
AI-BASED PROCEDURES

William Bricken

October 1987

Our observations regarding methodology in general and the architecture in

particular are that a large scale approach to Artificial Intelligence (AI)

integration, using sophisticated, state-of-the-art AI techniques is

inappropriate. In particular, we do not advocate the development of large

scale expert systems (ES) empowered to act as design "experts". The

development of such expert systems requires a somewhat static domain, as well

as one that can be readily formalized. In addition, the development process

inevitably requires a comprehensive knowledge engineering effort, with

frequent and extended interactions between human experts and knowledge

engineers. The design process, however, is sufficiently dynamic and informal

(even subsequent to extensive formalization), and the necessary knowledge

engineering effort so wide in scope that such a monolithic ES approach seems

inappropriate. We do, however, recommend adoption of the, now standard, AI

approaches to software development and knowledge representation, making use

of iconic interfaces, windowing environments, object-oriented programming

paradigms and frame based representation and inference schemes. We further

suggest the development of at least one small ES (described below) of

relatively narrow scope that can be, to some extent, engineered to be domain

independent.

In the sections below, we describe knowledge bases and procedures applicable

to the developing architecture. Where possible, we outline where and in what

manner such procedures might be inserted into the architecture.

Concept-Based Information Retrieval

The current choice for the database management system, although powerful,

constrains the designer to rather traditional keyword style searches. In

addition, the data itself must be such that it can reasonably be stored in a

form conducive to the requirements of such a database management system.

Although these constraints are of little consequence to the designer in many

instances, it is expected that circumstances will develop in which a rather

less structured, concept based search involving full document search and

retrieval is required. A simple example of such a requirement is the need to

search through the abstracts of research articles in such a manner that user-

defined concepts rather than externally defined keywords drive the search.

The concept-based information retrieval (CBIR) approach is to provide the

user with a means by which search requests, posed in a query language capable

of expressing the concepts in which the user is interested, can be used to

locate relevant documents. In addition to simply retrieving documents, CBIR

is able to rank the retrieved documents based upon their assumed relevance to

the concept of interest. In addition, an explanation facility enables the

user to request logical, understandable and intuitive explanations as to why

a particular document was included in the search result. All of these

capabilities are present within an integrated retrieval environment which

includes tools for rule browsing and editing.

The capability for concept-based search is provided by rules which describe

relationships between topics of interest. These rules do not require that

the user specify how the concepts of interest have been expressed in the

document base, since the inference mechanisms encompassed within a CBIR

system are capable of working with the raw rules themselves. A rule in CBIR

takes on the following form:

A --> B g[a]

which means that if a document happens to encompass concept A, then with some

certainty g[a], it should also encompass the concept B. Although a certainty

takes on a real valued number in the interval [0,1], it should not

necessarily be interpreted as a probability. Rules are, however, likely to

be more complex than this, for example:

(A1 and A2) --> B g[b]

which means that if the document encompasses both concepts A1 and A2, then it

is likely to encompass concept B with certainty g[b].

The difficulty in using CBIR rests with the process of defining concepts as

sets of rules. Once the concept definition process has been completed (it

need only occur once) subsequent requests for information retrieval may be

carried out with ease.

A CBIR system is large and comprehensive and, by necessity, is given only a

superficial treatment here. The outline below serves to provide a simplified

overview of many of the components that make up the CBIR tool.

The Knowledge Acquisition Subsystem: This subsystem contains several

tools which facilitate the construction and modification of queries.

The Rule Editor: This tool provides the user with the ability to

create, modify and delete rules.

The Rule Browser: This tool allows the user to select individual

rules or sets of rules for examination.

The Rule Analyzer: This tool performs analyses more complete than

the simple syntax checking handled by the Rule Editor, enabling the user to

check the rule base before attempting any data retrieval.

The Retrieval Subsystem: This subsystem performs the evaluation of

documents with respect to those queries formed by the user via interaction

with the Knowledge Acquisition Subsystem. Three tools are contained here:

The Preprocessor: This tool essentially expands the user's query

into a fully formed search request to be sent to the rule evaluator.

The Evaluator: The evaluator controls the traversal of the search

tree generated by the preprocessor, computing the value of the query to be

associated with each document in the document base.

The Performance Analyzer: This tool enables the user to display

the results of the search request. Histograms and lists of retrieval scores

can be presented, and the user can view selected documents in such a way that

the text expressions which successfully matched the document are highlighted.

The Guide Subsystem: This tool provides a generalized help capability to

the user.

The Rule-Base Management Subsystem: This enables the user to select and

peruse the existing rule bases.

The Database Management Subsystem: Functionally consisting of two

components:

The Preprocessor: This takes as input the free format text of the

documents in the document database and transforms them into files which CBIR

can readily access and manipulate.

The Word Matching Mechanism: This is a collection of procedures

which implement the many word matching capabilities of CBIR retrieval

language.

