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Digital Modeling

Whenever we represent physical reality, we represent it with a model.  The
model can be relatively accurate or inaccurate; it can capture some or many
features; it can be either formal or informal.  But the intent of all models
is to provide a symbolic structure which can be used to aid conceptualization
of reality.

The construction of a model is the crossing of a boundary between physical and
virtual, between realization and intention, between the thing and the
indication of the thing.  The crossing from concrete to concept is a
negotiation between what is actually happening and our ease of thought about
what is happening.  Since humans have naturally limited perceptual
capabilities and are finite in both time and space, models are mandatory to
express those physical events which lie outside the gross phenomena that
impinge upon our bodies and our senses.
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However, boundary crossing is symmetrical, what is from and what is to is
solely a matter of perspective.  It is our choice of a particular point-of-
view to treat symbolic models as a representation (and thus a mere shadow) of
physical reality.  In this paper I will exercise the option to choose an
alternative location for our point-of-view (POV), to see the physical reality
of a computer as a model of abstract computation.

Digital computation is inherently virtual rather than physical.  Computation
exists in our minds, not in physical reality.  Yes, we use computation and
mathematics in general to model physical things, but increasingly the goal of
computation is constrained solely to virtual events.  For example, the word
processor I am using this very moment is doing digital computation with the
express goal of constructing textual representation of ideas.  The entire
process anchors only in the most tangential way to physical reality.  Physical
devices, such as the keyboard and the silicon gate array, are not used during
text editing to model physical reality, they are used to subserviate physical
reality to my actual goal of constructing a collection of quite virtual ideas.
That is, the physical computer serves as a model of abstractions.  In that
sense, the inadequacies of the physical processes to exactly replicate the
concepts being constructed are inadequacies of a model to reflect its
grounding.

This presentation of digital modeling is bias toward the conceptual/virtual
side of the boundary between physical and virtual, placing computation within
the realm of idea rather than natural behavior.  The alternative POV that
physical devices are a model of conceptual abstraction extends well beyond the
use of computers.  The printed words that writer and reader both share are
themselves modeling a set of concepts. English language is often a very poor
model for some abstractions, and words can hardly do justice to some thoughts
and feelings.  Often, mathematical language is used to anchor our ideas more
precisely.  When dealing with ideas that do have the opportunity to strongly
interact with the senses, such as the momentum of a large rock hurdling toward
one's head, we use mathematical abstractions which have strong ties with
physical reality as we know it.  In contrast, the pencil and paper jottings
that a third grade student generates while trying to multiply two three-digit
numbers are physical models of purely cognitive computational processes.
These jottings have no expected anchor to any physical reality.  In the
domains of quantum mechanics and Zen mysticism and digital computation, the
phenomena being modeled are essentially conceptual and not physical.  In these
cases, languages and mathematics are the reality principle.  Physical
representations such as the linear accelerator, the printed page, and the
silicon wafer are all themselves models, representations of the abstraction
being experienced.

Mediating between abstraction and physical model, between intention-as-goal
and computer-as-model is both subtle and difficult.  Our current notion of
computer science is radically misguided, focusing on the shadow rather than
the object.  The fundamental principle is that tools and interfaces should
address intention, not the processes and weaknesses of the model which
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represent the intention.  I am suggesting interface menus which permit choices
about reaching goals rather than choices about how the model of these goals
works.  I am suggesting programming languages which permit specification of
intention rather than specific control over algorithms which steer the
modeling of intention.  I am suggesting machine instructions which configure
the computational model rather than the computation.  And I am suggesting
silicon architectures which dynamically adapt to specification rather than
rigidly reflecting a particular algorithmic process.

VonNeumann Abstraction

VonNeumann abstraction is the great innovation that made computing on the
first digital machines practical.  It mediated between the stark literalism of
signals on wires and the abstract intentions of generalized modeling (such as
computing ballistic trajectories).  The hierarchy of encodements that grew
from digital machine codes through instruction sets, assembly languages,
programming languages, programming metaphors, and user interfaces (aka good
programming languages) has lifted our model of computation from the wires of
the machine up to the touch-and-feel of the machine user.  These encodements
all have the same objective:  to permit the human user to compute anything
that can be specified as computable.  The responsibility of the human user is
to clearly specify intentions that can be encoded down through the hierarchy
of abstractions to the digital oscillations that, over the last fifty years,
we have learned to manipulate through programming as more and more complex
computation.

Essentially, the abstract encodement that maps, for example, digital
oscillations at 100 MHz onto virtual reality interfaces, can be designed to be
a single encodement.  The historical evolution of computers has been so
successful that the techniques which motivated ENIAC in 1946 have never been
deconstructed pragmatically.  Layers of encodement with faded utility still
permeate our software practices, carrying with them layers of irrelevant
concept structure.  Hard problems strongly associated with immature
architectures were encountered and solved, these solutions were then written
into the structure of our abstract tools.  Historical inertia has led to
confused abstraction boundaries within software tools:  system resource
control is confounded with programming languages (compare C to LISP),
interface is confused with programming (lack of API abstraction barriers),
bit-level processes are separated from word-level processes (combinatorial and
sequential circuits having different models yet both implicate time and
space).  Upon re-examination, we have found that a single encodement, with
suitable provisions for handing complexity, is sufficient to map any
mathematical specification directly onto digital signals.

