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DE NOVO
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Void and Mark
We construct a particular space of representation by framing it.

In the beginning there is no structure, there is only the frame.

Void space within the frame is featureless.
–  void space is not filled with points, nor is it continuous

A frame is singular and cannot be decomposed.
–  absence of decomposition means absence of the concept of intersection

A mark is a representation of the frame within itself.
–  marks support both an inside and an outside (just like frames)

Replication of marks constructs a language of boundary forms.
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Typographical Delimiters as Marks
A delimiting pair of tokens (parentheses, braces, brackets, quotations, etc.)

can be used as a  typographical representation of a mark.

(        )
            \
             parens boundary

inside      outside

Parentheses used as spatial boundaries are called parens.

=  ((())(()()()))

Parens introduce these accidental properties (which must be ignored):
–  fragmentation of the boundary into two tokens "left" and "right"
–  linear ordering of boundaries in a string
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Two Types of Composition
A boundary form is a composition of non-intersecting closed curves.

Boundaries support two types of composition
–  SHARING   is composition on the outside
–  BOUNDING is composition on the inside
–  neither operation requires a concept of arity

Bounding
Forms are bounded (contained or enclosed) by an outer boundary.
Any number of forms can be contained by the same boundary. 

Sharing
Forms sharing a space are structurally independent.
Any number of forms can share a space.
Forms within a common boundary share the interior space of that boundary.
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Two Types of Crossing

Boundaries have two sides, permitting two types of crossing:

    from the inside to the outside                         from the outside to the inside

Impermeable boundaries deny crossing of both types.

Semipermeable boundaries permit crossing in one direction only.

Fully permeable boundaries do not distinguish their contents.
(They are indistinguishable from the absence of a boundary.)

Boundaries impose structure on a featureless representational space 
by distinguishing their contents, nothing more.

* W. Bricken  (1994)  Inclusive Symbolic Environments.  in K. Duncan and K. Krueger (eds.)  
  Proceedings of the 13th World Computer Congress, v3,  Elsevier Science,  163-170.

By convention, the semantic viewpoint is on the outside.*  
(That is, we are on the outside of a representational space.)
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Pattern-Variables and Pattern-Equations
Pattern-variables stand in place of any form (i.e. universal quantification), including

–  an outer boundary and its contents      A = (()(()()))
–  forms sharing a space                                                       A = (()()) (())
–  the absence of a form                                          A = <void>

Pattern-templates are forms (usually with variables) that identify an equivalence class.

        Example:  (A ((B)))     matches ( (()()) (())  ),  with   A=(()())   and   B=<void>

as well as ( ((()()))  () ),  with   A=()       and   B=()()
    but not (  ()  (()())  )

Pattern-equations collapse specific equivalence classes.

–  transformation of patterns is based on substitution and replacement of equals
–  pattern-equations can be applied in parallel when matches do not overlap structurally
–  pattern-equations define the semantics of the boundary language

Example:  (A)(B) = (A B)
((())(()()))
((())(()()))       two parallel substitutions
((()  (  )))       one resultant sequential substitution
(((      )))
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First Class Void

Void-equivalence
–  forms and pattern-templates can be equated to <void>.

Void-based pattern transformation
–  substitution of <void> for a void-equivalent form is deletion of the form

Void-substitution
–  void-equivalent forms can be deleted at will
–  void-equivalent forms can be constructed anywhere throughout a form

