions and refraining from articulating
their own personal reservations outside the group.

5 Highlight the importance of developing and practising listening skills. Every
voice deserves to be heard, even if people don't initially agree with the point
of view being expressed.

6 Spotlight the need for full participation. Group work relies on multiple
perspectives. Encourage group members not to hold back from putting forward
their view. Group members also need to be encouraged to value the opinion of
others as well as their own.

7 Everyone needs to take a fair share of the group work. This does not mean that
everyone has to do the same thing. It is best when the members of the group have
agreed how the tasks will be allocated amongst themselves. Group members also
need to be prepared to contribute by building on the ideas of others and
validating each other's experiences.

255

8 Working to strengths can benefit groups. The work of a group can be achieved
efficiently when tasks are allocated according to the experience and expertise
of each member of the group.

9 Group should not always work to strengths, however! Activities in groups can
be developmental in purpose, so task allocation may be an ideal opportunity to
allow group members to build on areas of weakness or inexperience.

10 Help group members to see the importance of keeping good records. There needs
to be an output to look back upon. This can take the form of planning notes,
minutes or other kinds of evidence of the progress of the work of the group.
Rotate the responsibility for summing up the position of the group regarding the
tasks in hand and recording this.

11 Group deadlines are sacrosanct. The principle, 'You can let yourself down,
but it's not OK to let the group down' underpins successful group work.

12 Cultivate philanthropy. Group work sometimes requires people to make personal
needs and wishes subordinate to the goal of the group. This is all the more
valuable when other group members recognize that this is happening.

13 Help people to value creativity and off-the-wall ideas. Don't allow these to
be quelled out of a desire to keep the group on task, and strike a fair balance
between progress and creativity.

14 Enable systematic working patterns. Establishing a regular programme of
meetings, task report backs and task allocation is likely to lead to effective
and productive group performance.

15 Cultivate the idea of group rules as a continuing agenda. It can be
productive to review and renegotiate the ground rules from time to time,
creating new ones as solutions to unanticipated problems that might have arisen.
It is important, however, not to forget or abandon those ground rules that
proved useful in practice, but which were not consciously applied.

256

INTEGRATING TEAM EXERCISES WITH OTHER COURSE WORK

Ruth Federman Stein
Sandra Hurd
pp. 13-16

For the most part, college-level instruction is not now organized
around the principles of cooperative learning. Assignments,
textbooks, the examination system, and even the physical arrangements
of many large classrooms reflect a more individualistic conception of
learning. Under these conditions, how are principles of cooperative
learning to be introduced without the appearance of inconsistency?

Instructors who initiate team projects often point out that team
activities increase learning. They note that teamwork is widespread
in industry and other organizations. Justification along these
lines, however, may fail to motivate students because they say little
about how teams actually achieve the benefits that are claimed on
their behalf, and how a team project complements the content and
organization of the specific course in which it is being introduced.
This section suggests some ways to supplement the conventional
justification for them.

The suggestions are arranged under two headings: rationales for the
use of teams in a course or discipline, and the integration of team
exercises with other course content. You will note, however, that
these categories may overlap in practice.

RATIONALES FOR TEAMS

The following rationales address team exercises as a form of
cooperative learning and are thus potentially applicable to a wide
range of activities

Constructivist rationale. Most psychological theory portrays learning
as a process of construction (Fosnot, 1996). Students can
make sense of
a concept only if they build it into the structure of their own prior
experience. It is very difficult to create such a structure
by oneself,
especially in an unfamiliar subject area. Discussion in
small groups of
peers makes this undertaking much easier.

257

Linguistic perspective on learning. Scholars of professional language
and rhetoric, such as Charles Bazerman (1998, 1991) and James
Boyd White
(1995), note that when students encounter a discipline or a
professional
filed, they are being exposed to a specialized language. In learning
concepts and terms, they are learning to engage in a particular form of
discussion. Their grasp of a topic is usually evaluated on
the basis of
their ability to understand questions about it and to write cogent
answers. Students are much more likely to develop this linguistic
proficiency if they have both informal and formal opportunities to
speak, rather than being restricted to listening and reading.

Tacit dimension of professional and disciplinary knowledge. As Donald
Schon has pointed out (19983, 1987), there are many forms of learning
that cannot be characterized in terms of propositional knowledge, and
thus are not reducible to statements in a textbook or lecture.
Practical skills, intuitive judgement, and social context cannot
generally be taught by exposition. Some sort of collaborative activity
is required. Thus, for example, in a team exercise in a marketing
course, students would get a chance to act out the role of a marketing
specialist and discover some of the practical exigencies and
constraints
of the practice of marketing. This background understanding of the
social context of marketing would provide a framework within which
students may subsequently organize more detailed information of pricing
strategy, promotional techniques, and problems of distribution.

Habits and attitudes needed for academic achievements. As Kenneth
Bruffee (1999) has pointed out, higher education can be thought of as a
form of acculturation. According to this model, becoming
successful as a
student is a cultural acquisition. Academic competence is not just
mastering course content: It also involves the formation of attitudes
about schoolwork and the acquisition of habits of regular class
attendance, consistent and thorough preparation, and disciplined
management of time. Interaction with peers in a classroom can help
students learn habits and attitudes needed for academic success more
easily. This interaction can be especially helpful for students who
come to the United States from other cultures.

Strategies for Integrating Team Exercises

Team exercises provide instructors with feedback mechanisms of
unparalleled sensitivity. If teams had no other benefits, they would

258

be justifiable solely on the grounds that they provide detailed
information about the success of instruction and bring to light areas
of misunderstanding. The following strategies are designed both to
take advantage of that feedback and to emphasize its importance to
students.

Anticipatory strategies. Formal instruction can be designed to
anticipate team exercises. For example, a lecture might introduce a
problem or a question and review some of the information that could be
brought to bear on it. The question or problem could then be posed to
teams, who would review their notes and come up with an answer or
solution. Alternatively, a lecture could introduce a series of related
concepts, and specialized terms and teams convened to explain them and
provide illustrations.

Involvement and attention. It is essential that the instructor not be
aloof from team exercises. Circulating among the groups, listening,
asking questions, and evaluating students' understanding both of
concepts and tasks will all help to provide a clearer sense of the
students' progress and will also steer them back to the task at hand if
they should be inclined to stray from it. The instructor's active
attention will emphasize to the students the importance of the team
exercise and its connection to other parts of the course.

Short-term adaptation. Information gleaned from the teams can be
incorporated into formal lessons. At the start of the next lecture,
briefly summarize progress observed in teams, correct specific
misconceptions, or highlight unresolved questions that have been raised
in the teams.

Longer-term follow-up activities. Subsequent lectures,
discussions, and
assignments can be designed to build on the team activities. Teams can
report their conclusions in general discussion, a question related to
the team activities. Teams can report their conclusions in general
discussion, a question related to the team activity could be
included on
the exam, readings related to questions raised by the teams could be
assigned.

259

PEER INSTRUCTION

Introduction to Physics at Harvard University
Professor: Eric Mazur

In 1989, I read an article in the American Journal of Physics that
contained a test to assess understanding of Newtonian mechanics. I gave
the test to my students at Harvard and was shocked by the results - the
students had merely memorized equations and problem-solving procedures and
were unable to answer the basic questions, indicating a substantial lack of
understanding of the material. I began to rethink how I was teaching and
realized that students were deriving little benefit from my lectures even
though they generally gave me high marks as a lecturer. So I decided to
stop preaching and instead of teaching by telling, I switched to teaching
by questioning using a teaching technique I have named "peer instruction."

My students now read the material before class. To get them to do the
reading, I begin each class with a short reading quiz. The lecture periods
are then broken down into a series of digestible snippets of 10 to 15
minutes. Rather than regurgitating the text, I concentrate on the basic
concepts and every 10 or 15 minutes I project a "Concept Test" on the
screen. These short conceptual questions generally require qualitative
rather than quantitative answers. The students get one minute to think and
choose an answer. They are also expected to record their confidence in
their answer. After they record their answers, I ask their students to
turn to their neighbors and to convince them of their logic. Chaos erupts
as students engage in lively and usually uninhibited discussion of the
question. I run up and down the aisles to participate in some of the
discussions - to find out how students explain the correct answer in their
own words and to find out what mistakes they make.

After one or two minutes, I call time and ask students to record a revised
answer and a revised confidence level. A show of hands then quickly
reveals the percentage of correct answers. After the discussion, the
number of correct answers and the confidence level typically rise
dramatically. If I am not satisfied, I repeat the cycle with another
question on the same subject. When the results indicate a mastery of the
concept, I move on to the next subject.

I have been lecturing like this now for more than four years. During this
time the students have taught me how best to teach them. As for the
students, nothing clarifies their ideas as much as explaining them to
others. As one student said in a recent interview,: "There is this ah-hah!
Kind of feeling. It's not that someone just told me; I actually figured it
out. And because I can figure it out now, that means I can figure it out
on the exam. And I can figure it out for the rest of my life."

260

YES VIRGINIA THERE IS A BIG DIFFERENCE BETWEEN COOPERATIVE AND
COLLABORATIVE LEARNING PARADIGMS

By Dr. Theodore Panitz
Cape Cod Community College

--
Author's note:

The following serves as an introduction for a longer more detailed
comparison of the student centered learning paradigms, cooperative and
collaborative learning. Over the years I have received many questions
about the differences between these two paradigms. I have scoured the
literature and extracted viewpoints from many of the key people who use
and research these teaching/learning paradigms. In addition I have tried
to present my interpretation based upon my own experiences in the
classroom.

--

Collaborative learning will be defined by comparing it's characteristics
to those of cooperative learning paradigms. Each paradigm represents one
end of a spectrum of teaching-learning which ranges from being highly
structured by the teacher (cooperative) to one which places the
responsibility for learning primarily with the student (collaborative).

The underlying premise for both collaborative and cooperative learning
is founded in constructivist epistemology. Knowledge is discovered by
students and transformed into concepts students can relate to. It is
then reconstructed and expanded through new learning experiences.
Learning consists of active participation by the student versus passive
acceptance of information presented by an expert lecturer. Learning
comes about through transactions among students and between faculty and
students, in a social setting, as they construct a knowledge base.

Ken Bruffee (1995 "Sharing our toys- Cooperative learning versus
collaborative learning". Change, Jan/Feb, 1995 pp12-18) identifies two
causes for the differences between the two approaches. He states:
"First, collaborative and cooperative learning were developed originally
for educating people of different ages, experience and levels of mastery
of the craft of interdependence. Second, when using one method or the
other method, teachers tend to make different assumptions about the
nature and authority of knowledge. The age or education levels as a
distinction have become blurred over time as practitioners at all levels
mix the two approaches. However, what determines which approach is used
does depend upon the sophistication level of the students involved, with

261

collaborative requiring more
advanced student preparation working in groups." (p12)

Brufee sees education as a reacculturation process through constructive
conversation. Students learn about the culture of the society they wish
to join by developing the appropriate vocabulary of that society and by
exploring that society's culture and norms (i.e. that of mathematician,
historian, journalist, etc.). He identifies two types of knowledge as a
basis for choosing an
approach. Foundational knowledge is the basic knowledge represented by
socially justified beliefs we all agree on. Correct spelling and
grammar, mathematics procedures, history facts, a knowledge of the
contents of the constitution, etc., would represent types of
foundational knowledge. these are best learned using cooperative
learning structures in the early grades

Nonfoundational knowledge is derived through reasoning and questioning
versus rote memory. The other way in which nonfoundational education
differs from foundational is that it encourages students not to take
their teacher's authority for granted. Students should doubt answers and
methods for arriving at answers provided by their professors, and
perhaps more importantly they need to be helped to come to terms with
their doubts by participating actively in the learning and inquiry
process. Out of this process knew knowledge is often created, something
not likely to occur when dealing with the facts and information
associated with foundational knowledge. Collaborative learning shifts
the responsibility for learning away from the teacher as expert to the
student, and perhaps teacher, as learner.

Brufee sees the two approaches as linear with collaborative learning
being designed to pick up where cooperative learning leaves off. In
effect, students learn basic information and processes for interacting
socially in the primary grades and then extend their critical thinking
and reasoning skills and
understanding of social interactions as they become more involved and
take control of the learning process through collaborative activities.
This transition may be viewed as a continuum from a closely controlled,
teacher-centered system to a student-centered system where the teacher
and students share authority and control of learning.

The following definitions for collaboration and cooperation form the
basis for their teaching paradigms.

Collaboration is a philosophy of interaction where individuals are
responsible for their actions, including learning and respect the
abilities and contributions of their peers. Collaborative learning is a

262

personal philosophy, not just a classroom technique. In all situations
where people come together in groups, it suggests a way of dealing with
people which respects and highlights individual group members' abilities
and contributions. There is a sharing of authority and acceptance of
responsibility among group members for the groups actions. The
underlying premise of collaborative learning is based upon consensus
building through cooperation by group members. (T. Panitz , (1997),
"Collaborative Versus Cooperative Learning: Comparing the Two
Definitions Helps Understand the nature of Interactive learning"
Cooperative Learning and College Teaching, V8, No. 2, Winter 1997,
Panitz, T., and Panitz, P., (1998) "Encouraging the Use of
Collaborative Learning in Higher Education." In J.J. Forest (ed.)
Issues Facing International Education, June, 1998, NY, NY: Garland
Publishing

Cooperation is a structure of interaction designed to facilitate the
accomplishment of a specific end product or goal through people working
together in groups. Cooperative learning is defined by a set of
processes which help people interact together in order to accomplish a
specific goal or develop an end product which is usually content
specific. It is more directive than a collaborative system of governance
and closely controlled by the teacher. While there are many mechanisms
for group analysis and introspection the fundamental approach is teacher
centered whereas collaborative learning is student centered. (Panitz
1997, 1998) Spencer Kagan (1989, Educational Leadership (Dec/Jan
1989/1990)) defines cooperative learning: "The structural approach to
cooperative learning is based on the creation, analysis and systematic
application of structures, or content-free ways of organizing social
interaction in the classroom. Structures usually involve a series of
steps, with proscribed behavior at each step. An important cornerstone
of the approach is the distinction between "structures" and
"activities". To illustrate, teachers can design many excellent
cooperative activities, such as making a team mural or a quilt. Such
activities almost always have a specific content-bound objective and
thus cannot be used to deliver a range of academic content. Structures
may be used repeatedly with almost any subject matter, at a wide range
of grade levels and at various points in a lesson plan."

