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Abstract.  The intuitive  properties of configurations  of planar non-overlapping 
closed curves (boundaries) are presented as a pure boundary mathematics.  The 
mathematics, which is not incorporated in any existing formalism, is constructed 
from first principles, that is, from empty space.  When formulated as pattern-
equations, boundary algebras  map to elementary logic and to integer arithmetic.

1     De Novo Tutorial

Boundary  mathematics  is  a formal diagrammatic system of configurations of non-
overlapping closed curves, or boundary forms.  Transformations are specified by 
algebraic equations that define equivalence classes over forms.  As spatial objects, 
forms can be considered to be patterns, and transformations to be pattern-equations 
that identify valid pattern substitutions.  The algebra of boundaries is novel, and is not 
incorporated within existing mathematical systems.  Boundary mathematics provides 
a unique opportunity to observe formal structure rising out of literally nothing, 
without recourse to, or preconceptions from, the existing logical,  set theoretic, 
numeric, relational, geometric, topological,  or categoric formal systems that define 
modern mathematics.  The strategy is to build a minimal diagrammatic language and 
an algebra for that language, using substitution and replacement of equals as the only 
mechanism of computation.

1.1  Language

I.  Set aside a space to support drawing.  Notice that it is framed.
II.  Notice that the frame indicates an identifiable (i.e. framed) 
empty space, S.   Following a minimalist strategy, draw the only 
observable thing (the frame) inside the only available space (S).
III.   Call the representation of the frame a mark.  Notice that S 
has changed from empty to not-empty, and that there are now 
three identifiable diagrammatic proto-structures: the mark, the 
inside of the mark, and the outside of the mark.
IV.  Notice that replicate marks can now be drawn in two places, 
on the inside and on the outside of the original mark.  Construct 
each variety.   Drawing on the outside is SHARING;  drawing on 
the inside is BOUNDING.
V.  We have constructed a language consisting of three structurally 
different forms, and one absence of form.  This language has two 
operators for constructing further forms.  SHARING and BOUNDING 
can be applied indefinitely, each application adding one mark.  Four 
forms can be constructed from 3 marks, nine forms from 4 marks. 

inside

outside

mark
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Let's represent the mark more succinctly as ().  The language of marks maps onto 
well-formed parenthesis structures without ordering.  The dotted frame is part of the 
metalanguage that permitted description of mark drawings,  and is no longer of use.

1.2  Algebra

VI.  Let "=" mean is-structurally-identical-to:  ()=(), ()()=()(), (())=(()).
Since marks are constructed in space, without ordering, note that  ()(())=(())().
VII.  Let "≠" mean is-not-identical-to:  ()≠()(), ()≠(()), ()()≠(()).
VIII.  There are eight possible ways that the three forms can be collected into groups:
{}, {()}, {()()}, {(())}, {(),()()}, {(),(())}, {()(),(())}, {(),()(),(())}
IX.  Let "=" also mean in-the-same-collection.  There are four possible new equalities:
()=()(), ()=(()), ()()=(()), ()=()()=(())
X.  Discard the universal collection, since it does not distinguish between forms. There are 
then three possible arithmetics that can be constructed from the remaining three equalities.

   Arithmetic   I:  ()=()(), ()≠(()), ()()≠(())   --   {(),()()}/{(())}
   Arithmetic  II:  ()≠()(), ()=(()), ()()≠(())   --   {(),(())}/{()()}
   Arithmetic III:  ()≠()(), ()≠(()), ()()=(())   --   {()(),(())}/{()}

2   Interpretations

The minimalist  mark-arithmetics map  to  elementary logic and to integer arithmetic, 
suggesting a diagrammatic foundation for conventional mathematics.  Each mark-arithmetic 
can be generalized to an algebra by including variables that stand in place of arbitrary 
forms.  Boundary logic is such a generalization [1][2].  Peirce first developed this logic 
in its implicative form as Entitative Graphs [3, 3.456-552 (1896)].   Spencer Brown [4] 
presents an algebraic version of boundary logic arithmetic, using Mark-Arithmetic I 
(below).  Kauffman constructs boundary integer arithmetic from Mark-Arithmetic III [5].

2.1   The Map to Logic

The  partitions of Mark-Arithmetic I, {(),()()}/{(())}, assert  the Call rule ()=()(); 
idempotency is the primary differentiator between logic and numerics. The mark is TRUE, 
while forms SHARING a space are interpreted as joined by disjunction. BOUNDING is negation.
                         Spencer Brown's innovation was to equate (()) with nothing
      f      void        at all, that is, with the contents of the dotted frame prior to
      t      ( )         drawing the first mark. This created two Boolean equivalence
     ¬A      (A)         classes while using only one symbol.  Truth is confounded
    A→B    (A) B        with existence, a capability unique to the spatial structure
    A ∨ B     A  B        of the mark.  The Cross rule generalizes to algebra as both
    A ∧ B    ((A)(B))      Occlusion, which terminates proofs, and Involution, which
                         enforces depth parity. The workhorse of boundary logic is
CALL         ()() = ()    Pervasion, which has no analog in conventional techniques.
CROSS        (()) = void  The curly brace is a meta-boundary, standing in place of 
OCCLUSION  (A ()) = void  any spatially intervening content, including none.  Curly
INVOLUTION   ((A)) = A     braces identify semipermeable boundaries, a defining
PERVASION  A {A B} = A {B}  characteristic of boundary logic.  Boundary logic proof of
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the self-distributive law of the conditional  
is illustrated to the right.  The three      (p→(q→r))→((p→q)→(p→r)) theorem
reduction rules will reduce any TRUE      ((p)(q) r) ((p) q) (p) r    transcribe
form to a mark.  A logical interpretation       (   (q)  ) (    q) (p) r    pervasion
of Pervasion would delete deeply nested       (        ) (    q) (p) r    pervasion
connectives and their arguments that     (((        ) (    q) (p) r))  involution
match forms anywhere in their context.     (                          )  occlusion