Empty containers permit the semantic use of non-representation.
( )  contains nothing on the inside

~~~  The Principle of Void-Equivalence  ~~~
Void-equivalent forms are syntactically irrelevant and semantically inert.

(A ()) = <void>

(B (A ())) = (B)

(B) = (A ()) (B (A () (A ())))
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Two Interpretations

Many interpretations of boundary mathematics have been developed, including
knot theory, Boolean algebra, real numbers, and imaginary logic and numerics.*

Two interpretations follow,   integer arithmetic    and      propositional logic.

Object mapping:               0 = <void>,  1 = ()      FALSE = <void>,  TRUE = ()
                                                   Addition is SHARING                    Disjunction is SHARING

          Multiplication is BOUNDING               Negation is BOUNDING
                             (())=()()         ()=()(),  (())=<void>

The syntactic varieties presented later apply to any interpretation.

A (semantic) interpretation is a mapping of boundary forms to
objects in a domain of interest, together with pattern-equations

that specify the calculus of the domain.

* W. Bricken  (1991) A Formal Foundation for Cyberspace.  Proceedings of Virtual Reality ‘91, 
  The Second Annual Conference on Virtual Reality, Artificial Reality, and Cyberspace, San Francisco, Meckler, 9-37
* W. Winn and W. Bricken  (1992)  Designing Virtual Worlds for Use in Mathematics Education:  
  The Example of Experiential Algebra.  Educational Technology, v32(12), 12-19.

Corresponding operations:

Pattern-equations:
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BOUNDARY 
INTEGERS
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Boundary Integer Arithmetic*, Representation
Boundary place notation 

uses depth of nesting rather than location in sequence for place notation.

0      <void>
 1     • = ( )
 2    •• = (•)
 3   ••• = (•)•
 4  •••• = (•)(•) = (••) = ((•))

Pattern-equations for standardizing forms:

    •• = (•) Double
                 (A)(B) = (A B) Merge

Standardization constructs an equivalent form with the fewest number of boundaries.

*Kauffman, L.H. (1995)  Arithmetic in the Form.  Cybernetics and Systems 26: 1-57.

() is atomic 
and cannot 

be decomposed

merge doublestroke arithmetic



Copyright © 2006  William Bricken.  All rights reserved.

Boundary Integer Arithmetic, Operations
Addition is sharing the same space:

       A + B  ==>  A B

Multiplication is unit substitution:
    A * B ==> substitute[B for • in A] = substitute[A for • in B]

Addition occurs by placing forms in the same void-space
–  no ordering, grouping, or arity in void-space

Multiplication occurs by placing replicate forms in •-space
–  no ordering, grouping, or arity in •-space

Neither operation requires additional computation.
–  no number facts, no "carrying"

All computation is form standardization.
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Boundary Integer Operations, Example

7+5:  put 7 and 5 in space

  ((•)•)•((•))  •   L
  ((•)•) ((•)) ••   D
  ((•)•) ((•))(•)   M
  ((•)•   (•)  •)   L
  ((•)    (•) ••)   D
  ((•)    (•)(•))   M
  ((•      •  •))   D
  ((   (•)    •))    

5*7:  substitute 7 for • in 5

 ((((•)•)•))((•)•)•   M
 ((((•)•)•)  (•)•)•   M
 ((((•)•)•    •)•)•   D
 ((((•)•)  (•) )•)•   M
 ((((•)•    •) )•)•   D
 ((((•)  (•) ) )•)•   M
 ((((•    •) ) )•)•   D
 ((((  (•) ) ) )•)•    

5: ((•))•        7: ((•)•)•          7+5: ((•)•)•  ((•))•

5*7:   ((    •    ))    •     *  ((   •    )   •    )   •
((    7    ))    7     =  ((   5    )   5    )   5
(( ((•)•)• )) ((•)•)•  =  (( ((•))• ) ((•))• ) ((•))•

  7*5:  substitute 5 for • in 7

((((•))•)((•) )•)(( •) )•   M
((((•))•  (•) )•  ( •) )•   L
((((•))   (•)•)   ( •)•)•   M
((((•)     •)•      •)•)•   D
((((•)     •)   (•)  )•)•   M
((((•)     •     •)  )•)•   D
((((•)       (•)  )  )•)•   M
((((•         •)  )  )•)•   D
((((    (•)    )  )  )•)•   

Standardizing the results:   (D = double     M = merge     L = linear artifact)
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1
2
4
8
16
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34
35

Reading Boundary Integers
1
2
4
5
10
14
15
30
34
35

begin
innermost

begin
innermost
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Standardizing Boundary Integers

Standardization reduces
the boundary form of 35
from 14 to 8 boundaries
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BOUNDARY 
LOGIC
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The Evolution of Boundary Logic

Originated by the founders of formal logic
–  1879  Gottlob Frege  --
 the German logician who invented formal mathematics
–  1896  Charles S. Peirce  -- 

the American logician who invented semiotics

1890s  C.S. Peirce entitative and existential graphs, boundary notation
1963    I. Calvino "A Sign in Space"  (literature)
1967   G. Spencer Brown "Laws of Form"  (mathematics)
1975   F. Varela  (and L. Kauffman) "A Calculus for Self-reference"  (imaginaries)
1982   W. Bricken Losp Deductive Engine  (computer science)
1985   First Sign/Space Conference  (cybernetics)
1992   R. Shoup "A Complex Logic for Computation with Simple
  

            Interpretations for Physics"  (physics)
2001 L. Kauffman "The Mathematics of Charles Sanders Peirce"

(mathematics)

network notation based on implication

enclosure notation based on conjunction
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A Boundary Arithmetic for Logic

Common boundaries cancel  (when empty on the inside)

Call

Cross

Interpretation        
The outside is TRUE.   T = 

The inside is FALSE.   F = <void>

One spatial form provides two symbolic values.
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Boundary Logic Pattern-Equations

(( )) =             Cross

( )( ) = ( )        Call

SHARING EVALUATION                 (idempotency)

BOUNDING EVALUATION                 (involution)

Each pattern-equation is implemented by pattern-matching and substitution.
Each proceeds from left to right by void-substitution.

<void>

Spencer Brown's radical innovation 

composition on the outside 
is disjunction

composition on the inside 
is negation
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Evaluation via Deletion

      a IFF b ––> (a  b) (( a)( b)) transcribe

      Let a=0, b=0: (    ) ((  )(  ))  ==> ( ) call, cross

      Let a=0, b=1: (  ()) ((  )(()))  ==> <void> cross 3 times

      Let a=1, b=1: (()()) ((())(()))  ==> ( ) call, cross 3 times

FALSE = 0 = <void>
To evaluate a FALSE variable:  delete the variable.

TRUE  = 1 = ( )
To evaluate a TRUE variable:  delete the container of the variable.

Example:
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Transcribing Boolean and Boundary Logics

The boundary logic "constant" set: { () }