Similarly, the physicality of "putting-plugs-in-boards" generated a hierarchy
that grew from digital logic codes through geometric manufacturing
specifications, structural description languages, register transfer languages,
schematic editors, automated synthesis, and reprogrammable hardware (aka
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reconfigurable computing).  These various realization tools also have a single
objective:  to permit the human designer to efficiently manufacture transistor
arrays that modulate digital signals to meet computational intention.  The
responsibility of the designer is to produce efficient computing machines that
respond with mathematical precision to encoded intentions.

Essentially, the concrete manufacturing process that realizes computational
machines can be designed as a single process which constructs hardware for a
specific set of computational capabilities (as defined by the hardware
architecture and by the software assembly language).  However, transistor
density has become so great that design techniques must be highly automated
and designs themselves highly structured.  The languages used to specify the
construction of physical networks of transistors (or more generally,
interactive distinction nets), moreover, became disconnected from literal
intention when the vonNeumann abstraction of machine instructions was
incorporated into hardware design.

The vonNeumann Trade-off

Circuitry which is dedicated for a particular purpose (ASICs) treats all
incoming signals as computational data.  The vonNeumann abstraction is to
treat some "data" as instructions, in essence to construct meta-data, data
about how to handle the data of computation.  Meta-data is commonly known as
machine instructions, control language, or opcodes.  A vonNeumann machine
differentiates data from control information, but treats both equally in
memory.  This provides several advantages, such as

ease of programming iteration and branching
the ability to modify instructions during computation
generalized reuse of special purpose circuitry (such as the ALU)

By abandoning symbolic literalism in computation (the idea that the
specification and the circuitry are closely analogous) in favor of symbolic
abstraction (the idea that specification merges two languages:  representation
of data to be manipulated and representation of control describing how to
conduct the manipulation), vonNeumann engineered a classic trade-off between
physical and virtual.  Hardware became general purpose in the symbolic domain,
at the cost of becoming constrained in the physical domain.  The physical
constraint, called the vonNeumann bottleneck,  is that computation was forced
into a sequential model, which required tracking of the location of
information (program counters) and synchronization of the timing of
transformations (global clocks).

The vonNeumann trade-off was so appealing during the era of weak computing
machines that it dominated the foundations of practical computation to such an
extent that today all programming languages and nearly all computers still
maintain the distinction between process and process control.  As a result,
software programming includes both function specification and algorithm
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specification.  Hardware design includes both functionality and control.  But
most seriously, software design and hardware design became incommensurable,
despite the fact that both are intended to realize the same mathematical
intentions.

At the circuit component level, two types of signals are transacted, logic and
control.  The control signal (which is also expressed in logical operations)
addresses the behavior of the circuit but not its functionality, while the
logic signal addresses the functionality of the circuit but not its structural
behavior.   The purely sequential model of computation imposes a severe
constraint on the natural parallelism of physical circuitry.  Separate process
and control regimes make circuitry far more complex both to design and to
manufacture.

At the software language level, procedural languages which map onto
instructional sequences have recently given way to declarative and functional
languages, but only on the surface, since each is still reduced to sequential
machine instructions (as the cost of inherent performance efficiency).  The
purely procedural model of computation imposes severe constraints on the
programmer by requiring a cognitive model not only of functional intention but
also of the manner in which the hardware enacts that intention.

The vonNeumann trade-off erodes the once intimate connection between the
physical world of hardware and the virtual world of mathematics.  The
abstraction of program control has disassociated both the design of hardware
from the specification of our intentions and the design of software from the
physical grounding of mechanical consequence.  The path to re-integration of
the computing enterprise is to reconnect specification directly to circuitry,
to abandon the vonNeumann architecture.  Upon re-examination, we have found
that a direct mapping from mathematical specification to transistor network
design, with suitable provisions for handling physical resources (generalized
costs), is sufficient for efficient construction of efficient reconfigurable
computing machines.

The Virtual/Physical Interface

There is, of course, always a barrier to be crossed, the same one crossed by
vonNeumann:  the virtual/physical (aka mind/body, ideal/real,
symbolic/concrete) boundary.  The virtual/physical boundary connects words and
actions, ideas and behaviors, concept and implementation.  All experienced
programmers know the immense difficulty of specifying intentions clearly
enough to enact them on computational hardware.  The experience of AI, for
example, credits 90% of the effort in constructing an expert system to
knowledge engineering, to specifying intentions in computational terms.

We can elect to partition the world in any manner.  We place value judgments
on some structural properties of partitions and thereby create preferable
perspectives.  For instance, orthogonal concepts (as in +/- or
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horizontal/vertical or inside/outside or data/control) permit the construction
of reductionalistic perspectives, make computational tools and algorithms easy
and tractable, and support the illusion of objects distinct from processes.
Other examples of valued partitions:  integer/real, P/NP, stable/transient,
abstract/concrete.

It is always possible to construct a partition between concept and
implementation.  The entire enterprise of scientific description is one of
negotiating the reality of physical behavior with the idealism of mathematical
simplification.  The key shift in computation occurred in the 15th century,
when variables were abstracted from applied integers, and negative numbers
were invented.  The Pythagorean discovery of irrationals would also qualify as
a fundamental shift in abstraction, had the Greeks not labeled irrationals as
monsters.