2.2   The Map to Integers

The partitions  of  Mark-Arithmetic  III,  {()(),(())}/{()}, distinguish  mark from 
the other forms.  Here, a mark is represented by a centered dot, • , for visual ease.  It 
is interpreted as the integer unit,  1.   Forms SHARING the same space are interpreted as 
added together, similar to stroke arithmetic used to tally units.  Since by construction, 
••=(•), BOUNDING is interpreted as doubling the unit,  creating a boundary place notation.
                        The unit double rule can be generalized to an algebraic
    0      void          double rule.  An elegant merge rule can be derived, as well,
    1     •             by observing that forms can be partitioned for doubling in
    2    •• = (•)       two ways, the boundary analog of the rule of distribution.
    3   ••• = (•)•      This is illustrated by the structure of the number four:
    4  •••• = ((•))     
    ...                          ••••  = (•) (•) =  (••)  = ((•))
                               1+1+1+1 = 2*1+2*1 = 2(1+1) = 2*2*1
UNIT DOUBLE  •• = (•)    
DOUBLE     A A = (A)    Boundary multiplication is achieved by substituting forms
MERGE   (A)(B) = (A B)  for units.  To multiply B by A, substitute A for every • in B.
                         Six is highlighted in this example, 5*6:

     
   

     
 

                          6=((•)•)    5=((•))•     5*6=((((•)•)))((•)•)

The above result is immediately equal to 30, no further computation is required.  
However, the reduction rules can be applied to reach a canonical shortest form of the
result.  Both 5*6 and 6*5 are illustrated below:       

     
  

       
          

    30 = ((((•)•))) ((•)•)   5*6            ((((•))•)((•) )•)   6*5
         ((((•)•))   (•)•)   merge          ((((•))•  (•) )•)   merge
         ((((•)•)     •)•)   merge          ((((•)     •)•)•)   merge

Boundary integers differ from boundary logic in both type of boundary (impermeable 
vs semipermeable) and in type of multiplication (substitution vs imposed structure).
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Syntactic Variety in Boundary Logic

William Bricken

Boundary Institute, 18488 Prospect Road, Suite 14, Saratoga CA 95070  USA

Abstract.  Boundary logic is a formal diagrammatic system that combines 
Peirce's Entitative Graphs with Spencer Brown's  Laws of Form.  Its conceptual 
basis includes boundary forms  composed  of non-intersecting closed curves, void-
substitution  (deletion of irrelevant structure) as the primary mechanism of 
reduction, and spatial pattern-equations  that define valid transformations.  Pure 
boundary algebra, free of interpretation, is  first briefly described, followed by a 
description of boundary logic. Then several new diagrammatic notations for 
logic derived from geometrical and topological transformation of boundary 
forms are presented.  The algebra and an example proof of modus ponens is 
provided for textual, enclosure, graph, map, path and block based forms.  These 
new diagrammatic languages  for logic convert connectives into configurations of 
containment, connectivity, contact, conveyance, and concreteness. 

1    Introduction

Since  antiquity,  logical  connectives have been presumed to be abstract;  they are 
the syncategoremata, words that refer to nothing but themselves yet function to connect 
words that do have referents [1, p233].  Since logical connectives have no explicit 
form, they are represented by meaningless tokens.  Peirce's Alpha Existential Graphs 
(AEG) [2 (1896)] introduces a radical re-conceptualization:  the connectives of formal 
logic can take the form of diagrammatic structures consisting of closed non-
intersecting curves, or boundaries.  Composition of boundaries sharing the same 
space, and nested within each other, creates a spatial pattern language that is sufficient 
to express the sentences of propositional calculus.  Traditionally, propositional rules of 
inference permit new sentences to be added to the collection of valid sentences, a 
strategy of accumulation.  The diagrammatic reasoning in AEG follows a 
fundamentally different strategy:  boundary patterns are transformed by rules that add 
and delete boundary structure.  Peirce shows that inference can be achieved by creation 
and destruction, rather than by accumulation.

The boundary logic presented herein was introduced by G. Spencer Brown in 
Laws of Form (LoF) [3].  The mathematics is equational rather than inferential; like 
Boolean algebra, valid transformations are specified by equations.   Boundary logic 
uses the boundary pattern language introduced by Peirce, but the add-and-delete rules 
of AEG are incorporated into pattern-equations that permit deduction to proceed 
solely though rewrite rules that delete structure.  Pattern-equations define equivalence 
sets on boundary forms; the algebraic formulation replaces one-directional inference 
with the familiar bidirectional algebraic rules of substitution and replacement of equals.

The pure algebraic mathematics of boundaries [4] is based on the concept of  
distinction, or difference.  It is constructed de novo,  without reference to logical, set 
theoretic, relational, numeric, or categoric objects.  Boundaries are strictly structural, 
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representing only the abstract concept of difference, without requiring identification 
of the type of object being differentiated.  Thus, boundary mathematics differs 
substantively from the conventional mathematics of strings.