The boundary logic "function" set: { () }

     boolean                         boundary

FALSE <void>

TRUE ( )
NOT a (a)
a OR b  a b
NOT (a OR b) (a b)
IF a THEN b (a) b
a AND b ((a)(b))
a EQUIVALENT b (a b)((a)(b))
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One-to-Many Mapping
One boundary form represents many different conventional logic expressions.

A one-to-many mapping is necessary for one system to be simpler.

The particular logical interpretation of a given boundary form is a free choice.*

      ( )
1
NOT 0
1 OR 0
0 OR 1 OR 0
0 NOR 0
(NOT 0) OR 0
NOT (0 OR 0)
NOT (0 OR 0) OR (0 OR 0)
...

   ((a)(b))
a AND b
b AND a
NOT (NOT a OR NOT b)
NOT a NOR NOT b
NOT (a NAND b)
(a AND b) OR 0
NOT (a NAND (0 OR b)) OR 0
NOT (b NOR 0) OR NOT a OR 0
...

<void> = 0 = 0 OR 0 = 0 OR 0 OR 0 = ...

*Shin, S. (2002)  The Iconic Logic of Peirce's Graphs.  MIT Press
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Algebraic Pattern-Equations

(A ()) =             Occlusion

A {A B} = A {B}       Pervasion

Curly braces refer to any deeper intervening structure.
There is no analogy in conventional mathematical techniques.

<void>

Each pattern-equation is implemented by pattern-matching and substitution.
Each proceeds from left to right by void-substitution.

Axioms

((A)) = A           Involution

Useful Theorems

() A  = ()          Dominion

remarkably
succinct
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Deep Transformation
Any form on the outside of a boundary pervades all inside spaces.
From the outside, boundaries are transparent (semipermeable).

 A {A B} = A {B}        Pervasion

Forms in an exterior space are arbitrarily present in every interior space.

a (b (a c (d (a b e))))
a (b (  c (d (  b e)))) pervasion a
a (b (  c (d (    e)))) pervasion b

Therefore:  a (b (a c (d (a b e)))) = a (b (c (d (e))))

Example:
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Boundary Logic Proof of Modus Ponens

 (((a)((a) b))) b transcription
   (a)((a) b)   b involution ((A)) ==> A
   (a)(     )   b pervasion A (A B) ==> A (B)
      (     ) dominion A ( ) ==> ( )

  (a AND (a IMPLIES b)) IMPLIES b   modus ponens

  (a AND (a IMPLIES b)) IMPLIES b   a IMPLIES b ––> (a) b
  (a AND    (a) b     ) IMPLIES b   a AND X ––> ((a)(X))
  ((a)  (  (a) b  )  ) IMPLIES b   X IMPLIES b ––> (X) b
( ((a)  (  (a) b  )  ) )    b

Transcribe

Reduce

Interpret TRUE

  α, (α  |= β)  |= β ––> (( (α) ((α) β) )) β
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Pathsways Through Metatheory
Void-equivalence

The map to logic
Metatheory is invariant under provable equivalence.

–  the maps from Boolean logic and from AEG to boundary logic preserve validity*

Algebraic deduction
Entailment transcribes into Birkoff's rules of equational deduction**.

–  validity is maintained by bidirectional equations
–  substitution and replacement are domain independent

Algebraic structure
Completeness follows from the maximal ideal theory***.

Pattern rewrite system
Void-substitution assures both termination and convergence.

Induction over boundary patterns
Ground cases:   ()  and  <void>.
Given (A),  show A
Given A B,  show A ,  B  separately

*Dau, F. (2005) Mathematical Logic with Diagrams.  www.dr-dau.net/publications.shtml
**Birkoff, G. (1935)  On the Structure of Abstract Algebras.  Proceedings of the  Cambridge Philosophical Society, 31 417-429
***Halmos, P. and Givant, S. (1998)  Logic as Algebra.  Mathematical Association of America.

《(A ())》= (《A ()》) = (《A》《()》) = (《A》()) = (    ()) = <void>

A=B IF  A⇒B
A=B IF  A⇒C  AND B⇒C
A=B IF  A⇒() AND B⇒()
     OR A⇒   AND B⇒
A=B IMPLIES  φ[A]=φ[B]

Net result:
         α → β = (α) β
         α  |− β = (α) β
         α  |= β = (α) β
  α, (α  |= β)  |= β = (( (α) ((α) β) )) β
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Alpha Existential Graphs
Peirce's five rules for Alpha Graphs* map directly to boundary logic pattern-equations:

RULE                     EXISTENTIAL                 ENTITATIVE                     BOUNDARY

R1. Erase ((A) B) |= (() B)  ((A) B) |= ((A)  )
   (A ()) =

R2. Insert      (A) |= (A B)       A  |=  A B

R3. Iterate    A (B) |= A (A B)       A (B) |= A (A B)
 A {B} =  A {A B}

R4. Deiterate A (A B) |= A (B)  A (A B) |= A (B)

R5. Double cut     ((A)) = A     ((A)) = A    ((A)) = A

* Peirce, C.S. (1931-58)  Collected Papers of Charles Sanders Peirce.  Hartshorne, C. Weiss, P., Burks, A. (eds.)  Harvard Univ Press.

}

}

Boundary logic provides a more modern algebraic transformation system,
uniting pairs of asymmetrical implicative rules into symmetrical equations.

The Erase and Insert rules of AEG fail to provide a clear termination goal.
Boundary logic uses a single void-equivalence rule, Occlusion, as a
termination condition.
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SYNTACTIC VARIETY:
REPRESENTATION
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Syntactic Varieties (textual)
Each syntactic variety that follows assumes Occlusion and Pervasion, 

the two pattern-equations that define boundary logic.

Topological varieties 
–  different spatial data structures with different implementation behavior 
–  analogous to conventional data structures

Geometric varieties 
–  different metric structures with similar implementation behavior 
–  analogous to exchanging tokens in a string-based language

variety        dimension     bounding        sharing      point of view

parens 1 nest space outside
enclosures 2 enclose space outside
trees 2 link branch outside
maps 2 border common neighbor outside
centered maps 2 border common neighbor inside
rooms                            2/3 door common neighbor inside
graphs/networks 3 link branch both
paths 3 cross fork both
blocks 3 stack common floor outside
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Syntactic Varieties (diagrammatic)

b ab a

b

a

b

a
a

b

a

b

a bba
ba

a b

a

b

a

bb

a

a b

a   b
b

ba

aa bb a

a b

ba

a b

a   b

aa b b

b
a

a
b

a

b

a b

((a b)((a)(b))) ((a b)((a)(b)))

(             )
 (   )(      )

  a b  ( )( )
        a  b

(             )
 (   )(      )

  a b  ( )( )
        a  b

((a b)((a)(b)))

paths

parens

graphs

mapscentered maps

enclosures

trees

rooms

blocks
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Mappings Between the Syntactic Varieties

extrude twice

jordan curve enclose

share structure

extrude

doors and walls

a b

ba

((a b)((a)(b)))a b

b
a

a
b

b

ba

a

a

b

a b b a a

b

borders

point of view

{{a,b},{{a},{b}}}

unique forms
q

u
a

n
t

i
f

y

potential structure 2(2(a+b)+2(2a+2b))

   1 2 3 4 5 a b
1    x x 
2            x x
3        x x
4            x
5              x

matrices

polynomials

sets
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Syntactic Concepts
Dimensionality of representation