Johnson, Johnson, and Smith (1998, Johnson, D.W., Johnson, R.T., Smith,
K.A., Change, July/August) clarify theories which govern cooperative
learning strategies. "Social interdependence theory assumes that
cooperative efforts are based on intrinsic motivation generated by
interpersonal factors and a joint aspiration to achieve a significant
goal. Behavioral learning theory assumes that cooperative efforts are
powered by extrinsic motivation to
achieve rewards. Social interdependence theory focuses on relational

263

concepts dealing with what happens among individuals, whereas the
cognitive-development perspective focuses on what happens within a
single person (p29).

Many of the elements of cooperative learning may be used in
collaborative situations. For example students work in pairs together in
a Think-Pair-Share procedure, where students consider a question
individually, discuss their ideas with another student to form a
consensus answer, and then share their results with the entire class. In
the Jig Saw method (Aronson, E., Blaney, N., Stephan, C., Sikes, J.,
Snapp, M. (1978) The Jigsaw Classroom, Beverly Hills, CA: Sage
Publication), students become "experts" on a concept and are responsible
for teaching it to the other group members. Slavin (1978, "Student
Teams Achievement Divisions", Journal of Research and Development in
Education, 12 (June), pp39-49) developed Student
Teams-Achievement-Divisions where the teacher presents a lesson, then
the students meet in teams of four or five members to complete a set of
worksheets on the lesson. Each student then takes a quiz on the
material. Bonus points are given to the team if any member's score
improves according to a preset criteria. The highest scoring teams are
recognized in a weekly class newsletter.

264

Management Decision Models

GAME THEORY

The class will form into four teams of two, with two superobservers. The
game will consist of alternating periods of discussion, voting, and
resolution.

During discussion, teams can decide on a voting strategy among themselves,
and they can negotiate with other teams for coordinated voting. The only
constraints on negotiation is that resource exchanges must be recorded with a
superobserver.

During voting, each team will cast one of their three possible voting
options.

During resolution, the four votes will be combined to determine a group
outcome from the outcome table.

The superobservers will collect information on the processes and strategies
of each team and keep records.

Each team is different. The initial assets (expressed in units), and the
voting choices of each team are below.

Teams A B C D

Initial assets: 2 5 10 20

Voting options: {V, 0, 1} {V, 0, 2} {0, 1, 2} {0, 2, S}

 V can be interpreted as Veto
 {0, 1, 2} can be interpreted as a strength of monetary support
 S can be interpreted as Strong monetary support

Under these interpretations,

 Team A poor
 Team B workers
 Team C professionals
 Team D wealthy

 The game is to increase the wealth of each team.

265

Management Decision Models

The outcome is each game round is expressed by a decision table:

 TEAM A B C D

OUTCOMES

 VVS x2 x1.5 x.7 x.2

 VV x1 x1 x.6 x.5

 VS if V then x2 else x1 x.9 x.7

 V0123 if V then -5 else +5 + 5 0

 V456 if V then +10 else +2 - 5 + 5

 012 0 + 1 + 5 +10

 34 +4 + 6 +10 + 8

 567 +6 +10 +12 +10

 S012 +5 + 6 + 7 + 5

 S345 x2 x3 x4 x5

Some outcomes are triggered by several different voting results. For
example, a vote sum of 4, 5, or 6 all trigger the V456 outcome row, even if
one team voted V.

"+" means add the specified amount to the team assets

"-" means subtract the specified amount to the team assets

"x" means multiply the current assets of the team by the specified factor.
 note that multiplication by less than 1 is a loss of assets.

The expected gain for each team for each round is 5.

266

Management Decision Models

THE THIRSTY ARCHEOLOGIST

An archeologist was digging in a Paleozoic mudflat. She came across an
imprint of a raindrop that fell 400 million years ago. The sun was hot, and
she took a drink from her canteen. How many molecules of the original
Paleozoic raindrop did she drink?

You will have fifteen minutes to generate an answer. Write down all
assumptions, choices, and decisions you make. No justifications are needed.

THE TELEPHONE DRAWING

Describe the figure below so that a person on the other end of a phone line
can draw it.

Record your decisions about accuracy.

CONSENSUS

Each class member has contributed $5 to form a relatively large cash reserve.
Your task is to give the resource to one and only one member of the class.

The purpose of this exercise is to observe the process of consensual decision
making.

Rules

1. The decision of who gets the resource must be a consensus. Class members
must unanimously agree on a single recipient.

2. No explicit or implicit agreements to divide the resource (now or later)
are permitted. The gift is to have no strings attached.

3. The decision must be made before class ends today.

4. Violation of the above rules will result in a class failure for this
exercise.

267

TEACHING FOR INNOVATION

TOPIC 9. CHALLENGING THE STUDENTS

 Contests Motivate Top Students in Large Classes

Teaching Examples (Bricken):

 Foundations: Chapter 0 and responses

 DS&A: Versions of Factorial

 Management: Measurement

 Management: Critical Incidents

 Formal: Formal Cube, Algebraic Specification

 AI: Streams with Delayed Evaluation

 AI: Knowledge Engineering

 Ethics: Six Dilemmas

Applications to Teaching Mathematics (Bricken):

 Foundations: Timeline

 Foundations: Functions

 Formal: Combinatorial Circuit Minimization

 Spatial Math

268

CONTESTS MOTIVATE TOP STUDENTS IN LARGE CLASSES

Eric Roberts tackles neglected issue of motivating elite students through
recognition, camaraderie, teaching opportunities.

Roberts provides ample opportunities for his students to earn extra-credit
through contests that usually entice about 10 percent of a given class to enter.
Work is judged for categories including "best algorithm" and "best aesthetics."
Past winners have programmed adventure games and created computer animations.

Eric Roberts is the principal architect of what was for many years the largest
course at Stanford-Computer Science 106A, an introductory programming class with
an enrollment that waxes and wanes with the NASDAQ. In a fat year, 1,000
students may enroll, with more than 400 students in a single class. How
professors can encourage top scholars in large classes was the topic of Roberts'
"Award-Winning Teachers on Teaching" talk Nov. 18 in Building 460.

"How do you manage in a large course not completely snowing the people on the
low end of the scale or boring silly the people on the high end of the scale?"
asked Roberts, the John A. and Cynthia Fry Gunn University Fellow in
Undergraduate Education.

Only 6 percent of Roberts' introductory students end up majoring in computer
science. Many major in other engineering disciplines, and almost 20 percent
major in social sciences or humanities. "It's a wide spectrum, and I wanted to
encourage those people to be in that class," Roberts said. "It was one of the
signature aspects of the Stanford curriculum that we tried to keep an
introductory computer science sequence that really did have broad appeal."

Success in such classes means supporting students every step of the way so they
can do well, Roberts said. It also means setting a high bar. "One of the
difficulties in a large class is if you decide that you're going to curve it
rigidly, you've forced it into a mode where many people are going to be
unhappy," he said. Roberts favors a grading system that rewards those who meet
clearly delineated objectives-no matter how many students meet those objectives.
"If everybody does enough work to get an A, then everybody will in fact get an
A."

That's a big incentive to do well. Further, superlative work in Roberts' classes
has earned A+ and even A++ marks. (The latter designates work that "exceeds all
expectations," according to a jury of section leaders, teaching assistants and
the professor.)

Top students also have the opportunity to gain teaching experience after the
class ends. Owing to economic necessity and a dearth of graduate students

269

willing to assist teaching introductory computer courses, the teaching
assistants (TAs) in such courses at most universities are undergraduates.

"We decided at Stanford to make a virtue of necessity and really train those
students to be wonderful as teachers," Roberts said. Undergraduate TAs also
provide "stepping stone role models" that help increase the number of
underrepresented minorities in computer science.

Programming is one of the most varied intellectual activities in terms of
productivity and ability, Roberts said. "The difference between this person
who's sort of good and that person who's really great is extraordinary."

A 1968 study of working programmers showed 20 to 1 variations in productivity-
how much code a person could generate-among individuals with the same levels of
education and experience. The best programmers also tended to be the fastest and
to have the fewest bugs. "You see the same [enormous variability] in
classrooms," Roberts said.

Move over, Ed McMahonâ¤©

Roberts said he can't gear the class to top students without risking losing
those on the bottom. Instead, he leverages the features of large classes to
encourage excellence. And that means-drumroll, please-lots of contests that
provide extra credit. Students can enter three contests per quarter in his CS
106 A and B classes. Only large classes have enough students to make contests
feasible, as only about 10 percent of the class usually enters. A large class
may have 40 to 60 entrants. Winners rise from the obscurity of a large class.

Judged by an army of section leaders, programs can win for such categories as
"best algorithm" or "best aesthetics." Some contests have explored the limited
world of Karel the robot, who can turn left but not right, forcing students to
program three left turns to make a right when Karel runs a maze. One winning
program calculated the weakest and strongest countries in a game of Risk to
determine who could attack whom. Another winner created an animation of IBM's
Deep Blue supercomputer beating chess champion Garry Kasparov in 1997. Yet
another winner created an adventure game using text-based commands to have
players find magic wands and potions.

Prizes provide recognition (certificates for first-place, runner-up and
honorable mention contestants, and classroom presentations of winning entries),
camaraderie (a group dinner for winners at Roberts' house the following
quarter), perks (offers of letters of recommendation from Roberts) and glory (an
automatic 100 percent score on the final exam for the first-prize winner of any
contest).

270

The contests have opened up new worlds for some students. When a former English
major in Roberts' Computer Science 105 course won a contest, she became so fired
up that she got an undergraduate degree in symbolic systems and a master's
degree in computer science. She went on to become employee number nine at
Google.

Roberts' teaching awards include the Bing Fellow Award for Excellence in
Teaching (1993), the Perin Award for Undergraduate Engineering Education (1995),
the Lloyd W. Dinkelspiel Award (1998), the John A. and Cynthia Fry Gunn
University Fellowship in Undergraduate Education (2002), the Association for
Computing Machinery's Special Interest Group on Computer Science Education Award
(2003) and the Laurance and Naomi Carpenter Hoagland Prize (2004).

The Center for Teaching and Learning sponsors the "Award-Winning Teachers on
Teaching" lecture series. Deborah Gordon, a professor of biological sciences,
will deliver the next talk Jan. 20 at noon in the Hartley Conference Center of
the Mitchell Earth Sciences Building.

271

 Mathematical Foundations

 1

Chapter 0 Responses

Almost all mathematical textbooks begin their story in the middle, as if you already knew the
assumptions, critical choices, and relevance of each topic. For example, your text begins to
teach about proof theory on page 1.

The following questions come prior to studying the content of mathematics. Answer each
question in one sentence or less. These questions identify what you believe about mathematics,
therefore there are no right or wrong answers, just answers that are less or more thoughtful.

HAND IN YOUR ANSWERS AT THE BEGINNING OF CLASS.

Science

1. Which of the following physically exist? EXIST NOT
 a. electrons 15 2
 b. the temperature of the center of the Sun 6 11

c. the cosmological big bang 3 14
d. the state of the internet 3 14

2. Is length an objective concept;

that is, is the length of an object independent of a particular observer?

 OBJECTIVE: 8 NOT: 9

3. Can you know something about the world without changing the world?

 YES: 7 NO: 10

Mathematics

4. Are mathematical ideas invented, discovered, or something else?

 INVENTED: 2 DISCOVERED: 8 OTHER: 7

5. What is mathematical Truth?

Universally true, follows the rules, anything is possible, logically/deductively true, consistency of
results, laws that can’t be disproved, reality in numbers, true or false, validity

6. In what sense does π exist? Where might it exist?

Is π a constant? Is it eternal or might it change over time?

 EXISTS yes: 9 no: 1 as a concept: 3
 CONSTANT yes: 14 no: 0
 ETERNAL yes: 10 no: 2

272

 Mathematical Foundations

 2

7. Are there any mathematical concepts that have only one property

(i.e., are there pure concepts independent of other concepts)?

YES: 9 (zero, void, axioms) NO: 8

8. When is the following equation True?: 7 + 8 = 3

watch-time, mod12, based on false premise, mod10, = means >,
 change the definition of the symbols

NEVER: 4

9. Is every number either even or odd? How do you know?

YES: 11 not the other, every integer, by generalization, theory of divisors,
years of learning, whole numbers, by induction

 NO: 5 zero, infinity-1, Pi, fractions, irrationals,

10. Prove the Pigeonhole Principle, that N+1 pigeons cannot fit into N holes without sharing.

By contradiction: assume N+1 pigeons can fit into N holes. There are N holes, therefore N
pigeons, (one-to-one correspondence). Thus N+1 = N contradiction. This is an example of
something that cannot be proved by an algorithm.

11. Imagine two points as close together as possible. Is there another point in between them?

Are there an infinite number of points in between them?

YES, one and infinite: 13 NO: 4 (finite geometry)

12. Is the following statement True or False or something else?:

Somewhere in the decimal expansion of π, there are exactly 34 sevens in a row.

TRUE: 3 non-repeating
FALSE: 9 non-terminating algorithm, non-repeating
OTHER: 5 can’t determine

13. What kinds of mathematics can be beautiful?

subjective choice, any kind, all, elegant and abstract, following rules, Mandelbrot set, language
of science, gives explanations, analytical, fractal, integral calculus, simple clear and correct.

Computation

14. What is the shortest program which will produce a random number?

NONE: 7
 EGS: sampling noise, pop a number 1, pick a number, non-trivial algorithm, rand() %n

273

 Mathematical Foundations

 3

15. Is a bit the simplest computational object?

YES: 15 NO: 2

16. Binary computation uses two states, 0 and 1. Is unary computation possible?

 YES: 11 (stroke arithmetic, change sensitive systems) NO: 6

17. Name three mathematical concepts which cannot be computed.
Pi , infinity, i, point, circle, irrational numbers, void, chaos theory, empty, set, space, division by
zero, black holes, real numbers, trisecting an angle, doubling a cube, squaring a circle, 1/3, set
of natural numbers.

Attitude

18. How many of the above questions have you thought about before today?

 0: 8 1-2: 4 3: 3 >3: 2

19. Look at the Chapter 0 quotes which follow. Make three lists of names:

people that you agree with,
people that you disagree with, and
people that you do not understand well enough to have an opinion about.

 AGREE DISAGREE HUH?

