
1

OVERVIEW of INTERACTIVE SOFTWARE TOOLS

William Bricken

October 1994

This memo describes an integrated software tool suite for generation of,

management of, and interaction with arbitrary virtual environments for

multiple participants. It specifies the application programmer’s interface

tools required to evolve the desktop metaphor into the environmental metaphor.

The suite is called EEXPERIENTIAL COMPUTING.

Infrastructure tools:

Core, the virtual environment operating system,

PS (ParticipantSystem), the virtual body, including SSensors, CCIG

(Computer Image Generator), and SSound

EntityManager, for coordination and structuring of entities

Voice, a natural language recognition tool

Wand, a generalized interactivity tool

Modeling tools:

EntityEditor, an interactive form-based editor for attributes and

dispositions

SpaceEditor, a configurable environmental entity

RelationEditor, a graph-based relation editor

ActivityEditor, a scripting tool for embedded narrative

DynamicsEditor, for Newtonian dynamics with boundary integrity

EntityLibrary, a cataloging tool for constructed entities

RecursiveFormer, a modeler based on efficient rules

Environmental tools:

VirtualCommons, a continuously active, multi-participant gateway

Express, the non-programmers interface to the software suite,

including editors, resource management, and process control.

InconsistencyMaintenance, an inference engine which supports

divergent models for multiple perspectives and multiple

participants.

BoundaryLanguage, an experiential (visual, auditory, manipulative)

programming language based on spatial representation of formal

program semantics.

SystemsAssessment, including display, resource and time management;

and history and statistics accumulation.

ActivityTracking, for keeping records and histories of virtual

events.

2

EXPERIENTIAL COMPUTING

Generation of, management of, and interaction with virtual worlds is

deceptively difficult. Our intuitions, which were developed within the

physical world, are not as reliable in the virtual world, since the virtual is

defined by potential, by expectation, and by imagination, just as much as by

action and reaction. Future designers of virtual worlds will need

sophisticated software tools that are intended to address the specific issues

of virtual environment design and construction, tools that evolve out of

intensive research into human-computer interaction in inclusive digital

environments.

Experiential Computing is a software toolkit designed and developed over ten

years in research and industrial contexts specifically for VR. The scope and

the capabilities of the suite define a new computational metaphor. Like the

desktop metaphor, which defines the current generation of user interface

techniques, the entity/environment metaphor has the potential to define the

next generation of participant interface techniques. The proposed technology

will provide Human-Computer Interface (HCI) tools based in real-world

conceptualization, natural interaction, situated spatial understanding, and a

unified behavioral metaphor for both programming and simulation.

A user of the completed Experiential Computing suite will be able to call the

system up within a Unix environment and encounter a graph-based configuration

language (EExpress) which would allow easy configuration of the hardware

components of a VR system. Once the system is linked and initialized, CCore,

EntityManager, and PPS (with SSensors, CCIG and Sound) would load

automatically. Core would manage the dynamics of the virtual environment and

the objects in it, EntityManager would manage communication between entities,

and PS would provide rapid coordinated display and tracking.

Core and EntityManager extend programming metaphors to include first-class

environments, biological models, and systems-oriented programming. An eentity

is a coupled collection of data, functionality and resources, which is

programmed using a biological/environmental metaphor. Each entity within the

virtual world is modular and self-contained, each entity is computationally

independent and autonomous. Entities provide functions that define

perception, action and motivation within a dynamic environment. PPerceive

functions determine which environmental transactions an entity has access to.

React functions determine how an entity responds to environmental changes.

Persist functions determine an entity’s repetitive or goal-directed

behavior.

Should the user wish to enter an existing world, he or she would indicate the

particular files to be loaded within Express. The EEntityLibrary tool would

permit exploration of the graphic content of files, if needed. The user would

enter the VR through the standardized VVirtualCommons interface, which would

provide a gentle transition between physical and virtual experiences, and

would serve as an organizational hub for worlds to be visited. All worlds

3

would provide generic interaction tools such as VVoice,

InconsistencyMaintenance, and the WWand.