1-space fractures containment, 2-space limits structure sharing

Top and bottom
represents outermost and innermost

Point of view
read from outside (objectively) or from inside (subjectively)

Anthropomorphism
some forms are physically familiar, others are abstract

Surrounding space
map varieties incorporate the background substrate

Geometric varieties
rubber sheet geometry

Topological varieties,  generated by
extrude and rotate in higher dimensional space
structure sharing (unique objects)
convert links to borders
exterior or interior point of view
exchange objects for processes
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SYNTACTIC VARIETY:
TRANSFORMATION
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Occlusion

=

a

(() A)  =

a

=

=a

a
=

=a a

a

=

delete path

close door

delete structure

parens

paths

blocks

enclosures

rooms

graphs

maps
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Shallow Pervasion

=a a

bb a

a b = a b

ab
=

ab

ba

=

ba

ba

=

ba

a

ab
=

a

bA (B A) = A (B)

Deep pervasion operates across any depth of nesting.

delete block

close door

delete path

delete link

remove border

delete label

delete variable
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A

B
A

B

(((A) ((A) B))) B    transcription   

(((A) (     ))) B    pervasion (A) B

(             ) B    occlusion

(             )      dominion

( ((A) ((A) B)) ) B = ()

A

B

(((A) ((A) B))) B    transcription   

(((A) (     ))) B    pervasion (A) B

(             ) B    occlusion

(             )      dominion

( ((A) (     )) ) B = ()

A

B

(((A) ((A) B))) B    transcription   

(((A) (     ))) B    pervasion (A) B

(             ) B    occlusion

(             )      dominion

( ((A) (     )) ) B = ()

B

(((A) ((A) B))) B    transcription   

(((A) (     ))) B    pervasion (A) B

(             ) B    occlusion

(             )      dominion

(               ) B = ()

B

(((A) ((A) B))) B    transcription   

(((A) (     ))) B    pervasion (A) B

(             ) B    occlusion

(             )      dominion

(               ) B = ()

(((A) ((A) B))) B    transcription   

(((A) (     ))) B    pervasion (A) B

(             ) B    occlusion

(             )      dominion

(               )   = ()

interpret as TRUE• •

Modus Ponens:  Parens and Enclosures

A

B
A

B

(((A) ((A) B))) B    transcription   

(((A) (     ))) B    pervasion (A) B

(             ) B    occlusion

(             )      dominion

( ((A) ((A) B)) ) B = ()
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ba

(((a) ((a) b)))   b          transcription
  (a) ((a) b)     b          involution
  (a) ((a)  )     b          pervasion  b
  (a)   a         b          involution 
  ( )   a         b          pervasion  a
  ( )                        dominion

a

b

a

b

(((a) ((a) b)))   b          transcription
  (a) ((a) b)     b          involution
  (a) ((a)  )     b          pervasion  b
  (a)   a         b          involution 
  ( )   a         b          pervasion  a
  ( )                        dominion

ba

a

b

(((a) ((a) b)))   b          transcription
  (a) ((a) b)     b          involution
  (a) ((a)  )     b          pervasion  b
  (a)   a         b          involution 
  ( )   a         b          pervasion  a
  ( )                        dominion

ba

a

b

(((a) ((a) b)))   b          transcription
  (a) ((a) b)     b          involution
  (a) ((a)  )     b          pervasion  b
  (a)   a         b          involution 
  ( )   a         b          pervasion  a
  ( )                        dominion

ba

a

b

(((a) ((a) b)))   b          transcription
  (a) ((a) b)     b          involution
  (a) ((a)  )     b          pervasion  b
  (a)   a         b          involution 
  ( )   a         b          pervasion  a
  ( )                        dominion

ba

a

b

(((a) ((a) b)))   b          transcription
  (a) ((a) b)     b          involution
  (a) ((a)  )     b          pervasion  b
  (a)   a         b          involution 
  ( )   a         b          pervasion  a
  ( )                        dominion

ba

a

b

(((a) ((a) b)))   b          transcription
  (a) ((a) b)     b          involution
  (a) ((a)  )     b          pervasion  b
  (a)   a         b          involution 
  ( )   a         b          pervasion  a
  ( )                        dominion

ba

a

b

(((a) ((a) b)))   b          transcription
  (a) ((a) b)     b          involution
  (a) ((a)  )     b          pervasion  b
  (a)   a         b          involution 
  ( )   a         b          pervasion  a
  ( )                        dominion

ba

(((a) ((a) b)))   b          transcription
  (a) ((a) b)     b          involution
  (a) ((a)  )     b          pervasion  b
  (a)   a         b          involution 
  ( )   a         b          pervasion  a
  ( )                        dominion

ba

a

b

(((a) ((a) b)))   b          transcription
  (a) ((a) b)     b          involution
  (a) ((a)  )     b          pervasion  b
  (a)   a         b          involution 
  ( )   a         b          pervasion  a
  ( )                        dominion

ba ba

a

b

(((a) ((a) b)))   b          transcription
  (a) ((a) b)     b          involution
  (a) ((a)  )     b          pervasion  b
  (a)   a         b          involution 
  ( )   a         b          pervasion  a
  ( )                        dominion

Modus Ponens:  Paths and Rooms
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b

a

(( (((a) ((a) b)))  b ))      transcription
(( (((a) ((a)  )))  b ))      pervasion  b
(( (((a)   a    ))  b ))      involution
(( ((( )   a    ))  b ))      pervasion  a
(( (             )  b ))      occlusion 
(                      )      occlusion 

b

a

(( (((a) ((a) b)))  b ))      transcription
(( (((a) ((a)  )))  b ))      pervasion  b
(( (((a)   a    ))  b ))      involution
(( ((( )   a    ))  b ))      pervasion  a
(( (             )  b ))      occlusion 
(                      )      occlusion 

b

a

(( (((a) ((a) b)))  b ))      transcription
(( (((a) ((a)  )))  b ))      pervasion  b
(( (((a)   a    ))  b ))      involution
(( ((( )   a    ))  b ))      pervasion  a
(( (             )  b ))      occlusion 
(                      )      occlusion 

b

a

(( (((a) ((a) b)))  b ))      transcription
(( (((a) ((a)  )))  b ))      pervasion  b
(( (((a)   a    ))  b ))      involution
(( ((( )   a    ))  b ))      pervasion  a
(( (             )  b ))      occlusion 
(                      )      occlusion 

b

a

(( (((a) ((a) b)))  b ))      transcription
(( (((a) ((a)  )))  b ))      pervasion  b
(( (((a)   a    ))  b ))      involution
(( ((( )   a    ))  b ))      pervasion  a
(( (             )  b ))      occlusion 
(                      )      occlusion 

b

a

(( (((a) ((a) b)))  b ))      transcription