The  abstract structure of boundary algebra is described first in Section 2, 
including the basic concepts of spatial operators with arbitrary numbers of arguments, 
spatial pattern-equations, and permeable boundaries.  Boundary logic,  the application of 
boundary algebra to logic,  is then described in Section 3.  Two new tools for deduction 
are introduced: void-substitution and boundary transparency. Section 4 shows a sequence 
of geometrical and topological transformations of boundary forms that generate over 
two dozen new diagrammatic notations for logic.  Each of these notations provides 
potential new tools for Cognitive Science and for Computer Science.  The structure of 
each notation suggests unexplored models of how we might read,  analyze, 
manipulate, compute with, and think about deductive logic.  The notations also suggest 
a wide diversity of data structures and algorithms for both hardware and software 
implementation of logic.  Other than Peirce's original concept of a diagrammatic logic 
expressed as boundaries, and Spencer Brown's equational axiomatization of the same 
logic, Sections 2 and 4 are new.  The axiomatization in Section 3 is the author's.

2    Boundary Algebra

Composition of closed, non-intersecting  planar  curves, called boundaries, 
constructs a formal diagrammatic language, independent of an interpretation as logic.  
The alphabet is a singleton set of symbols consisting of the empty boundary, { ○ }, 
which is called a mark.  A word consists of replicates of marks composed in a non-
conventional manner.  Since boundaries have both an inside and an outside, replicate 
symbols can be juxtaposed in two ways:  on the inside of the original boundary and on 
the outside of the original boundary.  Rather than one "concatenation" operator, there 
are two:  SHARING is composition on the outside, while BOUNDING is composition on 
the inside.   The formal language consists of the set of composable boundary forms.

2.1  Parens Notation

Delimiting  tokens such  as parentheses,  brackets,  and braces can be used as a 
shorthand notation for closed planar curves.   Herein, parentheses that stand in place of 
boundaries are called parens.  Some boundary structures and their parens abbreviations 
follow:

      boundaries

      parens       ()     (())     ()()     ( (()) (()()()) )

Above, the first form is the empty boundary; the second form is an elementary 
application of BOUNDING;  the third, an elementary application of SHARING.   The  fourth

1 This axiomitization of boundary logic has been extensively tested and applied to  computer 
science problems over the last  two decades, including theorem proving and satisfiability  [5], 
minimization of software and knowledge-bases, parallel processing [6], visual languages [7], 
and logic synthesis of the over 200 small and large semiconductor designs included in the 
ISCAS'89 benchmarks.  See the boundary mathematics section of www.wbricken.com.

1
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parens form is compound.  Well-formed parentheses are well understood; well-formed 
parens are identical but for the semantic constraint that parens do not have an 
addressable "left" and "right" portion, since this would violate the closure of the 
boundary.  One accidental property [8, p3] of a parens is that it appears to be 
fragmented into two portions, another is that parens line up in an apparent sequential 
order, whereas boundaries can rest in any portion of the space they are drawn in.

2.2  Variary Operators

The functional basis set of the language  of boundaries consists of two 
constructive operators,  BOUNDING and SHARING.  These diagrammatic operators are 
quite unconventional.  An enclosing boundary can bound any number of forms, 
including none.  Any number of forms can share a space, including none.  In the 
example below, dots represent other single bounded forms.  The explicit boundary 
encloses several forms,  and while several others share the same external space.

The operators  BOUNDING  and SHARING do not have a specific arity, both are 
variary.  Absence of a specific arity strongly differentiates the boundary formalism 
from modern algebra.   The closest conventional description for a variary operator is that 
of a "single argument set function".  Conventionally, relations are defined by a set of 
ordered pairs.   Relational properties such as commutativity and transitivity describe 
the symmetries that the relation imposes upon its ordered arguments.  A boundary, 
however, can contain any number of forms.  The collection of forms contained within 
a boundary is a priori neither countable nor orderable.  Since forms are not taken two-
at-a-time, there is no concept of associativity.  By construction, boundary mathematics 
does not support the numerical concept of arity nor the proximal concepts of 
commutativity and associativity.  Boundaries are neither functions nor relations.

The  structure of a boundary form is defined explicitly by the boundaries themselves.  
The space upon which boundaries are imposed is void;  void space is neither metric, 
nor geometric, nor topological.  Thus, there is no concept of geometric or topological 
localization that applies to boundaries.  Boundaries can reside anywhere so long as 
they do not intersect other boundaries.  Another consequence is that the boundary 
language includes no "empty word" other than the entire space that supports all 
boundaries.  Since there is no specifically defined relative position for forms SHARING a 
space, an empty placeholder is not necessary.  The idea of a null boundary is wrapped 
up within the ground symbol;  absence of form is simply the inside of the mark, ().

Seen as a  relation, a boundary distinguishes what is inside from what is outside.  
The most natural conventional interpretation of boundary forms is as a partial 
ordering, with BOUNDING providing a strict ordering, and SHARING providing an 
equivalence class of forms in the same space.  Even so, since both BOUNDING and 
SHARING are variary, a relational interpretation is difficult.  The conceptualization 
represented by the boundary language does not support conventional relational 
properties such as reflexivity,  symmetry and transitivity.  Conventionally, variary 
relations are universal.
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2.3  Pattern-Templates and Pattern-Equations

Let  the set of capital  letters, {A,B,...},  provide variables that can stand in place 
of any boundary form, including many forms and no forms, and the set of small 
letters, {a,b,...},  provide variables that can stand in place of either a mark, or the 
absence of a mark.  When variables are included within boundary forms, for example 
(A ((B))),  forms can be used as pattern-templates to identify specific structure within 
other forms.  The pattern-template (A ((B))) matches ((()) (()())), with A=(()()) 
and B=void.  Pattern matches are spatial rather than textual, while pattern variables can 
match many forms within a space, as well as matching no forms at all .2

Similar to the  idea of extensionality in set theory, two bounded forms are 
identical only if they enclose identical contents.  A pattern-equation is an assertion 
that two structurally different patterns are equal; forms that match either pattern have 
the same value (modulo the asserted equation), partitioning the set of forms into 
equivalence classes.  The semantics of the boundary language is defined by pattern-
equations that assert specific patterns,  or pattern-templates,  to be equivalent.  A set of 
pattern-equations create a particular boundary algebra.  