 William of Occam 7 2 5
 John Locke 12 2 0
 G. Spencer-Brown 8 8 0
 A. Einstein 12 0 4
 V.I. Arnold 4 5 5
 A. Eddington 2 7 7
 S.G. Shankar 4 3 8
 H. Weyl 13 2 1
 G. Rota 9 4 3
 I. Lakatos 9 3 3
 R. Feynman 8 3 3
 D. Knuth 8 8 1
 T. Norretrandres 10 1 4

20. Essay: Write less than one page in response to this famous question:

 Why is mathematics so unreasonably effective in describing and predicting reality?

Math concepts come from reality.

274

 Mathematical Foundations

 4

From years of discovery and quantification, well defined rules.
Objective and precise, can prove anything that is true, builds upon itself.
Simple, clear and correct. reasonable, applicable to real-life.
Build upon known principles, symbols and abstraction, what leads to wisdom?
The way to understand the Universe, sea of interrelated details, successful prediction, laws.
Makes a lot of assumptions and not precise, rules of the way reality works.
Humans avoid analysis and reasoning, reality comes through visionary senses.
An invention of human minds, doesn’t apply to feelings, may not apply outside our experience.
Determines patterns, simplicity of concepts, describes what we perceive.
Math truncates information, simulates world, based on probability.
Explains natural mechanisms, prediction helps survival, identifies structural stabilities.
Ineffective, misses non-linear relations and rapid changes and irregular shapes.
Encompasses objective information, misses intangibles and complexities, simplified view.
Removes emotion, rigid rule sets, scientific beauty (simplicity, harmony, brilliance).

Chapter 0 Quotes

Attitude

"Multiplicity ought not be posited without necessity."
 -- William of Occam (1340)

"The acts of the mind, wherein it exerts its power over simple ideas, are chiefly these three:
 1) Combining several simple ideas into one compound one, and thus all complex ideas are

made.
 2) The second is bringing two ideas, whether simple or complex, together, and setting them

by one another so as to take a view of them at once, without uniting them into one, by
which it gets all its ideas of relations.

 3) The third is separating them from all other ideas that accompany them in their real
existence; this is called abstraction, and thus all its general ideas are made."

 -- John Locke (1690)

"The language of all art forms, such as cookery, drawing, programming, research, mathematics,
and music, is a set of instructions which, if followed, will lead the reader to the same ecstacies
as those experienced by the original artist."
 -- G. Spencer-Brown

Science

"As far as the propositions of mathematics refer to reality, they are not certain; and as far as
they are certain, they do not refer to reality."
 -- A. Einstein

275

 Mathematical Foundations

 5

"The axiomatization and algebraization of mathematics, after more than fifty years, has led to
the illegibility of such a large number of mathematical texts that the threat of complete loss of
contact with physics and the natural sciences has been realized."
 -- V. I. Arnold

"I believe there are exactly
15,747,724,136,275,002,577,605,653,961,181,555,468,044,717,914,527,116,709,366,23
1,425,076,185,631,031,296 protons in the universe, and the same number of electrons."
 -- Sir Arthur Eddington

Mathematics

"Mathematics has always skirted dangerously close to the shores of metaphysics."
 -- S. G. Shanker

"We now come to the decisive step of mathematical abstraction: we forget about what the
symbols stand for. ... There are many operations which [the mathematician] may carry out with
these symbols, without ever having to look at the things they stand for."
 -- H. Weyl

"Of all escapes from reality, mathematics is the most successful ever. It is a fantasy that
becomes all the more addictive because it works back to improve the same reality we are trying
to evade. All other escapes -- sex, drugs, hobbies, whatever -- are ephemeral by comparison."
 -- G.C. Rota

"Mathematics, this product of human activity, 'alienates itself' from the human activity which
has been producing it. It becomes a living, growing organism, that acquires a certain autonomy
from the activity which has produced it; it develops its own autonomous laws of growth, its
own dialect."
 -- I. Lakatos

Computation

"Computer science also differs from physics in that it is not actually a science. It does not
study natural objects. Neither is it, as you might think, mathematics."
 -- R. Feynman

"There is no need for infinities; there are quite enough finite numbers to serve any purpose."
 -- D. Knuth

"Calculation is a method of getting rid of information in which you are not interested. You
throw away what is not relevant."
 -- T. Norretranders

276

 Programming Methods

1

Versions of Factorial

Focal concepts:

Each of these encodings of the factorial function is functionally equivalent. How they
achieve the functionality differs.

Almost all are legitimate Mathematica code. Since the core process in Mma is the same
for each encoding, we have a demonstration that all are statically equivalent. Dynamically, ie
how the code runs, all are different.

The style of encoding should match as closely as possible the form of the natural

problem. Second, the style should match the coder’s natural way of thinking about the
problem.

Types of dynamic differences include:

 • Syntactic sugar : the same dynamic behavior (ie the same language). Macros
expand the sugared notation at read-time into standard notation. Eg:

 (a + b) ==> +[a,b]

 declare a=5; (a + b)

 • Functional syntactic sugar : shorter and specialized versions of functions. The
compiler usually standardizes these variants. Eg, all of the various loop constructs are the
same.

 for i=1 to n do Process[i]

 i:=0; (do Process[i]; i:=i+1 until i=n)

 dotimes[n, Process[#]]

 StreamProcess[IntegerStream[1, n]]

 • Functional model difference : different processes for achieving the same
functional objective. Most of these compile into different machine instructions, but a good
optimizing compiler might standardize some of them. Eg: iteration vs recursion vs mapping

 do[i from 1 to n, acc from nil, Process[i, acc]]

 (if i=n, acc, Process[i-1, F[acc, i]])

 (if i=n, 0, F[i, Process[i-1]])

 map[Process, {1,i,n}]

277

 Programming Methods

2

 • Operational difference : different engines achieve the same objective but use
different operational characteristics. Eg:

 F[1]=1; F[n]= G[n, F[n-1]]

 (if test[n] then (res:=F[i], ++i) else res)

 (send F, n)

 • Mathematical difference: different mathematical computations achieve the same
objective but use different models. Eg:

 F[n] = G[n] eg Fac[n]=Gamma[n+1]

 Decode[Process[Encode[F,n]]]

 When (F[Guess[n1] - F[Guess[n2]] = <small>), F[n1]

 • Level of Implementation difference : different processes occur at different levels
of abstraction. Eg:

 2 + 5 = 7

 010 + 101 = 111

 r1=Load[i0]; r2=Fetch[j0]; r3=Add[r1,r2]; Store[r3]

 b0 = xor[i0,j0]; b[1] = xor[i1,j1]

VERSIONS

1. proceduralFactorial[n] :=
 if (Integer[n] and Positive[n])
 then
 Block[{iterator = n,
 result = 1 },
 While[iterator != 1,
 result := result * iterator;
 iterator := iterator - 1];
 return result]
 else Error

2. sugaredProceduralFactorial[n] :=
 Block[{result = 1},
 Do[result = result * i, {i, 1, n}];
 result]

278

 Programming Methods

3

3. loopFactorial[n] :=
 { For[i=1 to n, i++, result := i*result];
 result }

4. guardedFactorial[n, result] :=
 Precondition: Integer[n] and Positive[n] /also end condition
 Invariant: factorial[n] = n * factorial[n - 1]
 Body: guardedFactorial[(n - 1), (n * result)]
 PostCondition: result = Integer[result] and Positive[result]
 and (result >= n)

5. assignmentFactorial[n] :=
 { product := 1;
 counter := 1;
 return assignmentFactorialCall[n, product, counter] }

6. assignmentFactorialCall[n, product, counter] :=
 if[(counter > n)
 then
 return product
 else
 { product := (counter * product); /error if these are
 counter := (counter + 1); /in reverse order
 return assignmentFactorialCall[n, product, counter] }]

7. recursiveFactorial[n] :=
 if[n == 1, 1, n*recursiveFactorial[n - 1]]

8. rulebasedFactorial[1] = 1;
 rulebasedFactorial[n] := n * rulebasedFactorial[n - 1]

9. accumulatingFactorial[n, result] :=
 if[(n = 0)
 then
 return result
 else
 return accumulatingFactorial[(n - 1), (n * result)]

10. upwardAccumulatingFactorial[product counter max] :=
 if[(counter > max)
 then
 return product
 else
 return upwardAccumulatingFactorial[(counter * product)
 (counter + 1)
 max]]

279

 Programming Methods

4

11. mathematicalFactorial[n] =
 Apply[Times, Range[n]]

12. generatorFactorial[n]
 Times[i, Generator[i, 1, n]]

13. combinatorFactorial :=
 Y f< n< COND (=0 n) 1 (* n (f (-1 n))) >>

14. sugaredCombinatorFactorial =
 S (CP COND =0 1) (S * (B FAC -1)))

15. integralFactorial[n] = Gamma[n + 1] :=
 integral[0 to Infinity, (t^n * e^(1 - n)), dt]

16. streamOfFactorials =
 streamAttach[1 streamTimes[streamOfFactorials streamOfPositiveIntegers]
]
streamOfPositiveIntegers =
 streamAttach[1 streamBuild[Add1 CurrentStreamValue]]

17. JamesCalculusFactorial[n] =
 Decode[Standardize[Do[Stack[Encode[i], acc] {i,1,n}]]]

 Stack[jf, acc] =
 Subst[jf UnitToken acc]

From Abelson and Sussman, Structure and Interpretation of Computer Programs

18. abstractMachineFactorial = <p385>

19. registerMachineFactorial = <p511>

20. compiledFactorial = <p596-7>

280

Management Decision Models

MEASUREMENT

Table Exercise

Measure the height of a table. Observe the techniques and the sources of
variation.

Richardson Exercise

Measure the perimeter of your hand using three indivisible units of
measurement (say 6 inches, 1 inch, and 1/10 inch). Observe and explain the
relationship between the result of the measurement and the arbitrary choice
of measurement unit.

Measurement Types Exercise

Consider the definitions of these seven types of measure. Each adds a new
constraint to the previous type.

 Indicative: existence
 Nominal: set membership
 Ordinal: ordering relation
 Interval: composition relation maps onto addition
 Ratio: meaningful zero
 Real: continuity
 Imaginary: complex structure of a number

Which types of measurement can be used on common things like: people in a
room, light in a room, hairs on your head, hunger, thoughts,

281

Management Decision Models

CRITICAL INCIDENTS

As you read the text (Chs 1-5), write down the location of sections which
make you think. These critical incidents may be confusions, insights,
daydreams, strong connections, disagreements, surprises, etc.

282

Virtual World Development

ALGEBRAIC SPECIFICATION EXAMPLES, CUBE

GenericCube = {

;the structure of the SPACE embodying cubeness

USE[UnitVector] = { i j k }

V = { 0 - 1 }

D = { 0 1 }

< vi_V, vj_V, vk_V > = [vi, vj, vk] * [i, j, k]T

< di_D, dj_D, dk_D > = [di, dj, dk] * [i, j, k]T

origin = < 0, 0, 0 >

center = < .5, .5, .5 >

;the PARTS of a cube, the DOMAIN of elementary elements

PART = { < vi_, vj_, vk_> }

VIRTEX = { < di_, dj_, dk_ > }

EDGE = { <di_, dj_, -> <di_, -, dk_> <-, dj_, dk_> }

FACE = { <di_, -, -> <-, dj_, -> <-, -, dk_> }

SELF = { <-, -, -> }

;the operator which yields properties of the cube

(p1_PART ^* p2_PART) = < ^*[p1.i p2.i] ^*[p1.j p2.j] ^*[p1.k p2.k] >

^*[0 0] = 0

^*[0 -] = 0

^*[0 1] = -

^*[1 -] = 1

^*[1 1] = 1

^*[- -] = -

;properties

parallel[p1_PART p2_PART] = {

p1_EDGE ^* p2_EDGE = _FACE

p1_EDGE ^* p2_EDGE = _SOLID

p1_EDGE ^* p2_FACE = _EDGE

p1_EDGE ^* p2_FACE = _FACE

p1_FACE ^* p2_FACE = _SOLID

}

283

Virtual World Development

perpendicular[p1_PART p2_PART] = {

p1_EDGE ^* p2_EDGE = _VIRTEX

p1_EDGE ^* p2_FACE = _VIRTEX

p1_FACE ^* p2_FACE = _EDGE

}

skew[p1_PART p2_PART] =

p1_EDGE ^* p2_EDGE = _EDGE

on[p1_PART, p2_PART] = {

p1_VIRTEX ^* p2_VIRTEX = _VIRTEX

p1_VIRTEX ^* p2_EDGE = _VIRTEX

p1_VIRTEX ^* p2_FACE = _VIRTEX

}

connectedby[p1_PART, p2_PART] = {

p1_VIRTEX ^* p2_VIRTEX = _EDGE

p1_VIRTEX ^* p2_VIRTEX = _FACE

p1_VIRTEX ^* p2_VIRTEX = _SOLID

p1_VIRTEX ^* p2_EDGE = _EDGE

p1_VIRTEX ^* p2_EDGE = _FACE

p1_VIRTEX ^* p2_FACE = _FACE

 }

GenericBlock = {

USE[GenericCube] = { cube }

BLOCK = { [a1_ARITH, a2_ARITH, a3_ARITH] * [cube.i, cube.j, cube.k]T }

IsCube[b_BLOCK] = (b.a1 = b.a2 = b.a3)

}

284

Virtual World Development

CubesInaCube = {

USE[GenericBlock] = { world b1 ... }

worldscale = [1000, 1000, 1000]

bigworld = worldscale * world

location[b_] = < bi, bj, bk >

InWorld[b_] =

 ((<0,0,0> <= location[b] >= worldscale * <1,1,1>) = true)

location[b1] = <0,0,0>

location[b2] = <1,0,0>

}

StackOfBlocks = {

USE[GenericBlock] = { world b1 ... }

STACK = { [[b1_ ...]] }

CONFIGURATION = { [[b1___]]__ }

emptytable = [[]]

[[]] [[]] = [[]]

location[emptytable] = < _, 0, _ >

PutBlockOnStack[b1_, s_CONFIGURATION] =

 ([[b1]] [[s]] = [[b1, s]])

TakeBlockOffStack[b1_, s_CONFIGURATION] =

 ([[b1, s]] = [[b1]] [[s]])

On[b1_, b2_] =

 ([[___, b1, b2, ___]] = true)