Should the user wish to construct a virtual world, he or she would call

appropriate construction tools from the Express interface. The EEntityEditor

would provide templates, forms, and languages for modeling entities, in

particular for assigning attributes, perceptions, reactions, and persistent

behaviors. Specialized tools would provide extended capabilities. The

DynamicsEditor, for example, would be used for surface integrity, physical

dynamics, and collision detection. AActivityEditor would be used for

scripting time related events. The SSpaceEditor would be used for assigning

environmental attributes such as gravity and spatial metric. The

RelationEditor would be used to establish relationships between attributes

within and across entities. And the RRecursiveFormer would be used to

generate expansive generic environments, and to construct forms from within a

virtual environment using the generalized sweep constructor. Of course,

static modeling of object geometries would be accomplished using a commercial

static modeling package not included in this toolkit. (We elected not to

build a static modeler because the functionality of existing commercial tools

is adequate.)

Finally particular generic maintenance and programming functions are provided

by generic tools. The SSystemsAssessment provides monitoring and management

tools for the computational infrastructure. AActivityTracking provides

scripted and filtered accumulation of participant behavior.

BoundaryLanguage provides an experiential programming language.

An example of the tools in use follows.

Educational Scenario: MathWorld includes embedded geometric problems for

students to practice problem solving. Imagine an outdoors virtual environment

and several embedded tasks requiring the use of trigonometry. One such task

might be for a student to measure the height of a tree. Of course, there are

several methods to do this, including 1) measuring the length of the tree’s

shadow and the angle of the sun, 2) sighting a protractor set at 45 degrees to

the top of the tree, or even 3) climbing the tree and dropping a rope to the

ground. More exotic techniques that do not transfer to physical reality also

exist in the virtual world. A student could lift up the tree and lay it on

the ground to measure, or a student could grow in size to match the tree and

then measure his or her own height.

These capabilities must be constructed. The objects (tree, shadow, ruler,

protractor, rope) can be constructed with the EntityEditor, viewed in the

EntityLibrary, assigned physical attributes with the DynamicsEditor, and

assigned relationships using the RelationEditor. Global effects, such as the

presence of gravity and the lighting effect of the sun, are established using

the SpaceEditor. And ActivityEditor can enforce sequences of behavior such as

requiring that the student use the protractor in a potential solution.

4

The virtual body PS and the Wand provide navigation and object interaction.

One potential would be to point the Wand at the top of the tree and ask for

the ray length, emulating a laser range finder. As an interaction tool, the

Wand would be used to pick up and lay a tree on the ground. With different

functionality, it could be used as the student’s ruler, emulating a measuring

tape. To change scale, a designer/student would associate the scale attribute

of their virtual body with a command attribute in the environment (such as

Voice recognition of “double”), using RelationEditor. Within the

RelationEditor the meaning of “double scale” is established by an algebraic

expression (“double <measure>” = 2 * <measure>) or by drawing a graph between

the scale attribute and the command attribute.

Should a teacher wish to monitor or track the progress of a student,

ActivityTracking provides templates for filtered history accumulation.

TECHNICAL DESCRIPTION

The motivation to build a VR interaction toolkit includes

• control of software complexity,

• an interface based in natural behavior and multiple intelligences,

• enhancing of native human abilities of spatial understanding and

experiential learning,

• support of concurrent multiple participants and cooperative work,

• direct, non-symbolic communication, and

• a potential dominant market position in an explosive industry

VR software attempts to restructure programming tools from the bottom up, in

terms of spatial, organic models. The primary task of a virtual environment
operating system is to make computation transparent, to empower the

participant with natural interaction. The technical challenge is to create
mediation languages which enforce rigorous mathematical computation while

supporting intuitive behavior. VR uses spatial interaction as a mediation

tool. The prevalent textual interface of command lines and pull-down menus is

replaced by physical behavior within an environment. The design goal for

natural interaction is simply direct access to meaning, interaction not
filtered by a layer of textual representation. This implies both eliminating

the keyboard as an input device, and minimizing the use of text as output.