Consider  the following two pattern-equations from Laws of Form as providing an 
evaluation function for forms not containing variables.   The two equations reduce any 
form either to a mark, (), or to the absence of a mark, thus establishing two 
equivalence classes, mark-equivalence and void-equivalence .3

               ( ) ( ) = ( )              SHARING EVALUATION
                (( ))  =                  BOUNDING EVALUATION

2.4  Boundary Permeability

Since  boundaries  have two  sides, they  support two  types of crossing over.  
Impermeable boundaries block crossing both from the inside outward and from the 
outside inward.  Semipermeable boundaries block crossing from one side only, the 
other side is transparent.  Boundaries are taken to enclose their contents, establishing 
the convention that semipermeable boundaries block crossing from inside outward.  
Fully permeable boundaries are imaginary, since a permeable boundary is transparent 
on both sides, and is thus indistinguishable from void space.  Semipermeability is 
defined by the PERVASION pattern-equation, described below.

Thus far, features of  a  pure boundary algebra have been identified without 
placing an interpretation for conventional mathematics or logic on boundary forms.  
As is the case with any mathematics, an interpretation can be constrained to entry to 
and exit from the formalism.  The mechanism of forms and pattern-equations can thus 
be used to compute over the structures of the interpretation.

2 These same pattern matching options are provided in the mathematically comprehensive 
technical computing environment, Mathematica.

3 The presentation  in this paper is informal.  Metatheory has been developed by Peirce [2], 
Spencer  Brown [3] , Kauffman [9], and Bricken [5].  Recent pioneers have legitimized the 
formal diagrammatic reasoning of  AEG [10][11][12];  metatheory is invariant under provable 
equivalence.  The equational  structure of boundary logic supplies algebraic metatheory [13]; 
substitution  and replacement are domain  independent [14].  Void-equivalence is at the basis 
of boundary algebra, providing secure syntactic metatheory as a rewrite system.
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3    Boundary Logic

Boundary  logic is  an  interpretation as  propositional logic of the abstract algebra 
of boundaries described above, using the following map:

        LOGIC           BOUNDARY         ABSTRACTION 

       false                                  void
       true                  ( )              ground
       A                      A               pattern-variable
       not A                 (A)              BOUNDING property
       if A then B           (A) B            BOUNDING quasi-relation
       A or B                 A  B            SHARING quasi-relation
       A and B              ((A)(B))          a compound form
       A iff B          (((A) B)((B) A))      equivalence relation 

The map from boundaries to logical connectives is one-to-many, implying that 
boundary logic is not isomorphic to propositional calculus or to Boolean algebra.  
This observation is also supported by comparing the basis constants of both systems;  
boundary logic has one while propositional logic has two.  Transcribing the boundary 
void into a token (which is similar to representing the empty set as a set, {}) does 
establish isomorphism, however such a transcription undermines the fundamental 
mechanisms of boundary logic described below, those of void-equivalence and boundary 
transparency.  Expressions that are structurally different in conventional logic may not 
be different in boundary logic.  The following three transcriptions illustrate the 
condensation of logical structure into less boundary structure due to the one-to-many map:

      Logic:     ¬f       ((f ∨ f) → f) ∨ f         A ∧ B = ¬(¬A ∨ ¬B)

      Parens:   ( )             ( )              ((A)(B)) = ((A)(B))

Boundary logic is an amalgam of Peirce's Entitative Graphs  [2, 3.456-552] and 
Spencer Brown's Laws of Form.  Entitative Graphs are a dual variety of Existential 
Graphs, for which forms occupying the Sheet of Assertion (i.e. the blank page) are 
joined in disjunction rather than in conjunction.  Forms in LoF map directly onto 
Entitative Graphs, however the transformation system in LoF is equational rather than 
implicative as in AEG.  The axiomatization of boundary logic improves upon that of 
LoF by using only rules based on void-substitution (deletion of structure).  The two 
pattern-equations that define valid transformations in boundary logic are:

               (( ) A)  =                 OCCLUSION
               A {A B}  =  A {B}          PERVASION

OCCLUSION identifies void-equivalent structure.  The curly brace in PERVASION is a 
meta-boundary indicating any number of intervening boundaries, including none.  
Curly braces represent semipermeable boundaries, permitting any form, A, on the 
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stands in place of the contents of the particular space containing the replicate of form 
A.  PERVASION has no analogs in conventional mathematics. Two theorems that make 
the presentation of boundary proofs more succinct are:

                 ((A))  =   A             INVOLUTION
                 ( ) A  =  ( )            DOMINION

These pattern-equations  map  onto Peirce's rules of transformation for Alpha 
Graphs, with the exception that OCCLUSION combines the AEG rules "Erase at even 
depths"  and "Insert at odd depths" into a single equation that eliminates depth 
specific transformation rules.  The curly braces of PERVASION render boundaries 
transparent to outer forms, capturing the iteration/deiteration rules of AEG.  
INVOLUTION maps directly onto the double cut rule of AEG.  DOMINION is the 
termination condition for algebraic proof, and is derived from OCCLUSION by calling 
upon Leibniz' inference rule for equational logic (functional substitution).  