(( (((a) ((a)  )))  b ))      pervasion  b
(( (((a)   a    ))  b ))      involution
(( ((( )   a    ))  b ))      pervasion  a
(( (             )  b ))      occlusion 
(                      )      occlusion 

b

a

(( (((a) ((a) b)))  b ))      transcription
(( (((a) ((a)  )))  b ))      pervasion  b
(( (((a)   a    ))  b ))      involution
(( ((( )   a    ))  b ))      pervasion  a
(( (             )  b ))      occlusion 
(                      )      occlusion 

b

a

(( (((a) ((a) b)))  b ))      transcription
(( (((a) ((a)  )))  b ))      pervasion  b
(( (((a)   a    ))  b ))      involution
(( ((( )   a    ))  b ))      pervasion  a
(( (             )  b ))      occlusion 
(                      )      occlusion 

b

a

(( (((a) ((a) b)))  b ))      transcription
(( (((a) ((a)  )))  b ))      pervasion  b
(( (((a)   a    ))  b ))      involution
(( ((( )   a    ))  b ))      pervasion  a
(( (             )  b ))      occlusion 
(                      )      occlusion 

b

a

(( (((a) ((a) b)))  b ))      transcription
(( (((a) ((a)  )))  b ))      pervasion  b
(( (((a)   a    ))  b ))      involution
(( ((( )   a    ))  b ))      pervasion  a
(( (             )  b ))      occlusion 
(                      )      occlusion 

(( (((a) ((a) b)))  b ))      transcription
(( (((a) ((a)  )))  b ))      pervasion  b
(( (((a)   a    ))  b ))      involution
(( ((( )   a    ))  b ))      pervasion  a
(( (             )  b ))      occlusion 
(                      )      occlusion 

b

a

(( (((a) ((a) b)))  b ))      transcription
(( (((a) ((a)  )))  b ))      pervasion  b
(( (((a)   a    ))  b ))      involution
(( ((( )   a    ))  b ))      pervasion  a
(( (             )  b ))      occlusion 
(                      )      occlusion 

Modus Ponens:  Distinction Networks

*W. Bricken (1995)  Distinction Networks.  in I. Wachsmuth, C.R. Rollinger & W. Brauer (eds.)  
    KI-95:  Advances in Artificial Intelligence.,  Springer, 35-48.

Concurrent, asynchronous network reduction*

– each node is an atomic autonomous agent
– communication with direct neighbors only
– local interaction leads to 

global deduction without global coordination



Copyright © 2006  William Bricken.  All rights reserved.

The Losp Parallel Deduction Engine* (1987)
parallel processors display animation

execution
traces

containment graph

rules

logic 
input

boundary logic form

* W. Bricken and E. Gullichsen (1989)  An Introduction to Boundary Logic with the Losp Deductive Engine, Future Computing Systems 2(4), 1-77.
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Sparse Containment Matrix  (2002)

occlusion

    logic

 input 

vector
occlusion

   array

input/output

      filter

processing

    logic

output

vector

a
b

c
d

e
f

g
h

i
j

k

1

1
1

1
1

1
1

1
1

1
1

  1
  1

  1

                    1                   1                           1                        
                      1                   1                           1                      

                        1                   1                           1                    
                          1                   1                           1                  

                            1                   1                           1                
                              1                   1                           1              

                                1                   1                           1            
                                  1                   1                           1          

                                                                                    1        
                                    1                                                        

                                                                                      1      
                                        1                             1                      

                                      1                             1                        
                                            1                             1                  

                                          1                             1                    
                                                1                             1              

                                              1                             1                
                                                    1                             1          

                                                  1                             1            
                                                        1                       1 1          

                                                                                        1    
                                                                                        1    

                                                                1                            
                                                                1                            

                                                            1                                
                                                            1                                

                                                        1                                    
                                                        1                                    

                                                          1                                  
                                                            1               1 1              

                                                              1                              
                                                                1       1 1                  

                                                                  1                          
                                                                    1 1                 1    

                                                                                      1      
                                                                                    1        

                                                                                      1      
                                                                                    1        

                                                                                      1      
                                                                                    1        

                                                                                      1      
                                                                                    1        

                                                                                          1  