To summarize, CBIR is a complete, powerful, yet easy to use intelligent

document retrieval mechanism by which full document retrieval can take place

via the search for documents whose contents are relevant to concepts supplied

by the user. A retrieval mechanism such as this is much more powerful than

the simple keyword search facilities supplied by other data retrieval tools

and, as such, can prove invaluable when complete (yet precise) searches are

desired.

A CBIR tool has the potential to become a valuable component in the database

management system arsenal of tools. Given that database search requests are

likely to stem from a variety of different sources, and given the CPU-

intensive nature of the retrieval task, it seems likely that a CBIR tool

should reside on the system host. Copies of the Rule Editor and Rule

Browser, however, could easily reside on the individual workstations.

Knowledge Base Editing System

Much of this approach makes use of the concept of a hierarchical network of

frames. Some databases, most notably the lessons learned database, are also

well suited for representing in such a framework. Similarly, if small expert

systems are introduced into the methodology, their knowledge bases will

inevitably be represented as hierarchical networks of frames. Given the

ubiquitous nature of this hierarchical structure, a means by which such

structures can be conveniently browsed and edited seems crucial.

An existing system was developed to provide a simple but extensible knowledge

base browsing and editing system. It provides functions for defining,

accessing, displaying, editing and saving a knowledge base. The basic

knowledge base access and definition functions are written in COMMON LISP and

do not require other tools to be loaded. This system is thus a self

contained, portable package for knowledge representation. It is divided into

modules with the following capabilities:

1. Organization of knowledge into a tree of definitions, with attributes and

values attached to each node. Attributes may be inherited from parent nodes.

The knowledge base may be partitioned into different knowledge sources, with

a distinct tree for each source.

2. Browsing and editing of the knowledge base. The overall structure is

shown as a tree display, and operations on the display allow creation and

deletion of nodes and links. Nodes may be displayed and edited in a tabular

format to add or remove attributes and to alter their values.

3. Reading and writing of the knowledge base to disk in a text-editable

format. During the read process, information from several saved knowledge

base files may be merged. Filename prompting and directory management is

provided.

4. A sub-system for entering and editing mathematical formulas is provided.

Type checking is provided during the editing process and at run-time. A

library of pre-defined knowledge base entries supply operators for

mathematical, list manipulation, and knowledge base access operations.

Constraint Management System

Constraints pervade the entire design process and thus, in many ways,

constraint management (the process by which the consistency of the overall

design is tested whenever design changes, additions or refinements are made)

is a natural tool for design. The constraint management process described

below rests firmly upon the assumption that an appropriate representation

scheme (a hierarchy of frames) is used to represent the design process. The

text below describes some of the functionality of a constraint management

system, and suggests appropriate sites for such a tool within the

architecture.

At a minimum, a reasonable constraint management system should serve to alert

the designer when constraints are violated and should be flexible enough that

constraint alerting can be customized based upon the "hardness" of the

constraint, the level/seniority of the designer, and the level of the design

(prototyping/exploring vs. fine-tuning). In addition, it is necessary that

the constraint management system be designed in such a way that appropriate

pruning of the constraint search path be enabled, so as to reduce the amount

of search necessary to alert the designer to constraint violations. Pruning

can take place via such mechanisms as if-changed demons and timeliness

checking.

Attractive enhancements to a constraint management system allow for a mixed-

initiative style explanation facility. Such a mechanism would be capable

(via inheritance) of providing the designer with a description of the process

by which the constraint violation was detected. Such a facility would enable

the designer to either more easily re-specify the proposed design or even to

override the violation altogether.

Another useful enhancement involves assisting the designer via a simple

mixed-initiative style dialogue. A rudimentary system could be designed via

the process of constraint inversion in which ranges of acceptable design

parameters (the range determined by the constraints imposed by other design

features) are presented to the designer.

To summarize, there a variety of ways in which constraints can be processed.

Utilizing demon invocation and constraint categorization facilitates the

reduction of search to the extent that constraint processing becomes

manageable, and constraint inversion and tracing support suggestion and

explanation mechanisms which can be established in a mixed-initiative

framework.

The constraint management system, as described above, is essentially an

inference system applied to the frame-based representation of the design

process. As such, the most appropriate location for the constraint

management system is at the level at which the design itself is managed. If

individual workstations support their own copies, then the workstations

should also administer the constraint management tool.

History & Referencing System

The appropriate implementation of a frame based representation can make the

hierarchical representation of the design process particularly conducive to

the development (via inheritance and tree traversal) of a powerful history

mechanism and a suggestive referencing mechanism. Such mechanisms would

enable a designer, upon creating (or returning to) a design frame, to request

a historical trace of all of the design decisions which led to the creation

of the current frame. If the representation was implemented on a bit-mapped

display with mouse-sensitive capabilities, the designer could simply point to

frames of interest, and obtain a detailed description of the frame's contents

(slot-values, constraints, heuristic rules etc.). The ability to determine

which tools and databases were accessed from a given frame could prove to be

particularly profitable.

