
TEN COMMANDMENTS OF THE MOSES PROJECT

Dan Pezely

March 1991

I. Everything will change.

This is the golden rule. The foundation system must be modifiable at run-

time by the user. Therefore, all internal system variables, temporary

variables, function pointers, file descriptor tables, space-search order,

etc, must all be accessible to the user. Make use of genuine dynamic linkers

to replace built-in routines so upgrades may be performed at run-time without

having to restart the kernel thus maintaining memory references, etc.

II. Allow anything, but more importantly, do not disallow anything.

As we take the next step toward a true virtual reality system, not enough

research has been done to fully understand its potential. The difficulty is

predicting what future users may want to do. Therefore, do not force

anything upon the user, and do not restrict anything unnecessarily either.

III. When in doubt, put the feature in a user-accessible location.

This follows from the first two guidelines but is worth stating even if

obvious. There is no reason to hide features from the user, and security is

not a reason at this level.

IV. Build upon existing platforms.

We are not setting out to develop the ultimate system to end all systems, but

rather, we are out to develop a platform which researchers and developers can

be both functional and comfortable with. If our system is designed to work

with other platforms, users will be able to exploit that and use platforms

which they are comfortable with and might have an immediate application for.

V. We are in this for the long-haul.

Virtual environments for the masses is a nice idea but an unrealistic design

goal at this time. More will be said when performance is evaluated; however,

hardware technology will lag behind such implementation designs.

VI. The design must last.

This is a foundation, not a single application. Any feature which might

cause future compatibility problems or future implementation design

compromises should be moved out of the system kernel and into the user

(application) layer or be implemented as an external system service.

VII. Find the re-occurring design elements.

Recursion in design reduces complexity and ideally approaches a more abstract

design. Overall, abstract designs require smaller amounts of code to

implement. The less code there is, the less there is to break and upgrade.

The less code there is to break or upgrade, the longer the foundation should

last.

VIII. Learn from experience, both our own and those of others.

Research has already been done in many, many areas which this design can

benefit from. Make use of that research and experience. For our own

research and to gain experience, any code developed in the design stage

should be considered disposable code. Of course, never discard code, but do

not be afraid to put it aside to try a new path. Much of this design seems

to be combining existing technologies in a new way. That is true, so take

advantage of that and see what the results are.

IX. The source code is the implementation document.

The technical manual is the system source code. Books and papers are being

written, but slightly more than fifty-percent of the source code files are

comments explaining the inner workings. Documents, such as this one, are to

educate client programmers with the background which the source code comments

assume.

X. Provide uniform access to all resources.

Function, storage, and communication are the three basic elements available

to all entities using the system. Communication may be seen as one specific

function but is mentioned separately for emphasis. All resources, actual or

virtual, which the native operating system provides should be accessible

through a system-independent interface. Typical operating systems provide

only a hardware-independent interface which varies from platform to platform.