Complex information systems must present information dynamics to the human in

a manner which calls upon the native, intuitive capabilities of our entire

sensorium. Non-linear information is simply too complex to be understood

solely by intellectual abstraction. In particular, we must call upon

visualization, audio cueing, kinesthetic feedback, and the full dynamics of

participation within the complex environment in order to develop a deep
understanding of today’s information systems.

5

VIRTUAL REALITY SOFTWARE TOOLS

The suite of twenty-one software tools is grouped broadly into three

categories:

Infrastructure:

Core, EntityManager, PS, Sensors, CIG, Sound, Wand, Voice

Construction:

RelationEditor, EntityEditor, SpaceEditor, ActivityEditor,

DynamicsEditor, EntityLibrary, RecursiveFormer

Environment:

VirtualCommons, Express, SystemsAssessment, ActivityTracking,

InconsistencyMaintenance, BoundaryLanguage.

INFRASTRUCTURE TOOLS

Core: The Core manages interprocess communication and distributed

processing, enforcing timing and consistency across multiple participants. It

is independent of applications. Core provides process integration and

coherency across multiple seats and multiple systems.

EntityManager: The EntityManager manages the customized functions for each

entity and module in the virtual environment. It coordinates database

filtering, entity perspective, and behavioral loops.

PS, The Virtual Body: Since the participant is included within the

virtual environment, the representation of self is fundamental to virtual

interface design. The Virtual Body is the primary reference point, the

interface between the user and the virtual environment. It provides direct

access to computational graphic objects; it is the channel of direct action

and control. Monitoring the Virtual Body provides the computational system

with a complete record of actions taken by the participant.

PS is a participant’s interface to the virtual world supported by Core. PS

monitors the sensors that track the user's physical state, sends this

information to the database, and displays the data in the database

appropriately. Previous virtual reality systems have assigned all or most of

these tasks to a single computer. In doing so, the interface elements such as

displays and sensors are reduced to running at the speed of the database, and

the database is itself limited by the interface processes running on the same

CPU. PS lets each system do what it does best, enabling the interface to run

as fast as possible while communicating with the database as fast as it can

keep up.

This approach provides several major advantages. PS can be compiled and run

to work with any display system on any processor with the proper

6

communications capabilities. Since the protocol for communicating with PS is

standard, a flavor of PS that takes advantage of its specific hardware can be

used with any database that speaks the standard PS protocol. PS takes the

hardware and software tasks that are common to all virtual worlds and packages

them neatly for use in any virtual world running on any system.

Sensors: Sensors is a library of device pollers for VR sensors, such as 6

degree-of-freedom tracking devices (Polhemus, Logitec, Ascention), joysticks

(GEO-Ball, SpaceBall), behavior sensors (BioMuse, MIDI instruments, Wand), and

other VR input devices.

CIG: The CIG is a fast graphical rendering system which provides consistent,

hardware-independent imaging for the PS Virtual Body. Its task is to take

graphics-related attributes from a virtual environment and present them to the

virtual body's graphics hardware, taking advantage of any capabilities present

in the hardware for speed or realism. The CIG handles the details of stereo

rendering for both head-mounted, fully inclusive and liquid-crystal shutter

displays, and can also render into an on-screen window when stereo is either

not desired or not available.

Sound: The Sound renderer is the auditory counterpart to the CIG. It

provides spatially localized (3D) and stereo sound to virtual environments.

Sound could employ two Crystal River Beachatrons, yielding eight individually

spatialized sound sources, each with 256 point head-related transfer functions

(HRTFs) and controllable attributes such as intensity, pitch, duration, roll-

off, and Doppler effects. Or it could be simpler, using stereo digital sound

technology.

Voice: Natural Language Understanding is used to generate a dialog between

the user and the computer. The grammar of this system is restricted to the

description of a small environment. The user interacts with the system

through phrases that indicate an action or query the system status. The voice

recognition system would be implemented on a digital signal microprocessor

(DSP); the Natural Language Understanding element, using LISP.