The computational/cognitive qualities of crossing the virtual/physical
distinction are implementation independent by definition, since the
implementation sits squarely on the physical side of the distinction, while
mathematics is squarely on the virtual side.  Generally any mathematics is
implementation independent.  (Some mathematics, like infinite precision and
eternal processes, is implementation impossible.)

The transition from concept to concrete involves a successive compromise of
ease of thought (cognitive load) in favor of ease of digital manipulation,
which in turn is defined by the economics of semi-conductor manufacturing.
The straightforward way to integrate hardware and software is to carefully
select and design the most inconspicuous place to put the crossing between
intention and realization.

Hardware/software partitioning is a deep design choice.  What is physical and
what is symbolic can be cut in many ways, and suitable cuts are strongly task
specific.  A unified model would allow us to parameterize resources and
functionalities (i.e. hardware and software; chip-area and timing; hardware
architecture and programs) freely, to place the abstraction/realization
barrier where we will not trip over it.

The vonNeumann choice places the concept/implementation distinction in between
two fundamentally digital (aka abstract, software) processes, between the
design of specification and the design of computing hardware:

hierarchy of abstraction specification languages
machine language specification

vonNeumann tradeoff
circuit behavioral specification

hierarchy of realization specification languages

By placing the virtual/physical boundary much closer to the hardware, many
artifactual levels of software encodement can be unified.  The apparent gap
between hardware and software can be reduced to inconsequentiality.  Circuit
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design would remain an abstract software process,  relegating hardware design
to the construction of homogeneous reconfigurable arrays.  Real-time hardware
reconfiguration would completely replace machine language abstraction as the
route to general purpose computing.   All hardware resources would be
available for all computing tasks, while the hardware structure (architecture,
connectivity) which achieves particular computational results would be
configured dynamically as needed.  Software specification of intentions would
directly program the hardware configuration ("make-by-need circuitry") rather
than the vonNeumann machine codes.  The resulting virtual/physical interface
could eliminate both the abstraction and the realization hierarchies:

single abstraction specification language
machine distinction networks with real-time reconfiguration

single realization design

We will call the direct programming of reconfigurable hardware a deep model of
computation.

Reconfigurable Computing

The notion of abandoning vonNeumann computation in favor of a deep model is
reasonable only in context of recent developments in computer hardware and
software.  Similar approaches are currently occurring at all fields of
Computer Science (such as real-time code generation through programs that
write programs, dynamic opcode configuration,  partial function evaluation,
and dynamic FPGA layout).  In order to push a specification down into
circuitry, we require practical reconfigurable hardware (exemplified by FPGA
approaches).  In order to reconfigure in real-time, we require a model of
computation which can fully express the intentions of programs and is
efficient to optimize and route.  The accrued advantages include:

general purpose circuitry without intermediate abstractions
arbitrary algorithmic approaches, particularly parallelism
minimal programming and design effort
dynamically customized efficient architectures
homogeneous, easy-to-manufacture hardware arrays

In order to meet performance demands, modern multimedia computing requires
specialized circuitry for many tasks, such as modem, audio, 3D graphics,
videoconferencing and compression.  These diverse functionalities have very
little circuitry or program code in common.  The broad performance needs
currently require a general purpose cpu to be augmented with several special
purpose accelerators.  The idea of using a diverse set of machine instructions
to cover all the functionalities results in poor cpu performance, with many
opcodes unused and redundant.  That is, the conventional vonNeumann processor
is no longer suitable for general purpose computation.  Special purpose
circuitry, such as DSPs, are also not suitable, since they are hard to
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program, hard to compile, and not general purpose.  The solution for modern
computing is reconfigurable hardware.

Reconfigurable computation (and deep models) shift the burden of program
control to a software compiler, minimizing the costs incurred by the use of
hardware control circuitry and clocks.  Since a compiler has global program
information for optimization, and can include models of machine resources and
constraints, this approach places the minimum burden on hardware design and
configuration.  In particular, hardware resources can be structured to the
needs of the task, so performance itself can be parameterized across both
available time and available space.  Specification can be seen as generating
an abstract circuit structure, outside of time and space, while implementation
can be seen as the construction  of circuitry resources to meet performance
needs.

Modeling Circuitry

The behavior of a circuit is a mapping from the input of a black-box (the
circuit) to its output.  Behavior consists of a functional model expressed in
propositional logic and a temporal model expressed in delay and latency.  The
structure of a circuit is defined by the hierarchical decomposition of the
black-box into components (themselves either primitive or complex) and into
connections between components.  Finally, the physical view of a circuit
refers to actual physical components (transistors and wires) and their
physical properties.

(This literal, object-oriented description centers on gates (or transistors)
as objects and voltage transitions through gates as process.  Alternative
conceptualizations could focus on transitional activities as primary, or on
temporal harmonics.)