Above[b1_, b2_] =

 ([[___, b1, ___, b2, ___]] = true)

OnTable[b_] = ([[___, b]] = true)

OnTopOfStack[b_] = ([[b, ___]] = true)

285

;;
;;; STREAMS with DELAYED EVALUATION
;;;
;;; Ideas from Pavel Curtis, Richard Waters, Guy Steele and
;;; the Common LISP community. Most of the code by
;;; George Lugar and William Stubblefield.
;;;
;;; DELAY and FORCE permit fine grain program control of when
;;; a function or subprogram is executed. Instead of flow of
;;; control being managed by glue logic, loops, and function
;;; nesting, evaluation is either delayed or called when needed
;;; by the dynamic context of the program.
;;;
;;; Conceptually, a STREAM is a dynamically available data
;;; structure, implemented by a GENERATOR function:
;;;
;;; {first-data-item <generator-function-for-next-data-item>}
;;;
;;; When the first item is used by a process, the generator is
;;; called to construct the next data-item.
;;

(defmacro delay (exp) `(function (lambda () ,exp)))
(defun force (function-closure) (funcall function-closure))

;;;add a new first element to a stream
(defmacro cons-stream (new stream)
 `(cons ,new (delay ,stream)))

;;;get the first element
(defun first-stream (stream)
 (car stream))

;;;the rest of the stream is a generator function
(defun rest-stream (stream)
 (force (rest stream)))

;;;test for empty stream
(defun empty-streamp (stream)
 (null stream))

;;;make an empty stream
(defun make-empty-stream ()
 nil)

;;;append two streams
(defun combine-streams (s1 s2)
 (append s1 s2))

;;
;;;GENERIC-FILTER for LISTS

(defun filter (lst test)
 (cond ((null lst) nil)
 ((funcall test (first lst))
 (cons (first lst) (filter (rest lst) test)))
 (T (filter (rest lst) test))))

286

;;;
;;;GENERIC-FILTER for STREAMS

(defun filter-stream (stream test)
 (cond ((empty-streamp stream) (make-empty-stream))
 ((funcall test (first-stream stream))
 (cons-stream (first-stream stream)
 (filter-stream (rest-stream stream) test)))
 (T (filter-stream (rest-stream stream) test))))

;;;
;;;FIBONACCI STREAM FILTER
;;; consider generating the first N odd Fibonacci numbers
;;; using the minimum of computational effort
;;;

;;
;;;the standard mathematical definition of Fibonacci numbers
;;; fib[1] = 0
;;; fib[2] = 1
;;; fib[n] = fib[n-1] + fib[n-2]
(defun fib (n)
 (cond ((= n 1) 0)
 ((= n 2) 1)
 (T (+ (fib (- n 1)) (fib (- n 2))))))

(defun collect-fibs (n)
 (let ((result nil))
 (dotimes (i n (reverse result)) ;iterator i starts at 0, so we
must
 (push (fib (+ i 1)) result)))) ;add 1 to start fib counter at 1

;;
;;;an efficient doloop implementation which collects prior results
(defun memo-fibs (n)
 (let ((memo '(1 0)))
 (dotimes (i (- n 2))
 (push (+ (first memo) (second memo)) memo))
 (reverse memo)))

;;;a memoized doloop with an arbitrary filter
(defun filter-fibs (n filter-test-fn termination-test-fn)
 (do ((acc '(1 0))
 (test-acc nil))
 ((funcall termination-test-fn test-acc n)
 (reverse test-acc))
 (let ((new (+ (first acc) (second acc))))
 (push new acc)
 (when (funcall filter-test-fn new)
 (push new test-acc)))))

287

#|
;;; code fitted with lots of debug options,
;;; to illustrate inline debug tools
(defun filter-fibs (n filter-test-fn termination-test-fn)
 (do ((acc '(1 0))
 (test-acc nil))
 ((funcall termination-test-fn test-acc n)
;(print (list ‘VALUES-PRIOR-TO-DO-EXIT acc test-acc n))
;(break “At exit: count ~A fibs ~A filtered-fibs ~A” acc test-acc n)
 (reverse test-acc))
 (let ((new (+ (first acc) (second acc))))
;(break “new fib value: ~A” new)
 (push new acc)
;(print (list ‘new-stack acc))
 (when (funcall filter-test-fn new)
 (push new test-acc)))))
|#

(defun have-sufficient (lst n)
 (= (length lst) n))

(defun three-fives (n)
 (at-least-digits n 3 5))

;;; given a number N, find at least THIS-MANY of a given digit DIGIT
(defun at-least-digits (n this-many digit)
 (let ((digit-string (format nil "~D" n)) ;convert symbol to string
 (test-char (digit-char digit))) ;convert symbol to character
 (count-digits-test digit-string this-many test-char)))

(defun count-digits-test (string num char)
 (>= (count char string) num))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;an implementation based on streams
;;; cleaner, more maintainable, and as efficient as FILTER-FIBS
;;; better than FILTER-FIBS when the termination test is complex
(defun fibonacci-stream ()
 (fib-stream-aux 0 1))

(defun fib-stream-aux (fib1 fib2)
 (cons-stream (+ fib1 fib2)
 (fib-stream-aux fib2 (+ fib1 fib2))))

(defun accumulate (n stream)
 (cond ((zerop n) nil)
 (T (cons (first-stream stream)
 (accumulate (- n 1) (rest-stream stream))))))

(defun filter-stream-fibs (n test-fn)
 (accumulate n (filter-stream (fibonacci-stream) test-fn)))

;;;most abstract
(defun accumulate-filtered-stream (number-items generator-fn filter-fn)
 (accumulate number-items
 (filter-stream (funcall generator-fn) filter-fn)))

288

#|
;;;filter examples
(filter '(1 3 -9 5 -2 -7 6) #'plusp)
;;==> (1 3 5 6)
(filter '(1 2 3 4 5 6 7 8 9) #'evenp)
;;==> (2 4 6 8)
(filter '(1 a b 3 c 4 7 d) #'numberp)
;;==> (1 3 4 7)

;;;try these
(filter (collect-fibs 20) #'oddp) ;yields only 13 odd fibs, so guess
(filter (collect-fibs 30) #'oddp) ;to get 20 odd fibs
(time (filter (collect-fibs 30) #'oddp))
;;;don't try (filter (collect-fibs <some-guess>) #'three-fives)

;;;try these
(filter-fibs 20 #'oddp #'have-sufficient)
(filter-fibs 8 #'three-fives #'have-sufficient)
(time (dotimes (i 10) (filter-fibs 8 #'three-fives #'have-sufficient)))

;;;try these
(filter-stream-fibs 20 #'oddp)
(filter-stream-fibs 8 #'three-fives)
(time (dotimes (i 10) (filter-stream-fibs 8 #'three-fives)))

;;;try this
(accumulate-filtered-stream 8 #'fibonacci-stream #'three-fives)
|#

289

 Artificial Intelligence

 1

Technical Diff iculties in Model ing and Knowledge Representation
 (using blocks world in LISP as an example)

1. What is important to describe?
 Build little theories of little worlds.

 (Block A) (OnTable A) (Hand Empty)

2. How should descriptions be partitioned?
 Functions or Relations, special or general objects?

 (OnTable A) (On A Table) (not (OnTable Table))

3. How do we talk about groups and classes of objects?
 Quantification and abstraction

 (All (x) (Block x))

4. How do we address things with no names?
 Functions as indirect, compound names.

 (House-of John)

5. How do we handle things with more than one name?
 unique name hypothesis, unification

 (Uncle John) = (Brother (Father John)) = Bob

6. How do we make general rules which define the structure of relations?
 quantification

 (All (x) (iff (Uncle x) (Brother (Father x))))

7. How are typing and filters on domains represented?
 predicates in conjunction

 (All (x) (and (Person x) (Father x y)))

8. How do we join more than one fact?
 conjunction

 (and (F x) (G x))

9. How do we compute with logic?
 inference as natural deduction and as resolution

 (if (and (P x) (if (P x) (Q x))) (Q x))

290

 Artificial Intelligence

 2

10. How do we compute with quantifiers and classes of objects?
 implicit universal quantification, Skolemization

 (Exist (x) (P x)) ==> (P (Sk-1 x))

11. What is the difference between a fact and a query?
 query combination rules

 A. conjunction with negated query

 (and (P x) (not (Q ?)))

 B. Skolemization of query variables

 (Q ?) ==> (Q Sk-1)

 C. Facts imply Query

 (if (P x) (Q ?))

 D. The answer predicate

 (if (P x) (Answer x))

12. What kinds of rules do we need for query answering?

 A. definitions

 (iff (P x) (Q (R x)))

 B. mathematical structures (symmetry, transitivity, etc)

 (if (and (if (P x) (Q x)) (if (Q x) (R x))) (R x))

 C. permissible state transformations

 (Pick-up x) = (Assert (not (onTable x)))

13. How can we control the inference/search procedure?

 A. Pre and Post conditions

 B. Compound queries

 C. Searching databases of rules and facts

291

 Artificial Intelligence

 3

14. How do we steer the resolution process?

 A. set of support

 B. ordered resoultion

 C. static vs dynamic approaches (compiled vs run-time)

 D. lookahead, cheapest first, dependency directed search

15. How do we express meta-level reasoning (rules about rules)
 measure the savings vs brute force

16. What is the appropriate reasoning strategy?

 look-up tables
 natural deduction
 resolution
 forward or backward chaining
 simulation
 boundary logic

17. What do we do about contradictions and inconsistencies?

 A. Forbid them

 B. Default reasoning

 C. Exception handlers

 D. Three-valued logic (True, False, Inconsistent)

 E. Multi-valued logic (eg True, False, Contradictory, Meaningless)

 F. Contradiction maintenance

292

 Computer Ethics

1

Inappropriate Computation Dilemma

A senior professional software engineer in a large firm is asked by management to make a
decision about using a battery of computerized selection tests for hiring new employees. The
firm has the opportunity to purchase specialized software which tests the competence of
potential employees and makes predictions about their success as an employee of the firm.

The engineer’s analysis generates the following assertions:

1. No computer program can possibly do the job of selecting new employees.

2. However, the accuracy of selecting good employees is the same for either human or
computer selection; both do a terrible job.

3. The computer uses demographic information (such as owning a home, living less than
five miles from work, membership in professional organizations, type of car driven) which
increases accuracy of selection but is known to be bias and is technically illegal to use.

4. Removing the demographic information degrades performance of computer selection
to almost random. If such information were strictly forbidden during interviews by a person, the
selection accuracy of humans would also degrade to almost random.

5. Management is looking for a way to reduce selection costs. Computerized selection
accomplishes this objective, while human selection does not.

6. If computerized selection is used, the personnel department can be reduced by 70%,
saving the firm $80 million per year. Computerized selection costs about $20 million per year,
human selection costs about $100 million per year.

Management gave the senior engineer the responsibility to make the implementation choice.
There are three alternatives, all lead to the same personnel decisions and to the same overt
corporate behavior.

Choice 1: Keep the personnel department and the selection processes the same.
Total cost: $100 million

Choice 2: Institute computerized selection, even though it is both bias and inefficient.

 Total cost: $20 million

Choice 3: Select new employees randomly by computer.
 Total cost: $1 million

What choice should he make? Is there a professional ethical issue here?

What if, instead of hiring for a job, the computerized questions were to determine whether or
not a person should be given a home improvement loan (or issued a credit card)? Would your
decisions be the same? Would the ethical issues be the same?

293

 Computer Ethics

2

Massive Impact Dilemma

In the Walt Disney movie Flubber, a professor invents an anti-gravity gel. He put a little flubber
in his car, and immediately had a flying car. The following dilemma is about computational
flubber.

A Computer Science professor has been working for many years on a new conceptualization of
what computation is. He has published very little, because he has not yet come to a clear
vision. One night, the professor has a dream in which he sees a new way to build computers.
All of the work over the last many years condenses, and in the next two weeks, he designs and
specifies a new type of computer, call it MetaShift computation.

The professor talks to several colleagues about the new idea, all under non-disclosure, since he
suspects the idea may have commercial value. The net result after six months of close and
secret collaboration, using only personal resources, is that the professor’s team has built a new
computer chip with some unusual advantages:

1. MetaShift computation is fully backward compatible. All programs which would run
on vonNeumann architectures run on MetaShift. However, MetaShift has its own unique
operating system.

2. MetaShift is fully reconfigurable. One MetaShift chip can be converted into any

functionality within microseconds. With a MetaShift chip, specialized hardware (modems,
decryption, cell phones, parallel processors, video acceleration, etc) is unnecessary. Instead the
MetaShift is rapidly reconfigured into the desired functionality in real-time.

3. MetaShift works for all types of hardware architecture: CPUs, DSPs, floating-point

coprocessors, real-time systems, cellular phones, automobile fuel-injectors, etc.

4. New programs written for MetaShift can be developed in a special language which is
very easy to write, and provides automated debugging and program verification. Development
time and cost for new programs is about 20% of that for other techniques.

5. The cost of manufacturing MetaShift is half of conventional fabrication costs.

6. The performance of a MetaShift chip is at least 5 times better than any other existing

technology.

7. Because of the secrecy and uniqueness of the technology, it would be impossible for

any potential competitors to market a similar product. That is, no competition to MetaShift
would be possible.

When the MetaShift team did an in-depth market analysis, they discovered that within five
years, MetaShift Corporation would probably take 50% market share from each of the
companies listed below. Next to the company name is its market capitalization (market cap) in
billions of dollars. (Market cap is the value of a company, the number of outstanding shares
times the value of each share.) Further, when MetaShift went on the market, the market caps
of these companies were likely to reduce rapidly to about 40% of current values.

294

 Computer Ethics

3

COMPANY Market-cap ($bil l ions)

Microsoft 325
 Cisco 270
 Intel 249
 IBM 196
 SUN 98
 TI 76
 HP 72
 Dell 68

Applied Materials 41
 Compaq 40

Micron 27
Applied Micro 22

 Xilinx 18
 Altera 12
 AMD 8

Apple 7

Total Impact: $1.5 trillion

MetaShift itself would very likely reach a valuation of several trillion dollars within ten years.
When MetaShift went to market, most of the leading hardware and software operating system
companies in the world will be put out of business within a few years. As well, any company
using computer technology would have to switch to MetaShift products within a few years in
order to remain competitive. (This pressure is analogous to the impact of the Internet; the
market dominance is analogous to any monopoly.)

