
DESIGN NOTES FOR A NEW CAD SYSTEM

William Bricken

December 1988

Let's not get efficiency (the cart) in front of modeling (the horse). That

is, I vote for classes for all objects except perhaps the very lowest

(integers, reals, points). We can always remove classes later, in favor of

machine efficiencies.

Some reasons for having vectors, tuples, matrices, etc. as classes:

They are all just structures, and structures are classes

We might want to do abstract algebra on them (ie computations with

variables, such as n * (a, b, c) = (na, nb, nc)). Symbolic operations are

not faster when implemented as data types.

Data types and classes are different, not interchangable. (I'll need to

look up exactly why.)

We must be thinking classes; the main goal is CONCEPTUAL INTEGRITY. The

risk of mixing implementation with model is confusion, both in our minds and

in our code.

If we really care about efficiency, we'd use intrinsic data-structures or

quaternions instead of matrices. What we do want is an abstraction barrier

between the concept (eg rotation) and the implementation (eg matrices,

quaternions, turtles, ...).

Say we have some conceptual entity such as a line. The line object will need

to include all forms of its definition (such as point-pair, slope-and-

intercept, point-and-slope, etc). If we used only one form of the

definition, the object line would get confused when it was referred to by a

different form. We then will choose to embody the object line within a

mathematical structure (such as geometric-measure, topological-continuity, or

even as a set), depending on the operations we will do with the object.

Finally, the mathematical structure will find an implementation form, so that

sets (for eg) might be Lists, or Collections, or Arrays, etc.

The important idea here is that the conceptual objects are separate from the

mathematical models that we formalize them with, and the mathematical objects

are separate from implementation objects we use to code them with.

So we need objects such as Strings, Collections, and Structures, but only to

the extent that they supply a mathematical context for the geometric

concepts, such as Line, 3DCircle, etc. We need programming objects, such as

Arrays, Circular Queues, etc, but only to the extent that we choose to use

them as implementation substrata for the mathematical context. And when we

step from math to implementation, we can also step from objects to data

types.

While we're making object lists, let's remember that an object is both a data

structure and a set of operations on that structure. Only by specifying the

operations will we be able to identify the appropriate mathematical theory

(and thus the appropriate support objects). Ron's list does incorporate

mathematics, but lots of changes become apparent when you ask "where's the

theory?"

Some quick egs:

Collections are Sets

Typed collections (by array, byte, etc) are confused.

Ordered Collections are not subclasses of Collections

Sorted Collections are not subclasses of Collections

Not all Graphics Primitives are Structures.

In general, implementation is mixed with mathematics is mixed with concept.