The Wand: The Wand is an interface tool which uses a simple physical device

for a wide range of functions. The physical device is a rod with a 6 degree-

of-freedom sensor on one end which supplies position and orientation

information to the model. The sensor information inhabits a virtual rod held

by a virtual hand. We assign functionality to the Wand by attaching a voice

sensor to it and inserting rules into its set of dispositions. Some

functions of the Wand include:

• RRay on/off: A ray emanates from the end of the virtual rod,

collinear with it.

• IIdentify: The first object which the ray penetrates returns

its name.

• DDistance: Display the length of the ray vector, expressed in

the metric of the intervening space.

7

• CConnect: Construct a communications port between the rod and

the identified object.

• JJack: Teleport the viewpoint of the rod (along the ray

vector) to the identified point on the object.

• GGrasp: Attach the end of the ray to the identified object.

When the Wand is moved, the object stays attached. When the

Wand is rotated, the object rotates.

• NNormal: Rotate the identified object so that the intersecting

ray is normal to the object's surface.

• SSight: Jack into the Wand, the viewpoint of the patron

issuing the command is linked to the ray vector.

• MMove faster/slower: Move the viewpoint of the patron along

the ray vector.

CONSTRUCTION TOOLS

Seven virtual world construction tools are proposed for development.

RelationEditor: The RelationEditor is a virtual environment development

tool that provides a graphical means of specifying entity behaviors. Using

this system, we program entity attributes by drawing graphs that specify

relationships between attributes. For example, a simple color controller can

be built by relating the color of one object to the coordinates of a hand

tracker.

EntityEditor: This tool permits a designer to specify both form and

behavior of entities. The editor will provide form-based templates (later

extendible to behaviors in the virtual environment) for specifying entity

attributes, workspace (local memory), behavior (methods), processes

(persistent and reactive behavior), perceptions, peripherals (associated

physical inputs), and functionality (local functions which support the

maintenance of characteristics).

SpaceEditor The SpaceEditor provides first class modeling and interaction

tools for environments. Environments consist of a space and objects within

that space. Characteristics of every object within a space can be abstracted

to be characteristics of the space itself. For example, gravity can be

attributed to space when it acts on every object within it. Other properties

of space include metric structure (grids, orderings, sets, reals), gradients

(gravity, wind, electromagnetic forces), continuity, grain-size and coordinate

systems.

DynamicsEditor: A software library of dynamical functions that one can

easily incorporate into the behavior of entities. These dynamical functions

will enable the simulation of Newtonian motion, with the type of motion

determined interactively by the user at run-time. The implementation of

extremely efficient numerical algorithms will permit the simulation of complex

systems (systems with large numbers of degrees of freedom) in real time. This

8

toolkit also incorporates collision detection, surface contact maintenance,

and joints.

ActivityEditor: Humans use stories to structure their interaction with

knowledge. ActivityEditor has the goal of providing story telling tools

(characterization, dramatic tension, plot, voice) within a dynamic,

interactive virtual environment. It includes a minimal behavioral vocabulary,

timing and synchronization primitives, and a scripting language.

EntityLibrary: A large collection of graphics files will be assembled so

that world designers will not have to redesign common objects. Grids, cubes

and polyhedron collections, etc., will be available, along with representative

natural world objects. A method of browsing and selecting from the library is

also included.

RecursiveFormer: A specification and construction capability based on

generalized Lindermeyer systems (recursive term-rewriting over graphics

specifications), permitting top-down design of environments and providing

control of the level of detail and refinement in a graphical object. Models

well suited for this technique have many repetitions of small groups of basic

elements, such as trees in a forest, buildings in a city, or clouds in the

sky. RecursiveFormer provides fine grained control over the coherence and

juxtaposition of elements and the probabilistic ranges of their form using a

diversity of techniques. Both the geometry and the topology of forms can be

specified by equations in an algebra of form, by production rules, by form

abstraction, or by direct model modifications. RecursiveFormer provides rapid

modeling capabilities which bridges the gap between photographic images and

solid modeling with polygons.