The behavioral, structural, and physical views of a circuit can each be
modeled by architectural, logical, and geometric abstractions, forming nine
different ways to describe circuitry.

behavioral architecture machine code (operation, dependency)
structural architecture block and bus connectivity
physical architecture semi-conductor board

behavioral logic function, state-transition
structural logic network of Boolean nodes
physical logic transistors, gates

behavioral geometry signal propagation routes
structural geometry placement and routing
physical geometry time and space constraints
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The behavior of a correct circuit is its functional specification.  A circuit
is given a structure by assigning its logical specifications to a gate level
netlist.  A structure is then given a physical interpretation by assigning
operations to resources through binding and scheduling.

Abstract models are used throughout all aspects of the design process.  Most
of these models are based on graphs, and include netlists, Boolean networks,
state diagrams, transition tables, and dataflow and sequencing graphs.

In converging behavioral and structural models of computation, several design
choices are available, including:

mapping the behavioral directly onto the structural (dnets)
minimizing the behavioral/structural map by some structural criteria

(egs: depth, number of nodes, number of links)
optimizing the structural
constraining the structural to meet specified limits

Similarly, in converging the structural and physical models, the design
choices include:

mapping the structural directly onto the physical (eg ASICs)
processing an abstraction of structure (eg graph-machine)
processing an abstraction of process, (eg vonNeumann-machine)
mapping the structural onto a configurable tableau (eg FPGA, PLA)

The deep modeling approach is one of direct mapping from behavior to structure
to physicality.  Boundary mathematics makes the first transition feasible,
while reconfigurable hardware makes the second mapping feasible.

Physical models are used to characterize the efficiency of physical behavior.
Area and connectivity are structural metrics which are relatively independent
of design transformations (they are linear and additive).  In contrast,
performance metrics (delay, cycle-time, latency, throughput) are not additive
but depend upon structural analysis and can change non-linearly with design
changes.  Modeling temporal behavior is further complicated by loops and
branches in programming logic which make performance estimation context-
dependent.  Additional control logic in the form of completion signals is then
necessary to structure timing bounds.

Optimizing a design implicates all circuit models and views.  Behavioral
optimization is the minimization of specification functionality.  Structural
optimization focuses on the flow of data and control through the circuit
network.  Physical optimization can involve the selection of transistor
technologies and physical manufacturing processes.  Due the complexity of the
optimization task, often particular parameters are bounded or held constant.
Thus, typical optimization trade-offs include minimization of area for a given
latency, and minimization of cycle-time for a given area or latency.  Finally,
a circuit design is constrained by available resources (such as ALU
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functionality, memory size, and available connectivity and interface wiring),
by i/o format and timing, by performance requirements, and most importantly,
by manufacturing costs.

In the behavioral domain, the internals of a circuit as a black-box are
abstracted away, although there is a necessity to be able to compose logical
black-boxes into broader functionalities (traditionally called computer
architecture).  Hardware composition, in contrast, is difficult since it is
the convergence point not only of circuit behavior, but also of the
algorithmic programming model and of the software specification.  The current
complexity of machine architecture is a direct result of a vonNeumann
computing strategy, which requires hardware resources to be bound, shared,
scheduled, and synchronized.

Composition of functionality is a dominant difficulty in both hardware and
software design.  Hardware does not support algebraic variables, abstract
looping and branching, and symbolic optimization.  Conversely, software
function composition does not support the spatial parallelism of machines or
temporal synchronization of physical processes.  Software languages provide
design options for variable binding, temporal ordering of evaluation, and
function composition.  Conversely, hardware architectures provide design
options for instruction-stream parallelism, message passing, and shared
memory.

The primary intention of a compiler is to convert specification into machine
language.  Internal digital formats (machine languages) are designed to meet
different criteria than user specification languages, so a compiler
essentially mediates between cognition-friendly abstraction and circuit-
friendly abstraction.  Both compiler input and output is symbolic, but the
purpose of encodement shifts from functionality to efficiency.  That is,
specification languages are designed to be closest to mental models of
computation while machine languages are designed be closest to performance
models of circuits.

The proposed deep model of computation attempts to unify these differences by
combining a homogeneous reprogrammable hardware array which is easy to
manufacture with a software circuitry design model which is easy to compile.
Furthermore, specification of intentions is expressed in a language which
compiles directly to the circuitry design model, eliminating the intermediate
design levels of machine architecture.

Modeling Computation

Integrated circuit designs, programming languages, and math models all
describe computation.  How does one organize all the different descriptions of
computation into a simple structure?  Perhaps it is best done by starting from
the simplest (most abstract) components and structures.  This would represent
a top-down approach, as opposed to the bottom-up evolution that characterizes
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our current model of computation.  The objective then, is to identify a simple
model of computation, one which generates the smallest gap between ideal and
real.

Simple

A no-principles, void-based formal model is the simplest ground.  Non-formal
models cannot be simple since they fail to offer structures such as
invariance. symmetry, and enumerable domains.  Non-void-based models obviously
introduce initial assumptions.

Model

Models are abstractions of real processes, a mapping from symbolic to
physical.  Modeling is the enterprise of mathematical description of reality.
Models can also map from symbolic to symbolic.  In order to maintain
simplicity, the objective is to collapse all symbolic modeling hierarchies.
Models assume representability, and include data structure, accessors,
constructors, and preservative (invariant) transformations.

Computation

Computation is a realized behavior which is defined by a conceptual substrate
(Mind/Mathematics) and supported by a physical substrate (Circuit/Signals).
Computing algorithms unite a mathematical objective with a processing device,
directly orchestrating a virtual/physical boundary crossing.