To use boundary logic,  propositional  sentences are first transcribed into their 
boundary form, then the algebraic pattern-matching mechanism of boundary logic is 
used to reduce the transcribed form.  After reduction, what remains of the form is 
transcribed back into a propositional sentence.  The boundary pattern-equations above 
are not inferential logic and they are not equational logic.  Consider the analogy of 
matrix logic algebra [15].  The sixteen binary Boolean relations can be transcribed 
into 2x2 binary matrices.  Deduction then occurs via the rules and structures of matrix 
algebra, with logical constants corresponding to scalars, variables corresponding to 

vectors, and  connectives corresponding to 2x2 matrix operators.  Intermediate vectors 
that occur during matrix evaluation represent imaginary logical values, making the 
expressibility of matrix logic inherently greater than that of Boolean logic.  Similarly, 
boundary logic uses extra-logical mechanisms to achieve deduction.   Matrix logic 
provides more mechanism than inference to achieve deduction, boundary logic 
provides less mechanism than inference to achieve the same deductive results.

The pattern-equations of boundary logic have remarkable properties:

•  An an axiomatization of elementary logic,  the two equations are more 
succinct than any string-based axiomatization.  Boundary logic itself 
maps one-to-many onto conventional string notation, making it a 
formally simpler system than conventional logic.
•  Reduction takes place by void-substitution.  The right-side of each 
pattern-equation is the same as the left-side but for some structure 
removed.  The missing structure on the right-side is void-equivalent.
•  Curly-braces render all intervening boundaries transparent to outside 
forms.  PERVASION identifies a relativistic void-equivalence:  relative 
to an outside form, both intervening boundaries and inner replicates are 
void-equivalent.
•  Boundary forms can be geometrically and topologically transformed 
to generate different varieties of syntax.  Reduction in each syntactic 
variety still consists of deletion of specific structures.

2-
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4    Syntactic Variety

The remainder of the paper presents  over two dozen notations for boundary logic, 
most of them new .4  The notations are purely syntactic varieties derived from 
geometric and topological transformation of boundary forms.  Seven families of 
syntax (parens, circles, distinction networks, steps, centered maps, distinction paths, 
and blocks) differ topologically, the rest are simpler geometric reconfigurations.  Each 
family could potentially shed light on the sub-structure of logic and of cognition.

Textual forms are one-dimensional token strings.  Propositional calculus, Boolean 
algebra, and parens notation are examples.  Enclosures are two-dimensional, AEG is 
the primary example.  Graph and map forms are three-dimensional, requiring the use 
of depth cues such as crossing graph links.  Distinction networks and rectangle maps 
are examples.   Steps and rooms are anthropomorphized maps.  Paths are one-
dimensional forms spread over a two-dimensional space and may be seen as temporal 
or spatial traversal; distinction paths is the primary example.  Blocks are three-
dimensional spatial forms that can be physically manipulated.  Importantly, each 
variety of syntax is accompanied by a mechanism for valid diagrammatic reasoning.

4.1  Display Conventions

Each syntactic variety  is  illustrated by a single example, the binary  exclusive-or, 
XOR.  Exclusive-or can be decomposed into simpler connectives, thus illustrating other 
logical connectives.  The alignment between decomposed XOR and its parens form is:

         p XOR q = ¬(¬(p ∨ q) ∨ ( p ∧ q ))     Conventional logic

                    ( (p   q)     ((p) (q)))     Parens notation

Syntactic varieties are loosely organized into topological families.  The sequence 
of intermediate transformations that generate the new notations from prior notations is 
illustrated within each family.  For one member of each family, the transcription of the 
boundary logic rules OCCLUSION, INVOLUTION and SHALLOW PERVASION into the 
new notation is shown, followed by a proof of modus ponens using the new notation.  
For all varieties, rearrangement after the application of a reduction step is not 
required, since each reduction step simply deletes structure.   Some figures that follow 
have been rearranged slightly, solely to improve the aesthetics of the presentation.  To 
reduce complexity and to improve readability,  the deep boundary semipermeability 
indicated by curly braces has been simplified into a single semipermeable boundary .5   
The pattern-equation for SHALLOW PERVASION is:

               A (A B) = A (B)            SHALLOW PERVASION
Several notational guides have been incorporated:

•  The meta-token        indicates absence of form, and is used solely as a 
visual convenience.  It has absolutely no interaction with forms.
•  Square brackets, [ ],  are highlighted parens.  They are identical to 
rounded parens in all other respects.

