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The code that implements a function is the documentation

of the function's definition!

MATHEMATICAL CLASSES

Here's what Mathematical Classes mean for an implementation architecture.

Each class has a similar internal structure:

1.  The Class handles nonexistence, by never creating a void instance.  Could

be implemented with a named-instance-table.

2.  Base objects (named atoms) never initiate messages.  They are the final

resolution, and they do answer queries.  When bound, they immediately Absorb

into their functional context.

3.  Complex objects are decomposed to base objects, by passing messages down

a structural hierarchy.

4.  Computation is done with equality comparisons, and with substitution.

Equality of complex structures is done with pattern matching over structure.

Substitution is initiated when pattern matching fails; it moves the structure

towards a normal form.  When a pattern match fails on a normal form, we have

a result, and terminate execution.

5.  Note that type-checking and syntax errors are filtered out by passing

messages around the class hierarchy.  Instances are consulted only to resolve

questions, which is done by binding variables.  Since instances exist only at

run-time, programs can be debugged abstractly, at compile-time.  Run-time

errors indicate a world model error (an impossible drawing for the model),

not a coding error.

TYPE CHECKING

Type checking is a limited form of CONSTRAINT REASONING.  Why not permit

arbitrary constraints as filters on i/o of an object.  This is the Filter

concept of Set Constructors.



RECURSIVE STYLE

We can use the Base and Loop definitions to form a recursive algorithm.  The

general pattern is:

Recur base: F[x, base] = S[x]

Recur loop: F[x, y-increment] = T[x, y, F[x, y]]

Here we identify a function with the base constant of a theory, and with one

step of the constructor function (y-increment).  We store the results of the

base case as S[x], and the results of the loop case as T[x, y, recur].

Here's an example, the Factorial function:

Base: Factorial[n, 1] = 1

Loop: Factorial[n, (i + 1)] = n * Factorial[n, i]

So S[n] = 1  and T[n, i, recur] = (n * recur)

In PROLOG, we would submit the definitions in a slightly different syntax. In

LISP we would write the two parts in a slightly different way:

(factorial n)  =def=  (fact n n)

(fact n i)     =def=  (if (= i 1) 1 (* n (fact n (- i 1))))

Having the index i to count things suggests an iterative form of Factorial:

(factorial n (setq result 1))  =def=   

(do  (from i = 1 to n) (setq result (* result i)))

With a generator stream and a set theory, we could be very efficient and free

(but alas, many machine architectures don't like this way of doing it):

(factorial n)  =def=  (* (stream 1 to n))

The Stream's Filter is "Accept everything".  The Choice function is free to

get the easiest element at all times.  Using a pattern matching syntax:

(factorial n)  =def=  {* 1..n}

The main reason to do it this way is to be ready for parallel processing.

Then the stream generator can also generate in parallel. For example, Stream

could Choice pairs of elements and give each pair to a different processor.

This converts the algorithm from O(n) to O(log n).  That is to say, if we

model (and implement) orderless concepts, such as space, using linear models,

such as LISTS, we fail to prepare for medium-range future equipment.  If we

implement orderless concepts as SETS, we can swap hardware architectures

without changing the organization of our code.  We degenerate SETS, for

example, into LISTS, when thinking solely for serial processing.



PROGRAMMING STYLE

There is no substantive difference between declarative, functional, and

object-oriented styles.  They are very different because of very impure

implementations that compromise the organization of each.  For example, in a

functional regime, arguments are passed by location.  In an object regime,

messages are sent by name.  These two approaches are implemented differently

(they are different structurally), but they embody the same organization

(function invocation and composition).

The power of mathematical modeling is that just about anything that's

possible to say is said concisely.  We get an instructional sequence, and an

explicit description, and the assurance of stepping between process and data

with ease and dexterity.  The benefits of using mathematical organization as

a central abstraction partition between concept (whatever we mean by a user

action) and implementation (whatever we mean by a machine action) are

precisely those of portability, ease of maintenance, verifiability, power,

preciseness, modelability, and all the other stuff that we dream of.

That is not to say that problems don't exist.  (Take the previous double

negative, for example.)

Problems, ordered by worseness:

1.  This technique may seem totally unintelligible, a foreign language, a

stark raving.  It isn't, of course, (what it is is the formal basis of

computation), but if you don't see algorithms and even pseudo-code in the

Base and Loop definitions of everything, then this is not for you.  The worst

thing is that it's novel.

2.  Of course folks have built these systems.  Genesereth's MRS at Stanford

is a prime example.  They used to run slow but they don't run slow any more

(MRS was written years ago). They are very explicit and they're marvelously

well-adapted for multiple processes.    

But this is supposed to be a problem, and it is:  Its hard to Knowledge

Engineer using only abstract organizations.  You must be very savvy

mathematically and in your model.  Now Geometry2D and Geometry3D are

excellent places to use abstract mathematics, and a lot has been known for

over fifty years, but it will take effort to map all the techniques of CAD

onto their foundations.  There is a sort of conservation of effort:

everything is hard. We've made implementation (and modularization and

maintenance and debugging) a lot easier by placing restrictions on how we

specify our conception of geometry.  In return, we must be totally clear

about all CAD models.  We can no longer expect the user to furnish the

meaning.  (Of course, anyone can turn off modeling and draw in freeform

modes.)  Fortunately, we can also provide       the tools for users to build

their own models.  An "inner core" of this architecture is the mathematical



Classes upon which we will have built CAD geometry.  If a user needs to

convert an environment from Euclidean to Lobachevskian, the "applications

developer" can modify the Axiom of Parallel Lines from the 2D Axioms and plow

on.   

3.  There are many models and tasks that would make this system sluggish and

computation/message bound.  There are many mis-implementations that would

make this approach intolerably slow.  This is true in any useful domain.

The real issue of computation speed vs implementation optimization is that we

accept a tighter language in exchange for a understandable processing model.

The architecture of the machine could be fitted to the architecture of the

processing model to maximize computational efficiency.  What is terrible is

mismatched models and machines.