The market analysis team then approached both the government and the financial sector with
the commercial potential of MetaShift, disguised as a hypothetical story about innovation. After
extensive consultation with the world’s leading economic and regulatory authorities, MetaShift
knew that if it went to market with its product, the following result was most likely:

Wide-spread economic chaos would follow. The technology sectors of the world
stock market would crash, losing $2 trillion in assets, and over a million people
would loose their jobs. Next, several countries which were highly dependent on
technology (US, Ireland, India, Germany, Japan) would enter a moderate economic
depression.

At the same time, MetaShift would succeed spectacularly, making its first few thousand
employees into billionaires.

QUESTIONS

Should MetaShift go to market with its product?
Are there ethical components to this decision?
Are there ethically appropriate compromise positions?
If MetaShift goes to market, should the government immediately intervene?

295

 Computer Ethics

4

Capitalist Dilemma

[This is a computer ethics question since most of the computer and dotcom industry reaches
evaluation through techniques somewhat similar to the extreme case which follows.]

In the United States, there are two institutions which can legally mint (that is, create) money.
One is the Federal Treasury; the other is any corporation.

When a start-up is formed, it is given the right to issue stock. That stock (which can be created
with almost any cash value) can be sold on the open market. Should the national stock
exchanges grant the new corporation an Initial Public Offering (IPO), the stock becomes very
easy to sell since it can be traded through the stock exchange to anyone willing to pay for it.

Naturally, these processes are regulated, but the basic idea is that corporations can essentially
print their own money. This is one of the two major mechanisms through which the supply of
money in our economy grows (the other way is for the Federal Reserve to increase the national
debt by printing more money). Contrary to popular belief, incorporation is a “free lunch”.

The British Vancouver stock exchange is not as tightly regulated as the US exchanges. It is
known as a “highly speculative” exchange. This means that there is no strict requirement to
have any actual value for a corporation to reach IPO.

Here is a strategy for making money:

1. File for incorporation (cost is around $3000) as BogusCorp.

2. Issue junk stock with no value. Claim that the potential of BogusCorp gives it a value
of, say, $1 per share. Issue 20 million shares.

3. Take the company to IPO on a speculative exchange. In reality, you usually take the
company to a venture capitalist (VC) who provides the illusion of value by infusing the new
company with temporary funds. The VC then takes the company to IPO for 80% of the profits.

4. There are always gambling and speculative investors. Assume that a few buy shares
in BogusCorp, and $1M is raised.

5. Buy a company with actual value using the $1M as a deposit.

6. Now claim that BogusCorp has increased in value, the stock has actual value, and the
company is succeeding. Tell your investors that their investment has increased in value, and
watch the stock prices rise.

7. Cash out your own stock (which you give to yourself at incorporation for, say, 1 cent
per share) as quickly as possible.

Question

Is there an ethical problem with the way our economy works?

296

 Computer Ethics

5

Cyber-addiction Dilemma

From Communications of the ACM, 3/98, p11:

"Almost a fifth of college students spend more than 20 hours a week on the Internet...this
amount of time qualifies as addition....a New York University study (that) correlates high
student Internet use with doubled rates of academic dismissals. As a way of dealing with this
problem, schools in Michigan, Maryland, Texas, and Washington have imposed limits on student
Internet use. Dominant areas of user involvement: email, Web surfing, MUD interactive role-
playing, and home page production."

ibid. p.128 (by Peter Neumann):

"...activities that can lend themselves to addictive or compulsive behavior include...even
programming itself -- which seems to inspire compulsive behavior in certain
individuals....computers intensify and depersonalize whatever activity is being done, enabling it
to be done remotely, more expeditiously, less expensively, and perhaps without identification,
accountability, or answerability.

The effects of compulsive computer-related behavior can involve many risks to individuals and
to society, including diminution of social and intellectual skills, loss of motivation for more
constructive activities, loss of jobs and livelihood, and so on. A reasonable sense of physical
reality can be lost through immersion in cyberspace. Similarly, a sense of time reality can be
lost through computer use that is totally encompassing and uninterrupted by external events."

Biological systems are incomprehensibly complex. Computational systems are incomprehensibly
simple. Since the world we live in is beyond our comprehension, we construct projections
(virtual worlds with detail removed) to support the illusion that we understand and are in
control. The manufactured flat surfaces which surround us everywhere are an example of the
removal of natural complexity to enhance our illusion of tractability.

People fall into cyberspace because it is unnaturally simple and therefore supports the illusion of
competence. Of course, cyberspace is not simple, it too is an artifact of biological activity. It is
the illusion of potential simplicity which makes computational systems attractive.

Questions

Why have you chosen a profession which requires you to stare at a computer screen all day?

Was your mother correct when she asked you not to sit too close to the television screen?

Is the modern mind committed /addicted to representations of reality (reading-writing-
arithmetic, books, films, computers, etc.) rather than to reality itself?

How do you think physical reality will respond to the competition of virtual reality for the
attention of humanity?

297

 Computer Ethics

6

Logic Dilemma

As Computer Scientists, we may want to know: What is computation? Here are several possibly
disturbing ideas about computing:

1. Formal logic defines the control structure of programs and the silicon/physical basis of
computation.

2. Logic is underneath most of our culture’s conceptual structures (at least in academia).

3. Logic is the simplest and most useful formal system, with the hardest computational
problem (is P=NP?).

4. Logic has been in our language since the beginning of language.

 AND

5. People do not use logic well, and have a long history of not understanding it.

6. Logic is inconsistent when self-reference is incorporated into the domain model. No program
can refer to itself safely.

7. In computation, we convert the basic concept of integers into logical structures.

8. Deduction, and computation in general, consists of following meaningless tables and rules
while transforming a string of characters from one form to another.

9. Natural deduction is too difficult to use for most logic problems. Machine-based resolution is
too difficult to understand.

10. The if-then construct of logic is based on a confusing table mapping: if the antecedent is
false, then any consequent is true.

IN FACT, computation as logic seems to be antagonistic to all the grounds of philosophy:

 • aesthetics: Yuk, computation is difficult and confusing and meaningless
 • ethics: Everything we program is simply timed logic, so a program’s impact on culture
 is solely in terms of manipulating very limited digital logic forms.
 • epistemology: How can we know anything when our basic tool is hard to understand
 and inconsistent?
 • metaphysics: What is reality in an information society, where the virtual is defined by
 computation?
 • logic: Ah! Logic itself is one of the five fundamental areas of philosophy.

Form into study groups of three members, to answer these questions:
 1. Is there a problem in the above ideas?
 2. If so, what is it and what can we do about it?

298

 Computer Ethics

7

Triviality of Computation Dilemma

Quotes from Gian-Carlo Rota, Indiscrete Thoughts:

"The philosophy of mathematics carries out its work by focusing on the correlation between
mathematical things and mathematicians." Robert Sokolowski, p.xiii

That is, between the object-concept of mathematical items (which may or may not exist in a
Platonic world independent of our minds) and the process-concept of mathematical minds.

"Of all escapes from reality, mathematics is the most successful ever. It is a fantasy that
becomes all the more addictive because it works back to improve the same reality we are trying
to evade. All other escapes -- sex, drugs, hobbies, whatever -- are ephemeral by comparison."
p.70

"Not only is every mathematical problem solved, but eventually every mathematical problem is
proved trivial. The quest for ultimate triviality is characteristic of the mathematical enterprise."
p.93

Computer Science deals with a trivial subset of mathematical triviality by excluding the sacred
concept of Infinity and the mysterious concept of Void, and even by minimizing intractable (i.e.
non-polynomial, search-based, mathematically interesting) complexity. Computer Science (at
least Artificial Intelligence and Cognitive Science) pretends that the mind is like a computer, so
that the issues of complexity of mind and of humanity can be conveniently ignored or forgotten.

Computer Science engages in an extreme of abstraction neurosis, let's say abstraction
psychosis, by constructing the narrowest of worlds (binary bit-streams which interact only
over timed Boolean networks), and then by suggesting that this extreme reduction is somehow
whole, and somehow reflects physical reality. In fact, computation addresses only tr ivia l
trivialit ies.

Questions

How can humanity become so enamored with a technology that it forgets the reality within
which it is embedded?

Why are we so ready and able to limit our experiences to a small screen of phosphors and a
tableaux of a few dozen labeled keys?

How can our minds so easily confuse a pixel array with fully visceral experience? Confuse an
email exchange with fully interactive human dialog? Confuse digital information processing with
bodily experience?

What is the ethical dimension to these questions?

299

 Mathematical Foundations

 1

The Age of Mathematical Concepts and Symbols

Our clarity of understanding of mathematical concepts corresponds to the time evolution of
these concepts. That is, older is simpler. As well, the sequence of math concepts taught in
schools pretty much follows the historical evolution of mathematical ideas. Here is a rough road
map of the time evolution of various mathematical concepts. Asterisks, *, mark content
covered in class.

 8000 BC* one-to-one correspondence
 4000 BC* counting
 1000 BC . zero (as dot)
 400 BC* zero as blank space
 300 BC* 0 zero
 300 BC* syllogistic logic

1050 __ horizontal fraction bar
1417 + plus
1425 % percent
1432* mathematician
1484 exponent
1484 billion, trillion,…

1530 0.0 decimal fractions
1544 division
1549 parallel
1551 irrational numbers
1551 theorem
1556* () parentheses
1557* = equals
1570 equation
1570 prime number
1575 x variables as letters
1583 sin sine function

1618 * times (X in 1618, * in 1659)
1624 log logarithm function
1631 > greater/less than
1634 angle
1637 imaginary, real (Descartes)
1647 π pi
1655 A,B,C lettering for triangles
1655 ∞ infinity
1672 “math” (Newton)
1674 cos cosine function
1675 d/dx derivative, integral
1690 e base of natural logs

300

 Mathematical Foundations

 2

1718 probability
1734 f(x) function symbol
1763 natural number
1770 ∂ partial derivative
1777 i imaginary unit
1786 lim limit

1808 ! factorial
1816 ax = bx+c linear equation
1827 long division
1839 “Fermat’s last theorem”
1840 pencil
1841 | | absolute value
1843 [] matrices
1848 factor
1851* set

1882* isomorphism
1883 eigenvalue
1887 tensor
1888* U union, intersection
1891 histogram
1892 standard deviation

1902* e identity element
1910* ~, V not, or, and symbols
1921* truth table
1931 spinor
1935* homomorphism
1938 googol, googolplex
1940* Ø null set
1940* onto

1975 fractal
1975 chaos
1989* boundary mathematics

301

 Mathematical Foundations

 1

Functions

Ordered Pairs

We have seen elements, a, and sets of elements {a,b}. Adding an ordering relation creates a
lattice of ordered functions. Each function is specified by a collection of ordered pairs, (a,b).

Example:

The logical function (if a then b) is defined by a collection of three ordered pairs of
the form (a,b), where the values of a,b are in the set {0,1}:

 if a then b =def= {(0,0),(0,1),(1,1)}

The sixteen different ways of collecting the four possible ordered pairs, N at a time,
N=0..4, define the sixteen different Boolean functions of two variables.

Funct ions and Relat ions

 relation: xRy isTrue function: f(x)=y isTrue

 The set of all first values of a set of ordered pairs is called the Domain.

 The set of all second values of a set of ordered pairs is called the Range .

A relation is a collection of ordered pairs over two sets, the domain set and the range set.

A function is a relation (x,f(x)), such that

 1. Every member of the domain is associated with a member of the range, and

 2. No element in the domain is associated with more than one element in the range.

Perspectives on Functions

1. Formal constraints on a relation

 existence: all x inDomain . exists y inRange

 uniqueness: all pairs (x,f(x)) . if x1=x2 then f(x1)=f(x2)

2. Graph

 Domain on x-axis, Range on y-axis
 uniqueness permits the graph to cross any vertical line (i.e. x-value) only once.

302

 Mathematical Foundations

 2

3. Lookup table

 x f(x)
 1 1
 2 4
 3 9

4. Static relation between variables

 x = y + 5 "=" is an equivalence relation

5. Dynamic relation between variables

 f(x) = y x is the independent variable (controlled measurement)
 y is the dependent variable (observed measurement)

6. Pure operation

 (lambda (#) #^2 + # + 1)

 # is the formal parameter of the function which binds to any value

7. Sequence of combinators

 fac = (Y) lf.ln.(((0)n)1) ((*)n) (f) (-1) n

 A tree of substitution instructions

8. Rule of correspondence/algorithm

 take a number x
 double it 2*x
 add 3 2*x + 3

9. Set transformation

 Domain Range
 a -----------> b
 b -----------> c
 c -----------> d
 d -----------> d

10. Input-output machine

 x
 \ /
 \ /
 | |
 | |

 f(x)

303

 Mathematical Foundations

 3

11. Way of finding and assigning names to unnamed objects

 2^100 is the short name of a large number

12. Digraph

 (1) ---> (3) ---> (5)

Types of Functions

 Surjective, Onto, Epic all y inRange, exists x inDomain . f(x) = y

 Injective, 1-to-1, Monic if f(x1) = f(x2) then x1 = x2

 Bijective 1-to-1 and Onto

Bijective functions have an inverse, since every element in both the Domain and the Range are
in correspondence:

 two-way existence all x inD, exists y inR . f(x) = y
 all y inR, exists x inD . f(x) = y
 two-way uniqueness all (x,f(x)) . x1 = x2 iff f(x1) = f(x2)

 inverse: Exists f-inverse iff f is onto and one-to-one

Special Functions

 Identity f(x) = x

 Characteristic f(x) = 1 if x inA
 = 0 if x not inA

 Permutations (1,2,3) <--> (3,1,2) <--> (2,3,1)

 Sequences 1 .. n <--> 1/1 .. 1/n

304

 Mathematical Foundations

 4

Mappings
===Relation===

Some not mapped

Some not mapped

one-to-one

many-to-one

one-to-many

===Function===

 EXISTENCE

 ! =def=

all mapped

 UNIQUENESS

! =def=

no one-to-many

===Surjective/Onto/Epic Function===

 ONTO

 =def=

all mapped

===Injective/1-to-1/Monic Function===

 ONE-TO-ONE

 =def=

no many-to-one

===Bijective/1-to-1 and Onto Function===

 INVERSE

 =def=

maps both ways

ONE-To-ONE and ONTO

 =def=

no many-to-one and

all mapped in both

 Domain and Range

305

 Mathematical Foundations

 5

Funct ion Composition

 (f o g) = All pairs (x,z) Exists y such that (x,y) in g and (y,z) in f
 Note that the Range of g is a subset of the Domain of f

 (f o g)(x) = f(g(x))

 Associative: (f o g) o h = f o (g o h)

 Not commutative: f o g =/= g o f

 Maintains the type of the function:

 if f and g are functions, then (f o g) is a function
 if f and g are onto, then (f o g) is onto
 if f and g are one-to-one, then (f o g) is one-to-one

 Composition of a function with its inverse:

 f o f-inverse = identity I on Range of f
 f-inverse o f = identity I on Domain of f

 Inverse of a composition: (f o g)-inverse = g-inverse o f-inverse

Binary Functions

 Binary functions are a mapping of ordered pairs onto elements: ((a,b) c)
 e.g.: a + b = c + = {((a,b),c) such that (a,b) in S X S and c
inS}

 The domain consists of ordered pairs rather than single elements.