4 Many of the notations were inspired by the work of, and conversations with, Louis Kauffman.
5 SHALLOW PERVASION can be composed in steps to generate PERVASION.  LoF uses SHALLOW 
PERVASION; AEG uses PERVASION; neither fully develop the idea of permeable boundaries.
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•  A large dot,  • , identifies the shallowest space (the outside) of a form.  
For some notations, this point-of-reference is embedded within the form.
•  Multiple forms SHARING the shallowest space are always explicitly 
bounded, so that forms in the outermost space are singular.  Multiple 
forms in the shallowest space are enclosed using INVOLUTION:

              A B C  =  ((A B C))     Packaging via INVOLUTION

4.2  String Varieties

For comparison,  the pattern-equations of boundary logic  are expressed below in 
parens notation and in conventional textual syntax:

  Notation       OCCLUSION      INVOLUTION      SHALLOW PERVASION 

Parens           (( ) A) =          ((A)) = A          A (A B) = A (B)
Implicative logic  (f→A)→f ⊨ f     (A→f)→f ⊨ A      ((A→f)→B)→A ⊨ B→A
Boolean algebra    (t+A)' = f         A'' = A           A+(A+B)' = A+B'

In conventional logic, modus ponens is:               A ∧ (A → B) ⊨ B

Modus ponens transcribed into parens notation is:   [ ((A) ( (A) B )) ] B = ( )
The double turnstile of logical implication becomes an assertion of equality in 

equational logic systems;  both the Deductive Theorem and the steps of inference are 
absorbed into the match-and-substitute strategy of algebra. The directionality of 
implication is mitigated by collecting all forms on one side of the equation.  The 
square bracket above highlights the transcribed logical implication.  Conventional 
syntactic proof steps become a sequence of boundary logic void-substitution steps.  
Should the left-side reduce to mark, the asserted equality is logically valid.

In the following parens notation proof of modus ponens, a rule application on 
each line deletes void-equivalent structure.  Since void-equivalent structure cannot 
impact values, the order in which structure is removed is irrelevant.

               [ ((A) ( (A) B )) ] B = ( )      transcription
               [ ((A) (       )) ] B = ( )      pervasion
               [                 ] B = ( )      occlusion
               [                 ]   = ( )      dominion, identity

4.3  Enclosure Varieties

AEG is  almost  always presented  in the syntax of planar enclosures.  The first  two 
representations of XOR below show how parens delimiting tokens can be connected by 
caps to construct planar enclosures.  The next two varieties geometrically modify the 
shape of the enclosures.

              PARENS                      CAPPED PARENS                    BOXES                  CIRCLES

aa b b((a b)((a)(b)))((a b)((a)(b)))
b

a

a
b
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The three parens notation pattern-equations in the table above are textual abbreviations 
of boundary logic rules that are more naturally expressed in the diagrammatic syntax 
of enclosing circles below.  A proof of modus ponens in circle notation then follows:

   OCCLUSION           INVOLUTION            SHALLOW PERVASION

         Transcribe    PERVASION   OCCLUSION   OCCLUSION

4.4  Graph Varieties

Extruding a parens  form  downward  converts containment  into  graph connectivity.  
The first form below is an extruded parens form.  In the second form, parens are 
capped to construct nodes.  The third form shrinks capped parens to nodes of the same 
size,  forming a boundary tree; nodes replace boundaries and directional links replace 
enclosure.  The outside, or shallowest space, of the circle forms above becomes the top, 
or root, node of the tree.  Replicates of variables are next joined together, constructing 
a directed acyclic graph that supports replication through multiple links rather than 
through multiple labels.  The fifth form is a distinction network; the links have been 
aligned geometrically in circular patterns that emphasize graph sub-structures.

EXTRUDED PARENS     PARENS TREE               TREE                 GRAPH          NETWORK

Two  conventions identify the shallowest space of a graph. North-south orientation 
places the root node towards the top of the page, making it the "top" node.  This 
convention is quite contextual,  since it requires meta-information about orientation in 
space.  An alternative technique is simply to extend a link out of the graph, locating 
the context explicitly.  Each variable node then identifies the bottom of the graph, its 
deepest content.  When reading graphs as processing networks, variables are inputs 
and the root node is output.  Although trees are two-dimensional, graphs are three-
dimensional, since graphs violate planarity whenever combining multiple occurrences 
of variables into single nodes requires connective links to cross.

The boundary  logic transformation rules are expressed as distinction networks 
below.  PERVASION is a path rule; when any two paths from a node join again at 
another node, the longer path can be detached from the lower node.
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        OCCLUSION         INVOLUTION         SHALLOW PERVASION

Each  of the distinction network rules can be implemented by parallel asynchronous 
message-passing between nodes [6].  Global reduction occurs without global coordination.  
The distinction network proof of modus ponens displays characteristics of the localized 
message-passing regime.  Reduction occurs primarily through deletion of links,  with graph 
fragments that are not connected to the root node being treated as irrelevant.   The 
implication for proof theory is that deduction is a parallel rather than a sequential process.

 Transcribe PERVASION INVOLUTION PERVASION  OCCLUSION  OCCLUSION

4.5  Map Varieties

A distinction network can  be converted into  a map by  enlarging each node until 
neighbors touch, constructing a common border in place of each link.  Link 
connectivity becomes territorial contact.  Unlike circle maps and rectangle maps, both 
steps maps and rooms maps are anthropomorphized.

Steps.  The curvature of common borders in the steps map below incorporates visual 
cues in a third dimension that locate the top step, and show the relative depths of other 
steps.  In the third form, background areas not part of the map but captured by the 
map are darkened to better contrast steps from background.   A redundant point-of-
reference dot is added to clearly identify the top step.  Were the convex/concave depth 
cues to be lost by straightening the borders, the reference dot becomes the sole 
indicator of the top step.