How then do we go from <void> to <computation> to <understanding/interface>
minimalistically?  And how do we then link this minimal construction to the
physical world of hardware manufacturing?  We start with boundary mathematics
as the core.  Mapping from boundary techniques to more abstract levels of
mathematics is an on-going enterprise, with existing results in the
fundamental mathematical structures of logic, algebra, numbers, and sets.
Mapping boundary techniques to more concrete levels of implementation and
manufacturing has been the focus of this year's research.

The essential idea is to begin with nothing and build both toward abstraction
and toward realization.  Distinction as abstract logical existence melds with
distinction as concrete semi-conductor (transistor) switching.  Mathematics is
mapped onto circuitry directly, so that the form of the circuit reflects the
form of the intention.  Mathematically, crossing serves as the hierarchy
archetype while calling serves as the cardinality archetype.  Physically,
crossing serves as the transition archetype while calling serves as the wiring
connectivity archetype.

The deep model approach uses the underlying principles of both physical and
virtual to unite the two.  Comparable enterprises include Chomsky's
development of deep models of language which unified the various mother
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tongues of the world, Jung's systemization of psychological archetypes, and
Campbell's identification of the communality of myth and religion across
diverse cultures.

Our goal is a deep model of computation which will unify the construction of
computational machines with the construction of computational intentions.  The
project's development work (PARTS board, BobTools, etc.) provides test-cases
for determining the sanity of our deep model, since a deep model must engender
a unified perspective over the myriads of technical issues.  Problems that do
not fall out of deep structure point to myopia in that model.

Digital Circuits as Computational Models

The tools we use professionally to bridge the gap between the abstract process
of computation and the models of computation which are expressed as the
physical behavior of digital circuits are fairly limited, encompassing only a
few methodological principles, basically because the agreed upon goal is to
constrain the physical behavior of circuits to the domain of useful
computation.  The engineering literature universally adopts the traditional
POV that the model of computation approximates the behavior of circuits, that
behavior is paramount and that computation is the artifact.  I have
reinterpreted this viewpoint so that the behavior of circuits is seen as a
model of the intention of computation.  This perspective is quite natural,
given that circuits are constructed solely for the purpose of computation.
The vagaries of circuit behavior are artifactual;  computation is not the
model but the actuality.

Circuits model computation.  Weaknesses in the model of computation expressed
by circuits include

physical timing glitches
difficulties with manufacturing
non-optimal circuit logic
...

Weaknesses in the conceptualization of computation include
inadequate and misguided specifications of intention
poor correspondence between computational intention and physical models
non-formal representation of computation
overly elaborate and redundant conceptual structures
...

Computation is a mathematical structure with includes both traditional
algebraic structures and the evolution of these structures over time.
Traditional programming languages provide a poor representation of
mathematical intention, primarily because they are historically associated
with the behavior of physical circuits rather than with mathematical
intention.  The POV that computation is modeled by silicon behavior requires a
fundamental realignment of software and hardware specification.  Here,
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hardware structure is seen as dependent on software specification.  Software
languages begin at very-high-level specification languages, and then
compromise their integrity in order to match the limitations of the physical
model.

The essential difference between the goals of software and hardware is between
abstraction and efficiency.  The goal of programming is expression of
abstraction.  The goal of model building is the construction of efficient
physical simulations of abstraction.

Very specifically, the tools provided in a programming language such as C,
which allow the programmer to conform specification to the efficiency of a
particular hardware architecture, are not computational.  C is an engineering
tool, no different than a silicon-waver mask or a drill press.  The skills of
using C are not those of programming, they are those of simulating programming
on an existent physical model.  A simple way to say this is that programming
languages should reflect our cognitive model of computation rather than the
computers' implementation model of computation.

There are very few programming languages which directly address the
abstractions they intend to address.  Pure LISP comes close, but is still
deeply flawed.  The control structures of LISP (cond and recursion) and the
test predicates (eq and null) are mathematically appropriate.  The constructor
(cons) and destructors (car and cdr) are also appropriate when abstracted from
their referent data structures to mean put and get.  Even the reflection
operators (eval and quote) are appropriate for meta-mathematical modeling.
However, the list data structure is completely an implementation artifact.
Worse, the structure of most LISP algorithms reflects list processing,
subserviating the abstraction of process itself to the implementation.

Clean approximations of mathematical programming languages include Prolog III,
a pure declarative constraint language, and the mathematical style of
programming encouraged by Mathematica.

What is Digital Computation?

Digital computation is a realized behavior which is defined by a conceptual
substrate (Mind/Mathematics) and supported by a physical substrate
(Circuit/Signals).  Computing algorithms unite a mathematical objective with a
processing device, directly orchestrating a virtual/physical boundary
crossing.