A virtual environment can be abstracted into the composition of three sets:

the individual objects or entities, the space these entities jointly occupy,

and the spatial relationship between each entity and the origin of the space,

as expressed in the metric of that space. The advantages of form abstraction
include:

• positional information is separate from the geometric form of an

entity

• space can be subdivided recursively

• entity interactions can be treated as pair wise

• entities can be locally independent of the space they occupy

The RecursiveFormer includes a generalized sweep capability We believe that

sweeps, initiated by hand and arm gestures are the most natural way to

generate solids in virtual spaces. The generalized sweep construction tool

has the following properties:

• hand and arm gestures trigger the creation of solid objects

• sweeping a point will generate a one dimensional line; sweeping a

line will generate a plane; sweeping a plane will generate a solid

9

• translational, rotational, and scaling sweeps

• sweep curve may be freehand or specified by a function

• freehand sweeps will have a TIDY option which will smooth it to a

function of specified degree

• object libraries will include the basic solids

ENVIRONMENTAL TOOLS

Express: Express is a simple interface which allows novices to access and

configure the Core system. It provides a simple WIMP interface to the complex

operating system and design tools in a VR system. The current design of

Express incorporates a visual control-flow language which structures control

over data, processes, and the interrelation between the two. It provides

experiential cueing that helps the designer decide which data to use, how to

integrate it, what behaviors and filters to use, how to structure timing and

frequency of events, and in general how to define causality in the virtual

environment.

VirtualCommons: A continually-running multi-participant virtual world to

serve as a gateway to other worlds. The VirtualCommons will also serve as a

central meeting place, hopefully providing a social center and a venue for

exploring social issues of multi-participant virtual interaction. A design

objective is to allow all VR worlds to be loaded and entered from within the

VirtualCommons, by an arbitrary number of participants, from a number of

different hardware platforms.

Inconsistency Maintenance: The mathematical tools which coordinate

actions of multiple participants in virtual worlds. Virtual worlds permit

mutually inconsistent models across multiple participants. Each participant

can maintain a separate personal environment concurrently in the same virtual

space. Communality of mutually shared perspectives is negotiated rather

than assumed.

Using multiple-valued logics, InconsistencyMaintenance provides tools to

maintain inconsistent views and interpretations, and tools to negotiate

differences when consistency is desired. Differences can be resolved by

presenting each participant with personal views, by providing a mezzo-space

where communalities can be openly negotiated, or by maintain inconsistency

through mathematical techniques.

The negotiation of inconsistencies can be sensory (sharing viewpoints),

knowledge based (sharing memories), or rule based (sharing dispositions).

Maintenance of contradiction in virtual worlds requires merging inconsistent

knowledge without disabling action or inference. Our approach is similar to a

hypothetical worlds approach, but splits at the variable level (bottom-up)

rather than at the model level (top-down).

10

BoundaryLanguage: BoundaryLanguage provides a functional experiential

(visual, auditory, tactile and behavioral) programming language. We have been

able to demonstrate that mathematics itself (in particular logic, integers,

algebra and sets) can be expressed concretely, using 3D arrangements of

physical things, such as blocks on a table, doors open or shut, rockwalls

that respond to gravity, the things of everyday life. String-based symbolic

representations of mathematical concepts are typographically convenient, but

tokens are not at all essential to mathematical expression. VR makes it

convenient to express abstract ideas using spatial configurations of familiar

objects. One benefit of this approach is that we can build visual programs,

set them on a virtual table, and watch them work. We can experience programs

as other entities rather than as dumps of text. Bugs would manifest as

structural anomalies, as visual irregularities. It is but a quirk of

typography that we have ignored the experiential semantics of computational

languages. More fundamentally, experiential computing unites our spatial and

our symbolic cognitive skills, permitting mathematical visualization and whole

body processing.

SystemsAssessment: The Core requires testing and debugging tools,

independent of the application. SystemsAssessment includes management and

optimization of display, memory, communication, and timing across the entire

system.

ActivityTracking: ActivityTracking uses the Core/EntityManager

infrastructure to collect experimental, historical, and tracking data about

participants in a virtual environment. Performance history and statistics is

also measured and stored by this tool.