    DISTINCTION NETWORK         STEPS MAP                         ORIENTED STEPS

For map varieties,  reduction  deletes borders.  The boundary logic reduction rules 
are expressed below as steps forms.  SHALLOW PERVASION is represented by slipping 
the pervaded step out from under the lower step.  In steps maps, PERVASION deletes a 
common border, rather than disconnecting a link, or erasing a form.
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       OCCLUSION        INVOLUTION          SHALLOW PERVASION

Although  it is  generally possible to construct a map representation of any form, it 
is not generally possible to maintain contiguity of territories in two dimensions.  In 
particular, when a graph form requires crossing links, the associated map form 
requires a third,  depth dimension.  The proof of modus ponens for steps follows:

   Transcribe  PERVASION  INVOLUTION PERVASION  OCCLUSION   OCC.

Below, the oriented steps map from above is geometrically rearranged in several 
ways.   These map varieties offer visual rather than conceptual variation.

       BLOBBY MAP       CIRCLE MAP         RECTANGLE MAP                 ROOMS

Rooms.  Rather than enforcing separation of non-adjacent territories with captured 
space, the walls of rooms enforce non-adjacency, while open doors represent shared 
borders.  PERVASION simply closes a door, while OCCLUSION closes off several 
rooms, creating an "empty room" by denying access.  INVOLUTION deletes walls.  A 
room map is TRUE whenever there is direct access to an empty room from the outside.

       OCCLUSION          INVOLUTION        SHALLOW PERVASION

In  the  proof of  modus ponens below, rooms could of course be extruded into a 
third dimension, constructing a visceral proof technique based on walking around.  
Door closures can be determined subjectively, from within the representation, without 
a global perspective, analogous to the asynchronous reduction of distinction networks.  
Subjective PERVASION might be expressed as: "When you are in a room, R, with two 
inwardly open doors, and one door leads to a room that allows you to return to R 
through the second door,  then close the second door."
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 Transcribe   INVOLUTION  PERVASION  INVOLUTION  PERVASION  DOMINION

4.6  Centered Map Varieties

Centered maps put the reference point in  an interior territory rather than a 
territory on the edge of the map.  Centering often better displays symmetries.  The 
first map below is a centered version of steps, the rest are geometric modifications of 
centered steps.

       CENTERED                 CENTERED                  CENTERED                   CENTERED
       STEPS MAP               CIRCLE MAP I            CIRCLE MAP II          RECTANGLE MAP

The  two  versions  of the centered circle map above illustrate the use of semantic 
visual cues to convey depth of nesting.  Centered circle map I is faithful to the three-
dimensional overlap cues of centered steps.  In the centered circle map II,  the depth 
cues provided by overlap are contradictory, removing semantic interpretation. Overlap 
is completely abandoned in the centered rectangle map.  These varieties illustrate that 
depth cues are not an essential component of logic maps; however, in the case of maps 
generated from non-planar graphs, some individual territories are not contiguous.

The  topological transformation from oriented to centered maps calls upon an 
unusual type of spatial rearrangement.   Compare the earlier oriented steps map to 
centered steps maps above.  In the steps map, the external space (adjacent both to the 
top step and to step b) becomes a captured interior space of the centered steps map.  
The surrounding space commutes from outside to inside.  This is accomplished by 
drawing the arc-like step b of the steps map around the root step rather than around 
step a.   An accidental property of these logic maps permits two planar forms, one read 
from the outside and one read from the inside.  Although the logical semantics does 
not change, the diagrammatic form permits two different cognitive perspectives that 
echo familiar distinctions between objective/subjective, extrinsic/intrinsic, absolute/
relative, and global/local. Point-of-view is a theme throughout the syntactic varieties.

4.7  Path Varieties

In the  path  varieties,  structural containment,  connectivity  and  contact have been 
replaced by conveyance along a path.  The model is one of spatial and temporal 
transversal rather than reading an objective structure.

The bar  tree below appears to be identical to a parens tree (earlier above) but for 
the shape of the nodes.   Bar graphs and distinction networks share the same 
resemblance.  However, this solely visual modification identifies significantly 
different implementations:  the node/link model of distinction networks changes into 
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the barrier/path model of bar graphs.  Distinction network nodes actively enact 
transformation processes, while links are simple communication channels between 
nodes.  In a bar graph however, the barrier is a simple communication interface, while 
the path represents the dynamics of an evaluation of the form.  Nodes in a distinction 
network connect and functionally transform convergent links, while the convergence 
of paths in a bar graph is independent of the bars.  A semiconductor design analogy is 
that distinction networks represent the circuit schematic model with nodes as logic 
functions and directional links as input and output, while bar graphs represent the 
transistor-level model with bars as inverting transistors and paths implementing 
disjunctive logic through physically wired signal convergence (wire-OR).

      BAR TREE                BAR GRAPH                PATH GRAPH             DISTINCTION PATH

A bar graph converts into a path graph  by connecting all bars by a single 
continuous loop .6   The path graph is then modified geometrically so that the bar loop 
becomes the single circular boundary of a distinction path.  Distinction paths convert 
connectivity into crossings and depth into number of crossings.  All of the boundaries 
in the parens form collapse into the single distinction path boundary.   BOUNDING by 
apparently distinct boundaries becomes crossing of a single boundary.   Odd and even 
depths of nesting are replaced by the pure parity of locating a segment of the path on 
the inside or the outside of the distinction path boundary.  SHARING of space by 
apparently distinct forms becomes divergence of traversal choices along the single 
path.  Non-planar bar graphs require bridges (in a third dimension out of the plane of 
the paper) for paths to be able to cross over other paths.

Rules  for distinction paths involve shifting and deleting path segments.  Paths 
that terminate at the distinction path boundary are ground states: termination on the 
inside is FALSE while termination on the outside is TRUE.