 If a,b, and c are in the Domain,

then the Domain is closed with regard to the function:

All x1,x2 inD such that f(x1,x2) inD

306

 Applied Formal Methods

1

Combinational Circuit Minimization

Section 4-11 of Floyd's Digital Fundamentals (handout) introduces a small practical example of
the use of Boolean algebra in digital circuit design.

The segments of a familiar seven-segment display (labelled a through g) are activated to read-
out as integers (0-9) by a network of logic gates actualized in silicon. The integers to be
displayed are input into the logic circuit encoded as four binary bits (0000 to 1001, with 1010
through 1111 not used), in a code named BCD for binary-coded-decimal.

Thus the BCD-to-7segment. parsing problem is to convert four binary input signals into seven
binary output signals in a given configuration. The parser/decoder itself is built onto a silicon
chip.

There are many different configurations of logic gates which achieve bcd-to-7segment
decoding. And there are many different criteria that a circuit manufacturer might wish to
optimize when designing the decoder logic circuit. To get the best price at a particular silicon
foundry, or for a particular substrate material, the logic network might need fewer wires but
more gates, or it may need to consume very little power, or perhaps it might have fit a regular
array of particular types of gates.

The parse logic can be represented as a set of seven equations in Boolean algebra, with four
inputs (the four BCD bits) and seven outputs (the on-off bits for each segment). Fortunately,
fundamental features of the mathematical representation map well onto important design
features of the silicon circuit.

For example, here is one particular solution in which each parenthesis boundary is a logical NOR
gate:

 a = ((D B ((C)(A)) (C A)))
 b = ((D (C) (B A) ((B)(A))))
 c = ((D C (B) A))
 d = (((C A) (C (B)) ((B) A) ((C) B (A))))
 e = (A ((C) B))
 f = ((D (B A) ((C) A) ((C) B)))
 g = ((D ((B) A) ((C) B) (C (B))))

Inputs: The number of occurrences of input labels (A-D) is the fanout of the input, which
relates to wiring and to power consumption. It is customary to use literals (either positive or
negative occurrences of an input, as in A or (A)) as circuit inputs, since both signal and
negated signal are usually available. This version has a low number of input references, 42, but
24 is a minimum.

Chip Area: The number of parentheses represents the number of NOR gates, which maps well
to the surface area of silicon that the circuit will take. Again in counting gates, the (A) form is
an input literal, and does not count in the gate count. This version uses 28 gates.

307

 Applied Formal Methods

2

Wiring: Wiring is becoming the dominant design issue for sub-micron silicon layout technology.
The number of wires in a circuit is indicated by the number of subterms of each above
expression, viewing the parentheses as a representation of a tree structure. The above solution
has few wires, 70 (equal to the number of gates plus the number of inputs), but it is easy to
reduce this number.

Timing: Perhaps the most important design criteria for a combinational circuit is its critical
path, the longest path from any input to an output. This determines the delay time of the
circuit and thus the rate of the driving clock. Critical path is modeled by the deepest nesting of
parentheses, since each parenthesis is a gate. This solution is well balanced for timing, several
equations have the maximum depth of 3 gates.

Noise: The noise in a circuit refers to the

Power Consumption: When a signal passes through a logic gate

Finally, we must recognize that silicon layout introduces new geometrical issues which require
the simple Boolean equation model to be extended. The primary example is structure sharing,
when the output of a subtree is used more than once. This converts the Boolean tree model
into a Boolean graph model. In the above example, the subcircuit "((C) B)" occurs in equations
e, f, and g. These can be implemented as one circuit with three outputs, resulting in a savings
of two gates and four literals. (The example is not well suited for structure sharing.) To
indicate structure sharing, construct an new variable name for the shared structure:

n = ((C) B)
e = ((A n))
f = ((D (B A) ((C) A) n))
g = ((D ((B) A) n (C (B))))

EXERCISE

Find the (close to) minimal configurations of the BCD-to-7segment decoder for

 number of simple NOR logic gates
 number of wires between gates
 length of critical path
 number of literals

Early in the assignment, read the section from DeMicheli’s Synthesis and Optimization of Digital
Circuits. Try your understanding of optimization techniques on example 8.2.2.

308

SPATIAL REPRESENTATION of ELEMENTARY ALGEBRA

William Bricken

January 1992

Abstract

Our understanding of a concept is tightly connected to the way we represent

that concept. Traditionally, mathematics is presented textually. As a

consequence novice errors, in elementary algebra for example, are due as much

to misunderstandings of the nature of tokens as they are to miscomprehensions

of the mathematical ideas represented by the tokens. This paper outlines a

spatial algebra by mapping the structure of commutative groups onto the

structure of space. We interact with spatial representations through natural

behavior in an inclusive environment. When the environment enforces the

transformational invariants of algebra, the spatial representation affords

experiential learning. Experiential algebra permits algebraic proof through

direct manipulation and can be readily implemented in virtual reality. The

techniques used to create spatial algebra lay a foundation for the

exploration of experiential learning of mathematics in virtual environments.

1. Introduction

How we think about mathematical concepts is often constrained by our

representation of those concepts. Syntax and semantics (representation and

concept) are tightly connected. The addition operation, for example, is

conceptualized as binary when written in linear text:

x + y

To add three numbers, we must use two addition operators:

x + y + z

Column addition, however, reconceptualizes the addition operation to be

variary (one operator can be applied to an arbitrary number of arguments):

 w

 x

 y

+ z

Naturally, the addition algorithms and techniques taught to students differ

for the different representations.

309

The traditional representation of binary addition is one-dimensional. There

are two locations for arguments, one on either side of the textual operator.

Column addition increases the dimension of representation to the plane;

digits of individual numbers are expressed horizontally, different numbers

are expressed vertically. From a spatial perspective, the number of

arguments that can be added in one operation depends upon the dimension of

the representation.

In general, how we represent numbers is a matter of convenience. For

learning mathematics (and for doing mathematics) it is often more convenient

to call upon visual interaction and natural behavior than it is to conduct

symbolic substitutions devoid of meaning. Spatial algebra uses the three

dimensions of natural space to express algebraic concepts. A higher

dimension of representation greatly simplifies the visualization and the

application of algebraic axioms. Algebraic transformation and the process

of proof are achieved through direct manipulation of the three-dimensional

representation of the algebra problem.

The difficulties children have when they begin to learn algebra are well

documented [9] [7] [17] [8] [4]. Spatial algebra addresses common errors

made by novice algebra students by permitting experiential interaction with

abstract representations. Spatial representations enhance understanding

[11]. Concrete manipulation is known to be an effective teaching technique

[15] [1] [14].

Virtual reality is a computer generated, multi-dimensional, inclusive

environment which can be accepted by a participant as cognitively valid [6].

VR teaching systems overcome the inconvenience of an insufficiently abstract

physical reality by combining mathematical abstraction with the intuition of

natural behavior. The programmability of VR allows a curriculum designer to

embed pedagogical strategies into the behavior of virtual objects which

represent mathematical structures [2]. Using a VR presentation system, the

axioms of algebra can be, so to speak, built into the behavior of the world.

The visual programming community has developed taxonomies of visual

approaches [13]. The experiential approach to mathematical formalism

presented in this paper is sufficiently unique not to fit into existing

taxonomies of visual languages. The approach of mapping formal operations

onto the topological structure of space itself is not diagrammatic, iconic,

or form-based. Most fundamentally, experiential mathematics imparts

semantics onto the void (empty space). Actively using the void is both

simple and conceptually treacherous [3]. The spatial techniques in this

paper are general and have been applied to several formal systems, including

elementary logic and integer arithmetic [3] [5].

310

2. Spatial Algebra

The components of space which can be used for the representation of

mathematical concepts include:

-- empty space (the void),

-- partitions between spaces (boundaries, objects),

-- labeled objects which share a space, and

-- labeled objects which share a boundary (touch one another).

This is sufficient structure for the expression of elementary algebra. One

possible map from algebraic tokens to algebraic spaces is:

Constants:

{ 1,2,3,...} --> { labeled-blocks }

Variables:

{ x,y,z,...} --> { labeled-blocks }

Operators:

{ + } --> { sharing-space }

{ * } --> { sharing boundaries }

Relations:

{ = } --> { partitions of space }

Examples of a spatial representation of the above map follow. The appendix

to this paper contains a list of principles for designing spatial

representations.

Constant as labeled block:

3

Variable as labeled block:

x

Space sharing as addition:

3 + 2 = 5

311

Touching as multiplication:

3 * 2 = 6

A simple algebraic term:

2x + 3

The gravitational orientation of the typography (top to bottom of page) in

the above examples is not an aspect of spatial algebra, although

gravitational metaphors are useful for the representation of sequential

concepts such as non-commutativity. As well, the sequencing implied by

stacked blocks is an artifact of typography; stacks only represent groups of

objects touching in space.

3. Group Structure of Spatial Forms

Generally, spatial representation can be mapped onto group theory. A

commutative group is a mathematical structure consisting of a set and an

operator on elements of that set, with the following properties:

-- The set is closed under the operation.

-- The operation is associative and commutative.

-- There is an identity element.

-- Every element has an inverse.

The integer addition and multiplication operators taught in elementary school

belong to the commutative group.

3.1 Commutativity

Spatial representation permits the implicit embedding of commutativity in

space. The commutativity of addition is represented by the absence of linear

ordering of blocks in space (visualize the blocks in this example as floating

in space rather than in a particular linear order):

x + y = y + x

312

We intuitively recognize objects contained in a three-dimensional space as

ordered solely by our personal perspectives. In contrast, typographical

objects are necessarily ordered in sequence by the one-dimensional nature of

text and by the two-dimensional nature of the page.

Commutativity of multiplication can be seen as the absence of ordering in

touching blocks:

x * y = y * x

Again, in space there is no preferential ordering to touching objects:

3.2 Associativity

Associativity of addition is the absence of an explicit grouping concept in

space:

 (x + y) + z = x + (y + z)

The apparent visual grouping expressed by differences in metric distance

between blocks can be assigned a semantics of associativity (for example, add

closest objects first), or it can be ignored, permitting the operation

assigned to space to address multiple arguments in parallel. From an

intuitive perspective, operations embedded in space apply to any number of

objects in that space. Whatever grouping we use is a matter a choice and

convenience. Parallel computers provide techniques for addressing all

objects at the same time.

Associativity of multiplication is the absence of an explicit grouping

concept in piles:

(x * y) * z = (x * z) * y

313

The apparent visual ordering of piles can be overcome by assuming that all

objects in a pile touch one another directly. Rather than displaying stacked

objects, VR might present objects in piles as completely interpenetrating.

Every object in this non-physical representation is in contact with every

other object, forming a Cartesian product of touching objects.

3.3 Distribution

Precedence operations associated with the distributive rule are the most

common algebraic error for first year students [12] [4]. The representation

of distribution in spatial algebra is particularly compelling. Generally,

the distributive law permits combining blocks with identical labels into a

single block with that label. Conversely (read right to left), distribution

permits splitting a single block that touches separate piles into separate

but identical blocks touching each pile:

ax + bx = (a + b)x

Blocks with identical labels are both singular and arbitrarily subdividable

in space. This ability to arbitrarily divide and combine blocks with a

common name is the same as the ability to arbitrarily create duplicate labels

in a textual representation. Changing the size and the number of occurrences

of a labeled block is easy in a virtual environment.

Any potential ambiguity between distributive idempotency and the use of space

as the addition operator is avoided by the effect of context on

interpretation. Idempotency requires the context of touching blocks

(multiplication). Addition requires the context of non-touching piles.

3.4 Identities

Zero is the identity element for addition. The identity in the spatial

metaphor is the void; identities are equivalent to empty space.

The additive identity:

x + 0 = x

That is, zero disappears in space:

314

The multiplicative identity:

1 * x = x

The One block disappears only in the context of an existing pile. A zero in

a pile makes the entire pile disappear:

0 * x = 0

3.5 Additive Inverse

The inverse of a positive number is a negative number. Negative numbers are

the most difficult aspect of arithmetic for elementary students. One way to

directly represent inversion is to create an inverter block. Another way is

to create an inversion space; for example using "under-the-table" for

inverses. Inverses can be represented in many ways: as inverters, as colors,

as orientations, as different spaces, as binary switches, as dividing planes,

as inside-out objects.

In this version of spatial algebra, piles are inverted by the inclusion of a

special inverter block:

Since a negative number can be seen as being multiplied by -1, the inverter

block is expressed as touching (multiplying) the pile which is inverted:

-x = (-1) * x

The inverter block expresses subtraction as the addition of inverses,

x - x is written as x + (-x)

315

The additive inverse:

x + (-x) = 0

3.6 Calculus of Signs

The use of the inverter block for negative numbers introduces a calculus of

signs into the algebra of integers. A sign calculus requires the explicit

introduction of the positive block:

The positive block is the inverse of the inverter block. It introduces the

concept of polarity and the act of cancellation. Numbers without signs are

usually assumed to be positive. Making signs explicit removes this

assumption.

The following rules of sign calculus assume each sign has a unit value

associated with it.