Representing Computation

As is conventional in mathematics, I will assume that the representation of
the elements and operations of a domain is an arbitrary choice (given that a
functional mapping is maintained between alternative representations).  Thus,
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within the domain of finite integers, we are free to choose decimal, binary,
or other representational forms.  Operations within the arithmetic of integers
(addition, multiplication, etc) mean the same whether or not they are applied
to binary or decimal notations, although the algorithms can be quite
different.  Further we are free to map across domains (given that isomorphism
is maintained).  For example, we can not only represent decimal addition as
binary addition but we can also represent binary addition as Boolean
operations.  The selection of representation is one of convenience.  In
particular, Boolean transformations on finite binary strings is very
convenient for digital implementations, while it does not undermine the
essential mathematical acts of adding and multiplying integers.  [This point
is far more subtle than commonly acknowledged, and such mappings require
care.]

For the purposes of this paper, I will restrict the notion of computation to
the domain of Boolean transformations, and those domains which can be mapped
onto Boolean transformations.  This includes all of finite arithmetic and all
of pattern matching.  In general, almost all of finite mathematics is
available within this restriction.  Another way of looking at this is that the
theory of computability (Turing machine equivalence) is defined on the domain
of Boolean transformations, since at the base this is all that computers do.

A computational step is therefore a Boolean transformation.  Multiple steps
can occur at the same time, but in order to relate them, the results of
multiple steps must be combined at some point sequentially.

Computation is therefore a partial ordering of Boolean transformations.

Using the representational tools of boundary mathematics, we can reduce the
domain of Boolean transformations to one essential transformation, that of
crossing distinction, which for logic can be interpreted as negation.
Composition of operations (and thus partial ordering) can be reduced to two
essential transformations, that of combining in space, which for logic can be
interpreted as disjunction, and that of combining in (non-directional)
sequence, which for logic can be interpreted as a deductive step.

Thus we can reduce the entire domain of finite computation to two abstract
structures, composition and distinction.  Combining in space and distinction
can be expressed as the vertices of a net (a bipartite undirected graph).
Vertices represent mathematical objects, either simple or compound.  Edges in
the net then represent sequential composition, proof steps, connection pins.

Combining in space can be implemented by joining physical wires, while
crossing distinction can be implemented by inverting a signal.  Complex
Boolean structures are formed by constructing edges between space nodes and
distinction nodes.  Boolean signal propagation over the partial ordering then
represents sequential/parallel evaluation.
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Note that the net structure isolates composition and structure.  The only
operation/action applied to distinction is non-directional crossing.  The only
operation/action applied to space is non-directional sharing or joining.  The
only composition operation is non-directional connection of space to
distinction.  The domain of these sd-nets expresses all possible crossings and
all possible joinings, while the topology of sd-nets expresses all possible
partial orderings of crossings and joinings.  Thus, sd-nets express all
possible sequential and parallel computations.

The additional advantage of sd-nets is that they also provide an intuitive
model of circuits, with distinctions being transistor-pairs which invert a
signal, spaces being wire-OR, and net topology being the circuit topology
while enacts a particular Boolean computation.  Thus sd-nets unite software
programming (in the form of Boolean specification) with hardware circuitry (in
the form of net layout).

Outline of a Deep Model of Computation

The unifying purpose of a deep model is to reduce both cognitive load
(increase ease of programming) and computational load (increase hardware
efficiency).

The three skeleton components of a deep model of computation are:

1) human intention (expressed as mathematics)
2) digital algorithm (expressed as distinction networks)
3) physical circuit (expressed as transistor networks)

Intention introduces a set of mathematical constraints by defining a
functionality and possibly input and output conditions.  Algorithms introduce
a set of processing constraints by identifying the complexity of and the
transformational choices for an intention.  Circuitry introduces a set of
physical constraints by virtue of being made of materials configured in space
and in time.

These constraint sets are nested, with intention, algorithm, and circuitry
each restricting the range of possibility of the next by enforcing an
invariance relationship.  At the same time, each offers a range of choice in
the realization of that invariance.  For a given intention, there are many
algorithms;  for a given algorithm, there are many physical circuits.  A given
intention thus provides the most flexibility of design.  A given algorithm is
constrained by intentional invariance, but permits a wide choice of circuitry
realization.  A given circuit is required to be intentionally and
algorithmically invariant, it also must conform to the demands of physical
reality and is thus limited by time/space practicality.

Design choices broaden as we move from intention to algorithm to circuitry,
while the behavioral space of the design narrows.  The selection of a
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particular design which achieves a particular intention is driven only by
efficiency (cost effectiveness) of performance.

In crossing from virtuality to physicality, we encounter an asymmetry:  the
goal, structured as abstract mathematics, dominates the implementation,
structured as a physical device.  (We rarely hear: "See what you can compute
with this device.")  That is, physical implementation depends upon (is defined
by) the abstract intention, while abstract intentions do not depend on their
implementation.

Boundary mathematics characterizes these relationships through pervasion.  The
physical pervades the digital, which in turn pervades the intentional.  From
the perspective of a pervading space, all interior spaces are constrained.
From the perspective of an interior space, outer spaces are unperceivable, and
thus do not constrain.  Design begins from the inner most space and crosses
outward, accumulating additional performance constraints characteristic of
each outer space. Physical implementation occurs in the outermost space and
must hold inner spaces invariant (or lose pervasion).