      OCCLUSION           INVOLUTION        SHALLOW PERVASION

6 Connecting bars  into a single loop is an  application of the Jordan curve theorem.  The parens 
representation  is first over-capped to convert each parens into a single bar.  Then, rather than 
under-capping  matching  bar ends to construct  the circle variety, under-caps are constructed 
iteratively from the deepest space to connect  adjacent parens fragments: connecting )( in the 
case  of  ()(), and )) in the case of (()).  This regime maps even depths to the outside of the 
curve and odd depths to the inside, with nesting depth  counted by the number of transverse 
crossings of the Jordan curve [16, p 605ff].
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A distinction path proof of modus ponens follows:

 Transcribe  INVOLUTION  PERVASION INVOLUTION  PERVASION  DOMINION

4.8  Block Varieties

A parens form can be extruded upward  and capped to construct stacks of boxes 
similar to parens trees, but with contact replacing connectivity.  These boxes can then 
be extruded again into a third dimension, constructing a three-dimensional block 
representation that is physically manipulable.  Containment becomes concrete contact.  
Block forms are not anthropomorphized, they are simply concrete structures in a 
physical environment.

  EXTRUDED PARENS              STACKED BOXES                               BLOCKS

Reduction rules identify configurations of stacks from which blocks can be removed.

      OCCLUSION      INVOLUTION          SHALLOW PERVASION

The proof of modus ponens that follows can take place through physical manipulation 
of concrete objects standing in place of abstract logical forms.

  Transcribe      PERVASION     INVOLUTION  INVOLUTION  PER.   DOM.

Like Cuisenaire rods used to teach  elementary numerical concepts to pre-
schoolers through physical manipulation, logic blocks could be used to teach 
elementary logical concepts.  The difficulty is that the concepts taught by logic blocks 
are those of diagrammatic boundary logic rather than the more familiar string-based 
logic embedded in language.
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5    Conclusion
Algebraic formulation of Peirce's  original  Entitative  Graphs  provides  a  plethora of 
diagrammatic languages for logic. Diverse geometric and topological transformations 
of the spatial syntax result in several distinctly different two- and three-dimensional 
representations,  all using the same three abstract pattern-equations to achieve form 
reduction.  Underlying these syntactic varieties is a new set of mathematical concepts:  
void-equivalence, variary operators, boundary semipermeability,  spatial pattern-equations.

That our familiar conversational logic and our formal typographic logic can both 
be rendered in a variety of structurally simpler diagrammatic and experiential 
representations raises interesting questions for cognitive science.  How would a newly 
acquired ability to visualize or to physically manipulate logical form influence the 
quality of logical reasoning?  More challenging, though,  are the unfamiliar formal 
concepts that do not map onto conventional logic.  The pattern of transformations that 
constitute reasoning in boundary logic is concise:  a constructive proof can only 
proceed from mark to DOMINION to PERVASION,  although the void-equivalent 
structure of OCCLUSION and the void-equivalent paired bounds of INVOLUTION can 
add syntactic complexity anywhere within a form, as illustrated below:

( )  ⇄  A ( )  ⇄  A (A)  ⇄  ((A (A)))  ⇄  ((A (A))) (X (X))
For valid forms, PERVASION asserts that context creates content.   The familiar idea 
that the antecedent (content) validates the consequent (context) is reversed.  More 
fundamentally, deduction proceeds by the deletion of irrelevant structure rather than 
by the accumulation of facts.  Like any mathematics, boundary logic is a way of 
looking at problems,  a way of thinking and seeing.  As a technique, it may seem 
incomprehensible at first.  After some practice, syntactic manipulation becomes second 
nature. But,  like Venn diagrams, Existential Graphs and other diagrammatic formalisms, 
can the formal techniques of boundary logic claim to represent cognitive processes?
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SIMPLICITY RATHER THAN KNOWLEDGE 
William Bricken, Ph.D. 
 
Abstract:  For minimization of general Boolean structures, brute force is more 
effective than specialized algorithms that rely on descriptive knowledge.   
 
I've spent over 20 years implementing algorithms for Boolean minimization, with 
particular application to area optimization of large semiconductor circuits.  This 
exploration has included almost all published algorithms, dozens of conventional 
and exotic data structures, over two dozen programming languages and styles, and 
almost every level of implementation, from reconfigurable silicon through 
customized instruction sets, conventional programming languages, and very-high-
level languages such as Mathematica. 
 
The huge, randomly generated CNF formulae used to study SAT phase transition have 
attracted many creative approaches (such as variants of unit propagation, 
differential equations, probabilistic moments, component connectivity, cutting 
planes, ...).  However, I've learned one thing about the nature of Boolean 
minimization that seems obvious now.  No matter how clever an algorithm is, no 
matter how extensively the structure of a problem is analyzed, no matter how much 
adaptive learning and lemma caching is used, the most successful approach to the 
general Boolean minimization problem is to use the simplest possible algorithm -- 
brute-force applied to lexicographically sorted formulae and implemented in 
reconfigurable silicon.   
 
Lessons learned:  For the general case, complexity cannot be finessed by any 
degree of cleverness.  Native silicon is faster than any symbolic optimization.  
Simplicity rather than knowledge is the key. 
 
 
 
Autobiographical statement:  Dr. William Bricken teaches Mathematics at Lake 
Washington Technical College, while working on axiomatic foundations incorporating 
spatial representation of logic and integers. 
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