Additive cancellation in space:

Cardinality in space:

Multiplicative cancellation in piles:

316

Multiplicative dominance in piles:

The following example illustrates an inverter sign distributed across all

objects in a space:

(-x) - y = -(x + y)

3.7 Multiplicative Inverse

Finally, division is the multiplicative inverse. Again, there are many

possible ways to represent an inverse in a spatial representation. Since the

traditional notation for fractions is primarily two-dimensional, it already

has many spatial aspects. The division line that separates numerator from

denominator could be carried over to the spatial representation as a plane

dividing a pile into two parts. Here however, the multiplicative inverse is

represented by inverse shading of the block label:

1/x

The multiplicative inverse:

x * 1/x = 1

One weakness with the choice to represent a reciprocal as differently shaded

labels is that composition of reciprocals -- for example 1/(1/x) -- is not

visually defined. Choice of representation necessarily effects pedagogy. It

is an empirical question as to which representations facilitate learning

algebraic concepts efficiently.

Fractions are the second most difficult area for students of arithmetic. A

typical problem using fractions requires the application of the distributive

rule:

317

 a/b + c/d = (ad + bc)/bd

4. Factoring

Factoring polynomial expressions is equivalent to multiple applications of

distribution. For instance:

 x^2 + 4x + 3 = (x + 1)*(x + 3)

One advantage of the spatial representation on the right-hand-side of this

equation is that both the factored and the polynomial forms are visible

concurrently. Looking from the side, we see two completely touching spaces

which represent the factored form:

(x + 1) * (x + 3)

Looking down from the top, we see four piles which represent the polynomial

form:

x^2 + 1*x + 3*x + 1*3

Here, the factored form is converted to the polynomial by slicing each

addition space through the middle.

318

5. Caveats

Experiential mathematics is quite new as a formalism. The idea of mapping

semantics onto the void first appeared in a mathematical text that is widely

acknowledged as impenetrable [16]. Spatial algebra is an interpretation of

the abstract mathematics developed by Spencer-Brown in Laws of Form and by

Louis Kauffman at the University of Chicago [10].

The representational details of the spatial algebra presented here are, like

any choice of syntax, somewhat arbitrary. The text lists many options, for

example, for the representation of inverses. This representational freedom

can be constrained by empirical studies intended to determine which

particular representations are effective for task performance. There is no

reason to believe that effective representations are generic. More probably,

different individuals will prefer and understand different representations in

the context of different tasks. One strength of VR is that it is completely

customizable to individual participants. Still, the research to determine

which representations are effective has yet to be conducted. In fact,

demonstrating that spatial algebra actually improves performance in high

school algebra remains as future research.

Significant components of a complete spatial mathematics have not been

included in this paper. In particular, a compelling representation for

exponentiation is missing. Spatial arithmetic has been assumed. A technical

refinement is needed for the calculus of signs, to either remove cardinality

completely from signs, or embed it deeper, expressing "-" as "-1". We also

need to consider representation of functions such as the logarithm and sine.

Spatial solutions to these shortfalls exist, but a completely integrated

spatial mathematics is not yet formulated.

The weakest aspect of the proposed spatial algebra is the representation of

three or more multiplied objects, x*y*z for example. This form can be

represented by either completely interpenetrating blocks or by "blocks" with

complex shapes that twist around to touch all other blocks. This problem

gets particularly difficult for multiplying several factored expressions, for

example: (x + 1)*(x + 2)*(x + 3)

In general, the cubic blocks presented in this paper are misleading, since

they imply a Cartesian coordinate system. In fact, the spatial

representation proposed here has no associated metric (or rather, the metric

is irrelevant to the mathematical formalism). The treatment of space might

be improved by explicitly including a representation for the table which

blocks can be imagined to rest upon.

We also have little experience with animation of and interaction with spatial

forms in VR. This paper presents the design phase of a wider study into the

utility of VR for mathematics education[18].

319

6. Conclusion

Spatial representation provides a map to a wide range of new visual

languages. The examples in this paper are expressed in a language of labeled

blocks. The spatial rules, however, map just as easily onto people in a

room, toys in a box, salmon in streams, and bricks in a wall.

The techniques of spatial algebra and the display capabilities of virtual

environments have coevolved. Spatial algebra is proposed as an experimental

approach for exploring the representation-dependent aspects of novice algebra

errors. Virtual reality display systems are proposed as a straightforward

way to present spatial algebra as an experiential mathematical system.

During the next phase of this work, we will explore the pedagogical

characteristics of spatial representations in virtual reality.

7. Appendix: Principles of Spatial Mathematics

I use the term boundary mathematics to describe the collection of rules and

tools used to generate representations of spatial algebra. Boundary

mathematics is general in that its principles can be applied to many

mathematical domains. This paper, for instance, has implicitly assumed a

model of spatial integers.

The roots of boundary mathematics can be found in G. Spencer-Brown's

mathematical text Laws of Form. Boundary mathematics is quite unique, since

it incorporates both the participant and the void into its formal structure.

This makes formal theorems sound somewhat like pop psychology.

General Principles

1. Mathematics is the experience of abstraction.

2. Experience is not a recording. Representation is not reality.

3. The void cannot be represented.

4. Space requires participation. To participate is to partition space, to

construct a boundary.

5. Boundaries both separate and connect.

6. Boundaries identify an intentional construction.

7. Representation and meaning are different sides of the same boundary.

8. Our body is our interface.

320

Mathematical Principles

9. Operators, invariants, and identities can be embedded in space.

10. Multiplicity is generated by observation.

11. Commutativity is embedded in space, ordering is embedded in time. All

virtual entities are asynchronous parallel processes.

12. Associativity is the choice of the participant. All entities are

autonomous.

13. Entities are both singular and plural in form, depending upon the

construction of the participant. Entities with the same name are the same

entity.

14. That which is common to every entity in a space is common to the space

itself, forming the ground of the space.

15. Touching spaces are in pervasive contact (Cartesian product).

16. Crossing a boundary inverts a space. Inversion unites partitioned

spaces.

17. Normalized spaces are those equivalent to the void. They can support

arbitrary grounds.

8. References

[1] Berman, B., & Friederwitzer, F. (1989) Algebra can be elementary ...

When it's concrete Arithmetic Teacher, 36 (8), 21-24.

[2] Bricken, M. (1991) Virtual reality learning environments: potentials

and challenges Computer Graphics Magazine, ACM, 7/91.

[3] Bricken, W. (1986) A simple space Proceedings of the Sign and Space

Conference, University of California at Santa Cruz. Also as HITL Technical

Report R-86-3 , University of Washington, 1989.

[4] Bricken, W. (1987) Analyzing errors in elementary mathematics Doctoral

dissertation, School of Education, Stanford University.

[5] Bricken, W. (1989) An introduction to boundary logic with the Losp

deductive engine Future Computing Systems 22-4.

321

[6] Bricken, W. (1992) Virtual reality: directions of growth Proceedings,

Imagina'92, Centre National de la Cinematographie, Monte-Carlo.

[7] Gerace, W.J., & Mestre, J.P. (1982) The learning of algebra by 9th.

graders: Research findings relevant to teacher training & classroom practice

Final Report, National Institutes of Health, Washington DC, (Contract # 400-

81-0027).

[8] Greeno, J. (1985) Investigations of a cognitive skill Technical

Report, Pittsburgh: University of Pittsburgh Learning and Development Center.

[9] Kaput, J.J. (1978) Mathematics and learning: roots of epistemological

status In J. Lochhead & J. Clements (Eds.), Cognitive process instruction

Philadelphia, PA: Franklin Institute Press.

[10] Kauffman, L. (1980) Form dynamics Journal of Social and Biological

Structures 33, 171-206.

[11] Larkin, J.H., & Simon, H.A. (1987) Why a diagram is (sometimes) worth

ten thousand words Cognitive Science, 11, 65-99.

[12] National Assessment of Educational Progress (1981) Results from the

second mathematics assessment National Council of Teachers of Mathematics,

Reston, Va.

[13] Shu, N. C. (1988) Visual programming Van Nostrand Reinhold, New York.

[14] Shumway, R.J. (1989) Solving equations today School Science and

Mathematics, 89, 208-219.

[15] Sowell, E.J. (1989) Effects of manipulative material in mathematics

instruction Journal of Research in Mathematics Education, 20, 498-505.

[16] Spencer-Brown, G. (1972) Laws of form Julian Press, New York.

[17] Thwaites, G.N. (1982) Why do children find algebra difficult?

Mathematics in school, 11(4), 16-19.

[18] Winn, W. & Bricken, W. (1992) Designing virtual worlds for use in

mathematics education Proceedings of AERA, 1992.

322

TEACHING FOR INNOVATION

TOPIC 1. TEACHING PRACTICES

 Best Practices in Teaching and Learning

 TP: Good Teaching: The Top Ten Requirements

 TP: Seven Principles of Good Practice in Undergraduate Education

 Teaching Styles

 TP: Just-in-Time Teaching

 TP: Problem-based Learning

 TP: Learning by Doing

 Instructor Control vs. Learner Control

 TP: Silence and Structure in the Classroom

 TP: Minimizing the Distances Between Teacher and Student

323

TEACHING FOR INNOVATION

TOPIC 2. LEARNING STYLES

 TP: Major Learning Theories of the Twentieth Century

 TP: The Nature of Learning

 TP: How Students Learn, How Teachers Teach, and What Goes Wrong

 How People Learn

 Learning Styles

 Types of Learners

 Meyers-Briggs Type Indicator

 Multiple Intelligences

 Talkers and Listeners

Teaching Examples (Bricken):

 Management: Classification

324

TEACHING FOR INNOVATION

TOPIC 3. TEACHING STYLES AND METHODS

 TP: New Technologies in Teaching and Learning: Evolution of Lectures

 TP: Powerpoint Debate

 Teaching Large Classes: Strategies for Improving Student Learning

 Activity Breaks: A Push for Participation

 TP: Problem Solving Through Design

 TP: Asking the Right Questions in Class

 TP: Keeping Discussion Going Though Questioning, Listening, Responding

 TP: Tactics for Effective Questioning

325

TEACHING FOR INNOVATION

TOPIC 4. THESIS PREPARATION AND GUIDANCE

 Small Piddly Projects, and Big Time Undertakings

 TP: The Roles and Phases of Mentorship

 TP: Combining Undergraduate Research and Learning

Teaching Examples (Bricken):

 HCI: Project Ideas and Refinement

 HCI: Design a Software Toolkit

 Ethics: Local Expert

326

TEACHING FOR INNOVATION

TOPIC 5. CURRICULUM DESIGN

 Teaching and Facilitating Learning Syllabus

 TP: The Function of the Course Syllabus

 TP: The Value of Writing a Course Portfolio

 Syllabus Elements

 Course Structuring

 Cognitive Taxonomy

 Affective Domain Taxonomy

 Psychomotor Domain Taxonomy

 TP: 101 Things You Can Do the First Three Weeks of Class

Teaching Examples (Bricken):

 Situated Curriculum

 Curriculum Exercises

 Just What is VR Anyway?

 Wonderful Computer Science Books

327

TEACHING FOR INNOVATION

TOPIC 6. STRUCTURING CONTENT

 Lesson Plan Outline

 How to Write Clear Objectives

 Matching Objectives to Learning Styles

Teaching Examples (Bricken):

 Formal: Proof Techniques, An Extended Example

 Programming: A Small Interpreted Language

 Programming: Pseudocode Assignment Package

328

TEACHING FOR INNOVATION

TOPIC 7. PROJECTS AND ASSIGNMENTS

Teaching Examples (Bricken):

 HCI: HCI Assignments

 HCI: Interface Design Simulation

 AI: LISP Program Modification Exercises

 Management: Formal Model: Card Games

 HCI: Complete Window System

 VR: 3D Interactive Virtual Worlds

 VR: Expandable Virtual Cube World

 DS&A: Exam Package

329

TEACHING FOR INNOVATION

TOPIC 8. SMALL GROUP ACTIVITIES

 Managing Learner-Instructor Interaction and Feedback

 TP: Group Presentations

 TP: Establishing Ground Rules for Groups

 TP: Integrating Team Exercises with Other Course Work

 TP: Peer Instruction

 TP: Difference Between Cooperative and Collaborative Learning

Teaching Examples (Bricken):

 Management: simulation game

 Management: archeologist, telephone drawing, consensus

330

TEACHING FOR INNOVATION

TOPIC 9. CHALLENGING THE STUDENTS

 Contests Motivate Top Students in Large Classes

Teaching Examples (Bricken):

 Foundations: Chapter 0 and responses

 DS&A: Versions of Factorial

 Management: Measurement

 Management: Critical Incidents

 Formal: Formal Cube, Algebraic Specification

 AI: Streams with Delayed Evaluation

 AI: Knowledge Engineering

 Ethics: Six Dilemmas

Applications to Teaching Mathematics (Bricken):

 Foundations: Timeline

 Foundations: Functions

 Formal: Combinatorial Circuit Minimization

 Spatial Math

331

TEACHING FOR INNOVATION

TOPIC 10. TESTING AND EVALUATION

 Nine Principles of Good Practice for Assessing Students

 Assessment and Outcomes

 Evaluating a Course

Teaching Examples (Bricken):

 Foundations: Map of the territory

 Ethics: Questions and text answers, course summary, content evaluation

 Management: What you have learned

332

9 Principles of Good Practice for Assessing Student Learning

Alexander W. Astin; Trudy W. Banta; K. Patricia Cross; Elaine El-Khawas;
Peter T. Ewell; Pat Hutchings; Theodore J. Marchese; Kay M. McClenney;
Marcia Mentkowski; Margaret A. Miller; E. Thomas Moran; Barbara D. Wright

1. The assessment of student learning begins with educational values.

2. Assessment is most effective when it reflects an understanding of
 learning as multidimensional, integrated, and revealed in
 performance over time.

3. Assessment works best when the programs it seeks to improve have clear,
 explicitly stated purposes.

4. Assessment requires attention to outcomes but also and equally to the
 experiences that lead to those outcomes.

5. Assessment works best when it is ongoing not episodic.

6. Assessment fosters wider improvement when representatives from across
 the educational community are involved.

7. Assessment makes a difference when it begins with issues of use and
 illuminates questions that people really care about.

8. Assessment is most likely to lead to improvement when it is part of a
 larger set of conditions that promote change.

9. Through assessment, educators meet responsibilities to students and to
 the public.

333

Assessment and Outcomes

Assessment is an iterative feedback process for continual program improvement:

1) Define intended program learning objectives, specifically, what do we want
our graduates to know and actually to be able to do?