In developing a model of intention/algorithm/circuitry, we must characterize
each crossing.  Let us denote the intention/algorithm crossing as the
specification boundary, and the algorithm/circuitry crossing as the
implementation boundary.  Since the focus is on computation, both the
formulation of proper intentions and the material physical behavior of silicon
transistors are excluded from the model.  We assume that the intention of the
computation is adequately modeled by a mathematical structure.  We also assume
that the behavior of transistors is adequately modeled by the physics of their
behavior, expressed in terms of a mathematical description.

The simplest modeling strategy is to develop a common modeling language for
both the specification and the implementation boundaries.  This potential
common model is exactly what the vonNeumann trade-off makes impossible, since
it subjugates both intention and circuitry to a particular algorithmic
approach.  A deep model would unite specification with algorithm symbolically,
while postponing circuit structuring until all symbolics (including circuit
design) are unified.

The alternative of uniting algorithm with circuitry (rather than uniting
algorithm with specification) is also possible but not appealing due to the
asymmetry (pervasion) of physical and virtual.  Such a model would have a
single algorithm fixed in hardware, thus constricting freedom of design
prematurely.
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Thus, the deep model strategy assumes that:

1)  intentions are stated mathematically and properly,

2)  algorithms are modeled as mathematical transformations and introduce
computability constraints,

3)  circuitry directly reflects the mathematical algorithms and
introduces physical constraints, and

4)  all symbolic representations are collapsed in a single compilation
from intention to circuitry.

This approach shares much in common with the goals of the functional and
logical programming communities, as well as with models of dynamic code
generation, dynamic machine languages, and reconfigurable hardware.

The ingredients for the deep model approach to computation:

1)  mathematical specification language
implementation and algorithm independent
declarative algebraic logic

2)  boundary mathematics compiler
void-based and real-time
input is math specification/program
output is optimized dnet
includes algorithmic performance model

3)  compiled dnet technology mapper
input from dnet compiler
output is reconfiguration bit-stream to target architecture
includes physical technology constraints

4)  boundary math reconfigurable hardware array
cells specialized for dnet representation of computing.

Currently, hardware description languages (in contrast to software programming
languages) include concurrent execution models, behavioral and structural
views of the circuit, and timing.  A deep model would move concurrency up into
algorithm optimization, confound structure with function (using boundary
logic), and localize timing through both asynchronous models and real-time
resource creation.
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Some design notes

The significant problems for the design of computation, in order, are

0)  cost
1)  functional invariance
2)  testability
3)  maintainability
4)  performance maximization

Design Principles

1) a deep model of computation which collapses all digital maps
2) principled abstraction hierarchy
3) automated performance optimization and constraint maintenance

This is intended to (respectively)

1) make some design levels transparent to the user,
2) eliminate some concepts, and
3) provide bigger design steps.

Symbolic environment tools:

1)  enforce hard constraints, parameterize soft constraints
2)  model all implicit design concepts
3)  permit meta operations (hierarchically)
4)  model and parameterize resources and performance.

Outline of a Deep Programming Language

A deep programming language (DPL) must be able to express the functional,
temporal, and physical characteristics of computation.  The following outline
specifies the abstractions required by such a language, but does not specify
language details such as particular data structures, sequencing regimes, and
hardware constraints.

Descriptive aspects of a generic DPL

Vocabulary

a finite set of typed names

Types

the domains over which particular names can range.  Can be:
data types (bit, word, Boolean, string, list, network)
constants/grounds
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operators (functions, predicates)
program execution types (memory location, signal transitions)
resources (memory, operator circuits, i/o devices)
constraints (circuit area, wiring, delay, cycle-time)

Expressions

constructions of names

Assertions

equivalence relations between expressions and constants
always Boolean
quantifiers specify kind of anchoring of name to domain
all control structures are assertions

Interpretations

assignment of names to objects in their domain of reference
listable over expressions
bound variables are independent/irrelevant

There are many structural decisions which define the character of a
descriptive language.  A partial set of (suggested) language architecture
decisions includes:

1. A program is a set of expressions.  Categorical composition permits a set
to also be an expression, and operators to transform sets, with no implication
of sequentiality.

2.  Types are hierarchically arranged into abstract, algorithmic, and physical
supertypes.

3.  All expressions are either sets or assertions (declarative model).
Sequencing is algorithmic rather than declarative.

4.  The primitive data type is bit, all others are expressions of bits.

5.  Interpretations convert software behavior to hardware behavior.

Algorithmic process aspects of a generic DPL

States

an interpretation of the set of program execution names
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Transitions

the change of at least one  name's interpretation (change of state)
the identity transition is Idle
consists of

enabling condition (guard)
modifications  (names-next = expression-of-names-now)

transition assertion:
Interpretation(names-now) => Interpretation(names-next)  =  T
can be enabled or disabled, depending on enable-value

parallelism is more than one concurrent transition

Initialization

an assertion which permits transitions to begin to occur

Computation

an cyclic network (i.e. infinite sequence) of states with
initialization condition true
consecutive states (name-now and name-next) explicitly

permitted by a transition assertion
either infinitely changing or has terminal state

followed by infinite idles

Some (suggested) process architecture decisions:

1.  Transitions can occur in parallel, many states can change at the same
time.

2.  Initialization is global.

3.  Observation of computation requires a break in the computational cycle.

4.  Control of transitions is physical rather than algorithmic.

5.  Time is modeled solely by the concept of next, as introduced by a
transition assertion

Physical aspects of a generic DPL

Properties

distinction or composition of distinctions
area, propagation delay, transfer curve, etc.
fan-in, fan-out
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Connectivity

available wiring and bussing
transfer delays

Boundaries

transitions where costs change

Some (suggested) physical architecture decisions:

1.  The target reconfigurable array is modeled as a set of physical resources
which are constrained by the behavioral specifications.

