PRIMARY PERFORMANCE PROBLEMS OF RECONFIGURABLE SILICON
William Bricken
November 2002

FPGAs from companies such as Xilinx and Altera offer the capability of
dynamic reconfiguration of the circuit functionality performed by the silicon
architecture. This is achieved by either LUT or MUX-based fine-grain
computation units embedded in a matrix of routing resources. The logical
functionality is placed within a collection of fine-grain resources, the
resources dre routed to connect the logic, and finally the placed and routed
network is timed to determine the delay incurred by the placement and routing
configuration.

This approach to reconfigurable computing evolved over a decade ago,
equivalent to hundreds of years of evolution compared to human rates of
growth. For today's logic networks of hundreds of thousands of gates, the
antiquated place-and-route approach to reconfigurable logic is dysfunctional.
Basically there are two very significant problems with this approach.

Problem 1: Logic functions have a shape, a structure. LUT and MUX fine-
grain computational units also have a shape. Placing any logic structure
into a given LUT or MUX structure is similar to attempting to place a round
peg into a square hole. Reconfiguration is a misnomer, the hardware
architecture of today's computational units is rigid, not flexible. A four-
input LUT can accommodate any four-input Boolean function, so it places a
rigid "four-input" structure on any given functional structure. The problem
is that logic does not fit nicely into four-input chunks.

Problem 2: Logic functions can be deep or wide, it is a generally known
technique how to convert any function into either a deep or a wide format.
Wide formats (called SoP, PoS, CNF, and two-level) require few levels of
logic gates (or LUTs or MUXes), in exchange they require tremendous routing
resources. Deep formats (called multilevel) impose a longer delay by passing
through more levels of logic gates, in exchange they require the least
routing resources. The problem is that no generally know transformation
techniques are known to optimize multilevel logic.

The structural problem occurs in today's FPGAs as a need to floor-plan, to
know which computational resource has the best location for which chunk of
logic. The multilevel problem is to know how best to trade-off routing
resources for timing delays. Obviously, these two problems interact;
therein lies the FPGA performance problem.

FPGA performance can be degraded in two distinct ways. The structural
problem leads to areas of silicon resource that get isolated, chunks placed
in computational units use up routing resources so that other computational
units are unreachable. With today's abundance of computational resource,



this alone is not a significant problem. The actual problem is that
different computational units require different lengths of routing, and thus
incur different wire propagation delays. Routing variation created by the
structural problem cannot be avoided since the physical location of silicon
resources is rigid, so that the placement of logic must conform to the
locational structure of the silicon, rather than to the logical structure of
the desired functionality.

The multilevel problem is not really a problem, it is more of a catalyst that
exacerbates the structural problem by placing structural demands on the
routing resources themselves that are independent of the demands placed upon
routing by the structural problem. The multilevel problem is a problem
because there are no efficient tools to disentangle the two demands upon
routing resources.

In sum, both structural and multilevel problems show up as routing problems.
In current FPGA architectures, designers encounter routing saturation and
timing variation. Routing saturation means that a designer cannot place the
desired logic functionality on a given FPGA chip because the resources of the
chip become inaccessible. FPGA manufacturers respond to this problem by
putting a lot more routing resources on the chip, making the placement
problem much more complex while not addressing the essential structural
variation that drives the placement problem.

Timing variation means that a designer never knows the signal delay time of a
given functional layout, not until the functionality is actually laid out
into the physical resource matrix. When the timing is known, a different
problem immediately shows up, that of timing closure. Timing closure means
that different parts of the silicon resource, as laid out, take different
amounts of time to complete their functional task. The timing performance of
the chip is the timing performance of the slowest path, the weakest 1link in
the routing layout. Timing specification usually specify a particular
performance requirement, a signal must be at a given point within a given
amount of time. Timing closure is empirical twiddling with the worst case
delay paths to bring them into conformance with the timing specifications.
Unfortunately, changing a path means changing the routing of the entire chip.
Timing closure is the iterative refinement of the design to reach a timing
performance by redoing essentially the entire design for every small change
in the critical path length.

Timing is brittle; when a design changes, even by the smallest amount, the
timing usually changes, erasing the prior closure and forcing yet another
entire redesign. It is often falsely believed that by manipulating the
multilevel nature of the logic, that timing closure can be reached. This is
because tools for changing multilevel formats are known, and tools for
changing physical routing resources are not known.



The Solution

The solution to both structural and multilevel problems lies in changing the
physical silicon architecture. The new architecture in turn requires new
algorithms that can address structural and timing variation directly.

The structural problem is not a problem, the answer is to waste some silicon
with less than totally efficient utilization. The timing problem caused by
variable routing is addressed by rigidly pipelining all computational units.
Pipelining is the technique of placing registers at regular intervals
throughout the computational resource structure, so that signals move
lockstep through the computational units, and thus remove timing variation.
For the pipelining approach to work, there must be sufficient routing
resources to convey signals from one register bank through the next
computational unit and into the next register bank. This can be achieved by
using large chunks to enact logical functionally, not 4LUTs that accommodate
about six logic gates, but blocks that accommodate thousands of logic gates.
Within the blocks, smaller units must be somewhat fluid, not forcing logic
into computational chunks, but rather accommodating any structure. For this
to work, the blocks must be maximally multilevel, since wide functional
formats overwhelm routing resources. This approach is known as a sea-of-
gates.

The architecture that has formed is such: small reconfigurable cells of a
few logic gates richly connected by dedicated routing between cells, and
arranged in multilevel layers that are pipelined consistently at a given
depth. The required configuration and layout software must be able to
optimize functionality into multilevel blocks.

For pipelined timing, physical restrictions dictate the cycle speed of the
above architecture. Taking 300 MHz as a working example, blocks can be five-
levels deep and about sixteen cells wide. To place and route arbitrary logic
into these chunks requires multilevel optimization and a local way meet the
depth and breadth restrictions of blocks.