                                                                                            1

                                                                                             
                                                                                             

                                                                                             

Distinction networks implemented on a reconfigurable silicon hardware substrate.
Matrix entries route signals locally.
Signals traversing the containment matrix implement logic network functionality.
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In Conclusion

Boundary logic is an efficient, scalable, robust diagrammatic logic
based on pattern-substitution.

Boundary integers exchange the effort of addition and multiplication
for a single standardization process.

Both are interpretations of the same simple diagrammatic language
of non-intersecting spatial enclosures.

Boundary languages have unique syntactic varieties generated by
topological and geometric transformation of structure.

This presentation is available at www.wbricken.com/01bm/0103notate 

I'll be available throughout the conference to demonstrate an implementation 
of boundary logic used for minimization of commercial semiconductor circuits.
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Comments and questions gladly accepted.
bricken@halcyon.com

Thank you!
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SUMMARIES
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Presentation Notes

The entertaining challenge:
–  do not force-fit these ideas into pre-existing conceptual structures
–  very easy to understand on its own ground
–  somewhat difficult to understand using conventional concepts

These mathematical techniques have been extensively tested.
–  implemented in literally dozens of programming languages
–  applied to SAT problems, theorem proving, expert systems
–  applied to industrial strength problems in semiconductor minimization

The presentation style is unorthodox.
–  rapid visual exposure to relatively dense information
–  seeds for contemplation rather than an immediate explanation

Some slides are included for completeness, and will not be discussed in depth.

The presentation (and lots of other material on Boundary Math) is available at
www.wbricken.com/01bm/0103notate

Boundary mathematics is a fundamental innovation in mathematics (!).
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Non-Conventional Mathematics Warning
If a concept or a representation is not explicitly permitted, it is forbidden.

Void space means with no pre-assumed mathematical or structural concepts.
–  the space of representation is unstructured
–  drawing a mark introduces a distinction; it does not introduce

a topology (no points) or a geometry (no metric)

In specific, absence of the concept of arity implies
–  absence of the capability to count
–  no conventional functions or relations
–  associativity and commutativity are not relevant structural concepts
–  the inside/outside distinction made by boundaries is not relational

(boundaries are not set objects)

In general, these mathematical concepts have not been explicitly introduced:
–  sets
–  points
–  counting and arity
–  functions and relations
–  logic
–  group theory
–  categories

{a,b}
(a,b)

1,2,3,…
f(a) r(a,b)

a AND b
a ◊ a-1 = i

f(a) ◊ f(b) = f(a ◊ b)
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Boundary Mathematics
Representation

–  Forms:  a language of configurations of closed non-overlapping curves
                                                is a form
          If A  is a form, so is  A
  If A and B are forms, so is  A B

–  Variables:  tokens standing in place of arbitrary forms

–  Patterns:  forms serve as structural templates to identify members
           of an equivalence class

–  Pattern-equations:  pairs of patterns that collapse equivalence classes

Transformation
–  defined solely by pattern-equations
–  substitution and replacement of equivalent patterns

Strategy
–  extreme minimalist
–  begin on entirely new conceptual ground
–  semantic use of void-space (forms can be void-equivalent)
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Novel Concepts
Semantic void/single constant

Void is everywhere; boundaries distinguish their contents. Nothing more.

Inside and outside of forms
Enclosure has an interpretation as a partial order.

Void-equivalence
Void-equivalent structure is semantically irrelevant and semantically inert.

Semipermeable boundaries/operational transparency
Boundaries are barriers to their contents,  but can be transparent to their context.

Object/operator unification
Patterns are both objects and operators.

Spatial (non-linear) notation
Inherent computational parallelism.
Syntactic varieties are generated from spatial transformation of forms.
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Why Isn’t Boundary Logic Better Known?
Avoidance of the void

–  “concepts must have symbolic representations”
–  non-existence cannot contribute to computation
–  separate concepts must have unique representations
–  computation occurs in discrete, unambiguous steps

The politics of symbolic mathematics
–  “diagrams cannot be computational objects”
–  Cartesian duality (17th century)
–  Russell and Whitehead, Principia Mathematica (1910)

The danger of eccentrics
–  “just another Boolean algebra” (the isomorphism critique)
–  “the foundations of mathematics are well understood”

Many misconceptions and misinterpretations
–  representing <void> with a token
–  assuming a relational structure
–  some trade secrecy

0110101100
_11_1_11__
 11 1 11

<void> = { } = Φ

a b = a R b
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Boundary Logic Computation
An algebraic system

–  primary semantics is equality
–  primary process is pattern-matching and substitution
–  axiomatized by two simple pattern-equations

A single concept system
–  the primary object is the boundary
–  the only structure is enclosure (inclusion)
–  maps one-to-many onto Boolean techniques

A spatial system
–  ordering, grouping and arity are not concepts within the system
–  transformations within a space are in parallel

A void-based system
–  deletion (void-substitution) rather than rearrangement
–  boundaries are transparent from the outside
–  forms sharing a space are independent
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Algebra of Boundary Constants -- Metatheory
Void-equivalence is unorthodox. no proofs here

For all boundary forms,
show that mark-equivalence, 《()》, and void-equivalence, 《  》,

never intermix during fully reductive pattern-substitution.

《  》  ↔  (()) ↔  (A ()) ↔  (A (A))   ↔  ...