2) Define measurable outcomes that will serve as evidence of how well each
objective has been met, and then actually to measure them. Because this step
requires explicit articulation of program success criteria, it often has the
added benefit of clarifying faulty assumptions.

3) Compare actual observed outcomes to intended program objectives: how well
did we meet our objectives in general, and our student learning objectives in
particular?

4) Based on how well or how poorly achieved outcomes compare to intended
outcomes, elements of the program (including assessment elements) are redesigned
as appropriate, and a new assessment cycle begins.

The fundamental role of assessment is to provide a complementary methodology for
monitoring, confirming, and improving student learning.

Good assessment practice is based on several assumptions:
 -- Good assessment practice assesses what is most important.
 -- Anything that can be taught or learned can be assessed.
 -- Assessment should be applied at course, program and institutional levels.
 -- Every program and every course should be organized around clearly
 articulated learning goals and objectives, explicit assessment methods,
 and measurable outcomes.
 -- An assessment process should be logistically feasible and practically
 manageable to insure that it is regular and ongoing.

In the traditional "teacher-centered" model, the focus has been on inputs: the
credentials of faculty, the topics to be presented, the sequencing of
presentations, and so forth.

In the "student-centered," or "learner-centered" model, the focus is on outputs:
what knowledge have students actually acquired, and what abilities have they
actually developed?
 -- The primary measure of program success is what graduates actually know
 and are able to do.
 -- Student-centered programs are competency-based.
 -- Learner-centered education is dedicated to continual improvement through
 ongoing assessment of student learning.

334

Evaluating a Course

Ferraro Smith – "The main goal of evaluation is to improve learning. In
classroom settings, evaluation centers on the quality of instruction, the
environment and the course materials, as well as knowledge and test scores".

1. Instructors should evaluate the quality of their teaching to improve it.
2. Instructors should know if the students are learning what they should learn.
3. Instructors should know if the course fits into the goals of the department.
4. Good course evaluation is important in promotion and tenure processes.

Don't wait until the end of the course to evaluate teaching.

Formative Evaluation: Usually conducted during the process of instruction to
 evaluate student learning in order to improve teaching.

Summative Evaluation: Conducted at the end of the instruction to determine the
 effectiveness of the teaching/learning process.

Feedback from different sources:
 -- Classroom observation
 -- Students assessment
 -- Teaching staff
 -- Other "stakeholders" (employers, former students, external examiners)

1. Mid-semester evaluation:
 -- Is the course moving too slowly? Or too quickly?
 -- Does the absence of questions indicate comprehension? Or confusion?
 -- How do students feel about being in the class?
 -- Are they more interested in the subject matter or less than at the start?
 -- What's the most important thing they have learned thus far?

 2. Develop a teaching portfolio to collect multiple sources about teaching
effectiveness:
 -- A teaching portfolio is a "factual description of a professor's major
 strengths and teaching achievements. It describes documents and
 materials which collectively suggest the scope and quality of a
 professor's teaching performance" (Seldin, 1997, p. 3).
 -- Collect samples of teaching materials such as syllabi, assignments, etc.
 -- Collect samples of students learning such as papers, projects, etc.

 3. Review and reflect on teaching process:
 -- Reflections on the choice of class activities
 -- Reflections on specific measurements
 -- Reflections on the ways to provide feedback, etc.

1

335

 Mathematical Foundations

 1

Final Project

HAND IN AT THE BEGINNING OF CLASS.

Make of a map of the territory of discrete mathematics.

 • Include each of the topics we have covered in class, and each topic in the text.

 • Include the defining characteristics of each separate topic: the domain, the axioms,

the essential idea.

 • Pay particular attention to the relationships between topics.

• Order your map so that it clearly displays which topics are subsumed by (or are
subsets of, or "inherit the characteristics of") other topics.

• Distinguish between old and new topics, between topics that are well understood by
the mathematical community and those that are still evolving rapidly.

 • Next, assign to each topic and to each collection of defining characteristics, three

rating values:

 1. your understanding of the topic or characteristic
 (0= no understanding at all, 10 = total and complete understanding)

 2. your confidence in the above understanding rating
 (0 = no confidence, 10 = complete confidence)

 3. the importance of the topic to you
 (0 = completely irrelevant, 10 = completely relevant and important)

 • You may want to extend your map with topics that you consider to be part of

discrete math, but were not covered in class.

 • ONE PAGE only please.

336

 Computer Ethics

1

Initial Perspectives, Johnson’s Responses (from the text)

Answer these questions briefly:

1. What is ethics?

The evaluation of arguments, reasons, and theories that justify morality.

Exploring what humans beings ought to do.

2. What is ethical Computer Science?

Professional ethics is strongly differentiated,
the role gives the role-holder special powers and responsibilities.

Computer professionals owe a responsibility to their field and to society.

Following the code of ethics for the profession.

3. What are some major issues in Computer Ethics?

professional ethics
privacy
free speech
property rights
accountability
social values

4. What is unique about Computer Ethics as opposed to regular ethical behavior?

 new entities: programs, software, microchips, web sites, video games
 massive scale, power and pervasiveness
 new kinds of knowledge
 new levels of complexity and unreliability

new instrumentation for new types of human action
 virtuality

337

 Computer Ethics

2

Summary of Computer Ethics

Make a list of items which you consider central for each of the topics below.
My answers plus class readings:

• techniques of ethical analysis

 case studies and dilemmas
 utilitarianism
 idealism

relativism
 human rights and duties

fairness and justice
 virtue

ethical egoism
communal good
psychometrics, sociometrics
argumentation
information mapping
professionalism
deep feeling
informed discussion
codes of ethics
 Ten Commandments for Computer Ethics
 ACM Code of Ethics and Professional Conduct
 Software Engineering Code of Ethics: Approved!
spiritual belief

• central issues for computer ethics

 privacy
 Camp, Web Security and Privacy
 ownership and property rights
 Spinello, An Ethical Evaluation of Web Site Linking
 accountability and agency
 Ulrich, IT Ethics
 trespass (hacking) and computer crime
 Tavani, Defining the Boundaries of Computer Crime
 regulation and control
 UTICA Case Study
 accuracy and digital trust
 Smith, Limits of Correctness in Computers
 instrumental, digital reasoning
 Weizenbaum, Computerized Gods
 Weizenbaum, Against the Imperialism of Instrumental Reason
 disembodiment (avatars, cyborgs, simulacrum)
 3D Interactive Virtual Worlds

338

 Computer Ethics

3

 the nature of software (open-source, patentable, etc)
 Walker, Programs Are Programs
 Lessig, The Laws of Cyberspace
 Raymond, The Cathedral and the Bazaar
 access and cyberliteracy
 security and encryption
 freedom of speech and censorship
 the differences between reality and virtuality, social values

• ways that computer ethics impacts society and culture

 living in virtuality
 Berry, Why I Am Not Going to Buy a Computer
 Virtual Reality, As Unreal as It Gets
 trust in digital machines
 Inappropriate Computation Dilemma
 ecommerce and the new economy
 Capitalist Dilemma
 transformation of the work environment
 Kreie & Cronan, Making Ethical Decisions
 addiction
 Cyber-addition Dilemma

technological utopianism
 Joy, Why the Future Doesn’t Need Us
 corporate giants
 Massive Impact Dilemma

hacktivism
Manion & Goodrum, Terrorism or Civil Disobedience:

Toward a Hacktivist Ethic
 ownership of virtual properties
 surveillance and loss of privacy and autonomy
 electronically mediated communication
 digitization of cognition
 administrative cluelessness
 new paradigm for science
 Triviality Dilemma

• how you anchor you own ethical perspective?

 deep feeling
 ethical egoism

339

 Computer Ethics

1

Lecture and Handout Evaluation

Do not put your name on this. Check one rating box for each topic or handout.

 RATING

 didn’t read
 don’t recall good neutral not good

Textbook

Johnson, Computer Ethics, Third Edition.

Class materials

Initial Perspectives

Ethical Issues and Case Studies

Case Study Practice; UTICA Case Study

Resources

Final Assignment (local expert)

Inappropriate Computation Dilemma

Capitalist Dilemma

Cyber-addiction Dilemma

Triviality Dilemma

Massive Impact Dilemma

3D Interactive Virtual Worlds

Virtual Reality, As Unreal as It Gets

Summary of Computer Ethics

340

 Computer Ethics

2

 RATING

 didn’t read
 don’t recall good neutral not good
Class Content

 1) Th 1/4

Intro to Philosophy and Ethics
 2) Tu 1/9

Conceptual frameworks
 3) Th 1/11
 Case-study methodology
 4) Tu 1/16
 Case-study practice
 5) Th 1/18
 Psychometric methodology
 6) Tu 1/23
 Professional ethics
 7) Th 1/25
 Uniqueness of software
 8) Th 1/30
 Netiquette
 9) Th 2/1
 Security, encryption
10) Tu 2/6
 Freedom of speech
11) Th 2/8
 Regulation, content control
12) Tu 2/13
 Privacy, data mining
13) Th 2/15
 Privacy
14) Tu 2/20
 Agency, accountability
15) Tu 2/22
 Hacking and crime
16) Tu 2/27
 Ownership and property
17) Th 3/1
 Intellectual property rights
18) Tu 3/6
 Social impact

341

 Computer Ethics

3

 RATING

 didn’t read
 don’t recall good neutral not good

Art icles

Ten Commandments for Computer Ethics

ACM Code of Ethics and Professional Conduct

Software Engineering Code of Ethics: Approved!

Camp, Web Security and Privacy

Spinello, An Ethical Evaluation of Web Site Linking

Ulrich, IT Ethics

Tavani, Defining the Boundaries of Computer Crime

Smith, Limits of Correctness in Computers

Weizenbaum, Computerized Gods

Weizenbaum,

Against the Imperialism of Instrumental Reason

Walker, Programs Are Programs

Lessig, The Laws of Cyberspace

Raymond, The Cathedral and the Bazaar

Berry, Why I Am Not Going to Buy a Computer

Kreie & Cronan, Making Ethical Decisions

Joy, Why the Future Doesn’t Need Us

Manion & Goodrum, Terrorism or Civil Disobedience:

Toward a Hacktivist Ethic

342

Management Decision Models

FINAL EXAMINATION

Next week, you will be asked to complete a final exam. This sheet contains
the final examination question, the rules of the game, and hints about how to
do your best on the exam.

Final Exam Question

Record what you have learned in this class.

Final Exam Rules

Answer the question in real-time, during the exam time slot. However, you
may do any amount of preparation and bring any resources to the examination
room.

Materials prepared at home can be attached to the real-time exam so long as
your exam discusses them.

Hints for Doing Well

Honesty counts double.

Use any media, but writing is the obvious default.

Be abstract. Don't recount every activity and every thought. Rather,
summarize and condense.

Be brief. This is not a justification of your learning, it is a recording.

Charts, graphs, decision networks, and mathematical models are highly
encouraged. These techniques summarize information well.

Be self-referential. It's a big win if you can illustrate what you have
learned in the way you talk about what you have learned.

Avoid fantasy. Don't talk about what you wish you have learned.

Use succinct nuggets, piercing clarity, meaningful indicators.

Illustrate ideas with brief personal stories.

The idea is for you to generate a real-time reflection of what you have
learned. When you know something, it is easy to record.

343

	zsyllabus.pdf
	Binder1.pdf
	head1.pdf
	best-practices.pdf
	top-ten.pdf
	best-practice.pdf
	teach-styles.pdf
	just-in-time.pdf
	prob-based.pdf
	learn-by-do.pdf
	learner-control.pdf
	town-meeting.pdf
	less-distance.pdf

	Binder2.pdf
	head2.pdf
	learn-theories.pdf
	nature-of-learn.pdf
	how-learn.pdf
	how-people-learn.pdf
	learning-styles.pdf
	types-of-learners.pdf
	myers-briggs.pdf
	mult-intell.pdf
	talk-listen.pdf
	05-classify copy.pdf

	Binder3.pdf
	head3.pdf
	lecture-evolve.pdf
	powerpoint.pdf
	large-classes.pdf
	activity-breaks.pdf
	design.pdf
	ask-questions.pdf
	question-listen.pdf
	questioning.pdf
	second-life-moo.pdf

	Binder4.pdf
	head4.pdf
	small-assigns.pdf
	mentorship.pdf
	thesis-research+learning.pdf
	0701-project-and-refine.pdf
	06-whole-design copy.pdf
	09-final copy.pdf

	Binder5.pdf
	head5.pdf
	willsey-syllabus.pdf
	syllabus.pdf
	portfolio.pdf
	syllabus-elements.pdf
	course-struct.pdf
	bloom.pdf
	affective.pdf
	psychomotor.pdf
	things-to-do.pdf
	1102-situated-syllabus copy.pdf
	0603-curric-exercises.pdf
	1104-whatisvr copy.pdf
	0404-books.pdf

	Binder6.pdf
	head6.pdf
	lesson-plan.pdf
	objectives.pdf
	obj-style.pdf
	0203-proof-eg.pdf
	0513-interpreted.pdf
	0503-a1-5-pseudocode.pdf

	Binder7.pdf
	head7.pdf
	0605-assigns.pdf
	0604-design-exercise.pdf
	0305-code-exercises.000606.pdf
	1007-formal-org.pdf
	0707-completewindow.pdf
	0916-3dworlds.pdf
	1109-cube-structure copy.pdf
	0405-algorithm-package.pdf

	Binder8.pdf
	head8.pdf
	interaction.pdf
	group-present.pdf
	groups.pdf
	team-exercises.pdf
	peer-instruction.pdf
	collab-coop.pdf
	1013-game-theory.pdf
	1010-consensus-bate-arch.pdf

	Binder9.pdf
	head9.pdf
	contests.pdf
	0104-ch0replies.pdf
	0505-factorial.pdf
	1008-measurement.pdf
	1006-critical-incident.pdf
	12-asl-cube copy.pdf
	0300lisp05-streams.pdf
	0308-knowledge-eng.pdf
	0910-dilemmas.pdf
	0106-timeline.pdf
	0124-functions.pdf
	0208-minimize-exercise.pdf
	spatial-algebra copy.pdf

	Binder10.pdf
	head10.pdf
	nine-assess.pdf
	assessment.pdf
	course-eval.pdf
	0120-final.pdf
	0919-questions-and-responses.pdf
	0920-eval.pdf
	1018-final.pdf

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