2.  All hardware components have an interval-based space/time model.

3. Boundaries are high priority constraints.

Some of the ways that boundary logic condenses a generic DPL include:

expressions are formed by wire connection
assertions are grounded to T and erase when F
interpretations are Boolean only
only permitted transitions are connect/disconnect from dnode
dnodes idle unless connectivity changes
all connectivity has logical semantics

Hierarchical Complexity

One early elaboration to a simple model is the introduction of structures of
simple components, that is component hierarchies or systems.  The purpose of
hierarchy is to hide levels.  Other hierarchical elaboration techniques
include abstraction barriers, extended models, lattices, and recursion.

The general strategy for reducing complexity through hierarchical abstraction
is to:

1)  provide structured hierarchical partitions
2)  hide as much as detail as possible at each level
3)  provide as much programmability within levels as possible.

There are essentially two (and only two) orthogonal types of hierarchy:
abstraction and meta.  The meta hierarchy (aka reflection, self-reference)
involves a change of the logical type of components, in particular,  it
introduces hierarchy of reference.  Examples include data/control,
arithmetic/algebra, virtual/physical, behavior/structure.  Meta-hierarchy
introduces only two levels, characterized by use/mention.
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The second type of hierarchy is the abstraction hierarchy, which may have as
many levels as are useful.  Abstraction hierarchies group components into
single units without essentially changing their logical type.  Examples
include opcode/programming language, OO inheritance, and
circuit/component/chip.

Our current conceptualization of computation is a tangle of confounded
hierarchies and goals.  Several hierarchical decompositions are described
below, in order to characterize current modeling ideas.

First, from the perspective of boundary mathematics, a rough abstraction
hierarchy:

void
distinction indication/sentience
crossing and calling space and time
structural abstraction expressions
process abstraction enactment
physical abstraction modeling

From the perspective of physical circuit design, a rough abstraction
hierarchy:

design model abstract behavior
architecture model abstract structure
performance model abstract efficiency
correctness of behavior functionality
efficiency of behavior performance
actual behavior of physical circuit reality

From DeMicheli, on digital circuit optimization:

Meta-formalism distinctions  [not in DeMicheli]
Formalisms graph theory, Boolean algebra
Fundamental problems coloring, covering, satisfiability
Tasks

architectural scheduling, resource sharing
logical state minimization, testability

two-level combinatorial
multilevel combinatorial
sequential

geometrical binding, routing
Pragmatics

area
performance (delay, cycle-time, latency, throughput)
bindability
testability
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A data structure hierarchy

bit
combinatorial circuits generate bit transformations,
f(in) = out, Domain = {0,1}

word
bits are combined into words which support abstract interpretation.
f(in) = out indexed by time, D = {8-bit words}
this introduces grouping in time (registers) and space (busses)

instruction
words are interpreted as opcodes,  computational architecture
f(in) defines a process on words which is embedded in the IC,
with out in a orthogonal abstract domain (i.e. machine instructions)
D = {opcodes}

program
instructions are assembled into sequences in the instruction domain
f(in) defines a sequence of processes which are manipulated
by a hierarchy of abstract programming languages
    (machine code, assembly, programming language, high level language)
D = {computational processes}
note that D is defined by the specific machine architecture

message
programs are interleaved across devices by the operating system
f(in) extends beyond  algorithm to resource coordination
such as memory management, file i/o, interactivity interrupts.
D = {resource management messages}

application
resources and computation are coordinated for a particular task,
introducing the idea of an end-user.
f(in) are application specific codes
D = {application abstraction and functions}

user interface
application tools are presented to the user in a model
which is close to the user's mental model of the task

Note that in the above, IC design is an application, and should hide system,
program, instruction, etc. levels.  Also note that these lower levels are
usually given (by the machine you are working on).  Thus language design is
tightly connected with implementation architecture whereas interface design is
not.
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The above hierarchy embodies a severe restriction:  it is purely data
structure oriented.  A process hierarchy (eg transition logic) would be very
different and very useful (recall that data structure/domain focus is an
artifact of object perception in a material culture).

The most natural approach is a constraint hierarchy, starting at the task
specification (a set of behavioral and functional constraints) and narrowing
through constraints imposed at each lower level of implementation.  Rather
than expressing specifics in a design space (this object and that process),
express objectives of the design process and let the automated tools keep you
within the constrained design space.

The constraint model is easily expressed through assertion of invariant
equations.  This is exactly the model of physics, where natural laws are
expressed mathematically as equations.  The invariance relations asserted by
physical laws constrain physical behaviors.  Computational invariance takes
the form of a behavioral/functional specification, expressed as a formal
program.  Thus, a route for bridging the specification and implementation
boundaries is to associate specification with a set of invariant equations
which constrain behavior, and to associate implementation with a set of
invariant equations which constrain the structure of space-time (i.e.
performance) in which behavior takes place.