 (《  》) ↔  A () ↔    A (A) ↔  A (A《  》)《  》↔  ...

《  》 =  <void>  

  []《()》 =  []      Call

  [《()》] =  <void>    Cross

  A《()》 =  ()      Call
《()》≠《  》

《()》= (《》)

Cross and Call are the constructors of the language.
sound and 
consistent
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Different Interpretations of the Same Language

 (((a)((a) b))) b  ==>  ()

         interpret () as TRUE

Logic, under Occlusion and Pervasion

Integers, under Double and Merge

   (((a)((a) b))) b  ==>  (((a  (a) b))) b

       interpret as   2*2*2(a+2a+b) + b = 24a + 9b

The semantics, or interpretation, of a boundary form is determined by 
the set of pattern-equations taken to be axiomatic.
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For Contemplation

Do syntactic diagrammatic varieties suggest new cognitive techniques?

Which aspects of our mathematical knowledge are purely historical, 
and which are fundamental?  (eg why is diagrammatic logic not preferred?)

Are algebraic concepts such as commutativity and transitivity 
fundamental to cognition, or could they be artifacts of notation?

What is the interaction between syntax (ie data structure) and learning?

Do specific representations have affordances for errors?

What do void-equivalence and semipermeable boundaries have to do 
with the logic embedded in language (other than functional equivalence)?
. . .

New mathematical systems, particularly for logic,
question our understanding of rationality, and
tend to question our understanding of reality. 
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 DIAGRAMMATIC 
REPRESENTATION
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Wanted:  A Theory of Representation
Variation in syntax is not addressed by mathematical morphism.

In Computer Science, data structures and algorithms that implement isomorphic
structures vary profoundly, in succinctness, efficiency and understandability.

In Math Education, meaning is ignored in favor of manipulation of representations.

Semantic density (the amount of information carried by a representation) changes
qualitatively with the dimension of a representation.

               "house"

Representation alone can introduce new concepts.  For example, the expression
"4 - 7" is either invalid, or requires an extension of the positive integers.

Operations are not independent of representation.  How a positive integer is
represented determines how addition and multiplication are performed.
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Read/Operate Tradeoff:  Positive Integers

moderate
double, merge

trivial
fixed places

easy
fixed places,
  decimal point

moderate
collect,
  promote groups

trivial
unique integers

Standardize MultiplyAddReadExampleSystem

((((•))))•

10001

17

XVII

///// /////
/////  //

easy
substitute replicate
  for each •

trivial
push together

easy
depth
  notation

boundary

moderate
4 facts,
  accumulate

moderate
4 facts,
  carry

easy
place
  notation

binary

hard
100 facts,
  accumulate

hard
100 facts,
  carry

easy
place
  notation

decimal

very hard
compound rules

trivial
push together

moderate
add groupsRoman

easy
substitute replicate
  for each stroke

trivial
push together

very hard
count resultstroke



Copyright © 2006  William Bricken.  All rights reserved.

Representational Spaces

We are surrounded by instances of representational space:
  a page
  the blackboard
  the projector screen
  the frame of a painting

a transmission line
  this slide
  the television screen
  the computer monitor
  a book
  where our voices are when we use a telephone

A representational space is that space set aside 
by a boundary between physicality and virtuality.  
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 BOUNDARY INTEGERS: 
GRAPH VARIETY
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Boundary Integers, Network Variety

0    1   2    3     4    5 7      12     35

To read the network variety of boundary integers:
–  follow each path from bottom-to-top
–  for each path, begin with 1 at the bottom  
–  double the current result when passing through a node 
–  add paths together at the top

This is the same procedure 
used to read binary numbers.

32
16
8
4
2
1

32+2+1 = 35

innermost

outermost

8
4
2
1

8 + 4 = 12

4
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Boundary Integers, Network Add

5       7 5 + 7

Standardizing the result:

 D       identify M    conduct M        D          M          D        12

Addition is 
horizontal stacking. 

4+1+4+2+1 8 + 4
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Boundary Integers, Network Multiply I

5       7

rearrange    M        M       D        M       D      M     D     35

7*5 cross connect

Double and Merge 
apply to structure 
sharing networks.

Structure is 
replicated here 
for reading ease. 

Multiplication is 
vertical stacking. 
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Boundary Integers, Network Multiply II

rearrange   M       M        D       M       D       M      D    35   

5*7 cross connect

5       7
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 BOUNDARY LOGIC: 
SUPPORT MATERIAL
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Reading Mark as Implication

                 Boolean                   Boundary

FALSE IMPLIES FALSE = TRUE [     ]       = ( )  identity

FALSE IMPLIES TRUE  = TRUE        [     ]  ( )  = ( )  call

TRUE  IMPLIES FALSE = FALSE       [ ( ) ]       =      cross

TRUE  IMPLIES TRUE  = TRUE        [ ( ) ]  ( )  = ( )  cross

In implicative logic, valid implications maintain the truth value of an expression.
In algebraic logic, valid substitutions maintain the truth value of an equation.
In boundary logic, void-substitutions cannot change the truth value of a form. 
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Several Proofs of a Simple Theorem

Direct transformation:
          A ( ) lhs
       (( A ( ) )) involution        A ==> ((A))
       (         ) occlusion, rhs  (A ()) ==>

A ( ) = ( ) Dominion

A ( ) =?= ( )

Mutual transformation:
     A ( )  =?=  ( )
    (A ( )) =?= (( )) F[A] = F[B]
             = occlusion twice, identity

Case analysis:
    () ( )  =?=  ( ) subst[(),A,E], arithmetic
       ( )  =?=  ( ) subst[  ,A,E], identity

Standard form:
(A () ()) ((A ()) (())) (A B)((A)(B))
          (           ) occlusion, 3 times
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Deep Transformation Example

    ( ((b)(a (c))) ((            (a)(b)(c))(a b)) )   eg
1   ( ((b)(a (c))) ((((b)(a (c)))(a)(b)(c))(a b)) )   per+
2   ( ((b)(a (c))) (((   (a (c)))(a)(b)(c))(a b)) )   per (b)
3   ( ((b)(a (c))) ((     a (c)  (a)(b)(c))(a b)) )   inv
4   ( ((b)(a (c))) ((     a (c)  ( )(b)(c))(a b)) )   per a
5   ( ((b)(a (c))) (                       (a b)) )   occ
6   ( ((b)(a (c)))                          a b   )   inv
    ( (( )(a (c)))                          a b   )   per b
    (                                       a b   )   occ
                         ¬(a ∨ b)                    interpret

Minimize:   ((NOT b) OR NOT(a OR (NOT c))) AND ((a AND b AND c) OR NOT(a OR b))
            (¬b ∨ ¬(a ∨ ¬c))  ∧  ((a ∧ b ∧ c) ∨ ¬(a ∨ b))

Transcribe:          ( ((b)(a (c))) (((a)(b)(c))(a b)) )

Boundary Reduction:

What if boundaries were interpreted as functions on their contents?
1. A compound function is added as an argument to an external boundary function.

2.  An argument to the compound function is deleted, changing its arity.

3 and 5.  Functional inverses created by the deleted argument cancel, creating two new simple arguments.

4.  One of the simple arguments voids its containing function.

6.  One of the simple arguments voids the original compound function by voiding one of its arguments.
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Involution

((A))  =  A

a

a=

a

=

a

=

a a

a

a=

a

=

a

aa =

delete territories

move path

delete walls

delete nodes

delete enclosures

delete stack
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Boundary Logic Is Unorthodox
Boundary logic is not isomorphic to Boolean logic

–  one-to-many map
–  absence of relational concepts
–  absence of arity and countability
–  first class void-equivalence
–  one basis constant
–  two types of composability
–  operational transparency (no function/argument distinction)

Boundary logic is not group theoretic
Identity for SHARING

               

a ◊ i  =  i ◊ a  =  a identity  
a   i  =  i   a  =  a ◊ = SHARING  
a      =      a  =  a i = <void>

Inverse for SHARING    
            

a ◊ a-1  =   a-1 ◊ a  =  i-1 inverse      
a  (a)   =  (a)    a  =  i-1 ◊ = SHARING      

     ( )   =  ( )       = ( ) i-1 = (i) = ( )

That is, the identity element, i, defined by the identity equations is 
the inverse of the identity element, i-1, defined by the inverse equations.
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Table of Non-Correspondence
                     boolean        boundary             difference

symbols                tokens                     icons linear vs spatial

constants              {0, 1}            { () } two vs one

unary operator          NOT             BOUNDING delimited collection

binary operator        OR, AND           SHARING not a function, not binary

arity                  specific                      any  no concept of argument

mapping             functional                 structural one-to-many

ordering             implicative                bounding spatially explicit

computation           rearrange                  delete void-equivalence

semigroup            associative               no concept  boundary structure only

monoid               identity, i                 <void> existence

group                  inverse            i-1   new structure needed

Abelian group       commutative              no concept no spatial metric
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Circuit Structures in Boundary Logic

a

b

c

a

b

c

d

a

b

c

d

carry
a

b
sum

(a ((b)(c)))

((b c d) ((a)(b)(c)))

((d)(a b c))

sum   = (carry (a b))
carry = ((a)(b))
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Fully Nested Containment Graph

4-bit Magnitude Comparator

 ((eq 1) (gt 2) (lt 3))

  ((1  ((j)(a (b))(b (a))(c (d))(d (c))(e (f))(f (e))(g (h))(h (g)))           )

   (2  ((i ((j)((g (h))((h (g))((e (f))((f (e))((c (d))(a (b)(d (c)))))))))))  )

   (3  ((k ((j)((h (g))((g (h))((f (e))((e (f))((d (c))(b (a)(c (d)))))))))))  )))

The containment graph representation is in Implicate Normal Form
when there is no internal fanout (no structure sharing).

Implicate Normal Form Conjunctive Normal Form   (PoS)
deepest nesting shallowest nesting (2 levels)
fewest literal references most literal references
no internal pins most internal pins
shortest wires longest wires
unique up to form distribution unique up to variable labeling
finesses intractability grows exponentially large
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Abstraction and Management of Complexity
Design abstractions can be constructed bottom-up

by using parens pattern templates.

Abstraction types

Functional modules, library cells
Structural modules, library macros
Dataflow modules, serial/parallel decomposition
Input symmetries
Parametric generation
Bit-width vector abstraction
Specialized technology maps (LUTs, FPGA cells)

Boundary logic transformations apply equal well to 
–  simple inputs (signals)
–  compound boundary forms (subnets)
–  modules and vectors (black-box abstractions) 
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Prototype Software Implementation
Software capabilities

–  fully functional boundary logic reduction engines (logic, area, delay)
–  functional tools for high-quality interactive netlist restructuring
–  HDL language netlist parsers
–  TSMC logic library mapping for delay and area models
–  design exploration tools, including area/delay trade-offs

Software limitations
–  prototype software implementation is proof-of-concept
–  current LISP implementation is somewhat brittle
–  delay modeling is based on weak physical models
–  not an entire synthesis package
–  not yet optimized for performance efficiency
–  some functionality is designed but not yet implemented
–  no user interface as yet

Conceptual limitations
–  no personal HDL or layout design experience
–  work has not been published, no peer review
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Computational Pragmatism

Logic problems to calibrate computational utility:

–  simple tautology -- syllogistic dilemma
                  ((a→b) ∧ (c→d) ∧ (a∨c)) → (b∨d)
–  simple minimization -- absorption
                                           a ∧ (a∨b)
–  simple challenging tautology -- distribution of if-then-else (ite)
               ite[ite[a,b,c], d, e] = ite[a, ite[b,d,e], ite[c,d,e]]
–  simple challenging minimization -- factor forms with a dozen variables
               Reduce from 12 to 8 variable occurrences:
      (¬a ∧ (¬(g ∨ (b∧c)) ∨ ¬(f ∨ (d∧e∧g)))) ∨ ¬((b∧c) ∨ (d∧e))
–  commercial tautology
                           c5315        --  178 inputs, 123 outputs,   1300 logic gates
                           80386core --    36 inputs,   70 outputs, 20000 logic gates
–  commercial minimization
                           minimal area and delay for above circuits
–  huge randomly constructed SAT problems
                           10,000s of variables, millions of clauses

Constructing a novel mathematical system is easy.
What differentiates good ones from bad ones is their utility.

Almost all problems found 
in logic textbooks are 
computationally trivial.