In addition to using the mechanism of inheritance for a design history tool,

it can be used to develop a suggestive referencing tool in which a designer,

when approaching a design task, could request information which described

which tools and databases might prove useful at the current stage in the

design. A trace through the design tree could identify those tool and

databases which were accessed by frames above the current frame in the design

tree. The desired information could be displayed quite conveniently in a

spreadsheet format in which the rows (tools/databases of interest) were

mouse-sensitive and could thus be expanded to reveal more detailed

information about what frames accessed the tools/databases, and in what

context.

Just as the designer could pose questions such as "What tools are appropriate

to my current task?", a related capability of the suggestive referencing

mechanism could enable the designer to select a potential tool and pose

questions such as "What other tasks used this tool?". A simple traversal of

the design tree could locate the appropriate design frames, which could then

be graphically displayed on the workstation screen.

In general then, the representation of design decisions as a hierarchical

network of frames can, with the use of both appropriate inference mechanisms

and a sufficiently accessible user interface, prove to yield a powerful tool

for both design and audit trail maintenance.

The history and referencing tool is intimately tied to the design itself and

as such should reside at the level within the architecture at which the

design itself is administered.

Tool Selection & Data Retrieval Expert System

Although the availability of a wide variety of analysis tools offers

considerable potential as a mechanism for extending the power and

capabilities of the designer/analyst, there are obvious hurdles to overcome.

In particular, such tools must be learned. An analysis or database tool,

regardless of its efficacy or power, is of little use if its interface needs

are sufficiently complicated to inhibit use by the designer. The difficulty

in using a compendium of analysis tools is further exacerbated when the

inputs/outputs and order of execution of such tools is of some importance.

Towards this end, we recommend the development of a small expert system. We

envision such an ES acting as a buffer between the designer and the tool

itself, assisting with both the preparation of a tool for execution and the

subsequent retrieval of analysis results.

Specifically, we propose the development of an ES which would provide the

user with a frame-like template for the specification of the appropriate

parameters required by the requested tool. Where possible, acceptable

parameter ranges (based upon previous design constraints) will be presented

and, as slots in the parameter template are filled, ranges for the other

slots dynamically change as appropriate. In addition, when a particular tool

is requested, a quick search (via the history and referencing mechanism

described previously) could determine if similar requests to the tool had

been previously issued, and the location of similar requests could greatly

aid the specification of parameters, particularly for a complicated tool. If

the specification of some tool parameters are obtainable only via the

execution of other tools, a simple recursive backtracking mechanism can be

used to dynamically set up a piping scheme for a sequence of tool executions.

Once the appropriate parameters have been specified, the ES system is

responsible for preparing the appropriate calling sequence and actually

executing the job.

Once a tool is executing, the ES is responsible for retrieving results and

displaying such results in a form suitable to the designer. Many complicated

tools generate massive quantities of output, much of which is often of little

use to the user. Via a mechanism involving the initial specification and

subsequent location of an output template, the ES can process retrieved

output and present it to the designer in an attractive and parsimonious

representation. In addition, records of the tool request, execution and

search result can be automatically inserted, thus simultaneously facilitating

maintenance of an audit trail and the ease with which subsequent calls to the

tool may be made.

Such an ES seems best suited for residence on the analysis workstation.

Interface Prototyping System

The rapid prototyping of interfaces is a necessary aspect. In order for

design workstations to be effective their interfaces must be readily accepted

by the designers. The interfaces must be easily understood, easily

manipulated and, where possible, easily customized. It is also important

that, to the extent possible, a common metaphor for the designer interface

extend across all workstations. The AI iconic and window approach to user

interface design has met with growing acceptance outside of the AI community

and we recommend its adoption for the workstation designer interface. The

interface prototyping process for displays is at once more critical and more

difficult. A wide variety of disparate display technologies is available for

selection and thorough testing both through simulation and man-in-the-loop

evaluation is crucial.

An object-oriented approach to display design and testing offers a number of

advantages. The object-oriented metaphor is a natural choice when the domain

to be modeled itself consists of a number of interacting components

(objects). Furthermore, when the objects to be modeled can be classified

into some hierarchical scheme, the potential for parsimonious knowledge

representation via inheritance mechanisms becomes available. Consider, for

example, a simple histogram display. One can easily imagine such a display

object belonging to (and thus inheriting from) the general class of frequency

distribution displays. In turn, a horizontal bargraph display object could

inherit from the histogram display object and thus particular instantiations

of horizontal bargraphs could be modeled with ease.

Of course the simple generation of static candidate displays, object-oriented

or otherwise, is insufficient for display development needs. The candidate

displays must be able to be tested, and this naturally requires that the

candidate displays must be dynamic. A natural approach to the testing

problem is to extend the object-oriented metaphor to include a message

passing programming paradigm. In this type of system, objects (more

accurately, classes of objects) are defined in terms of both their visual

characteristics and the kind of actions they may take subsequent to the

reception of appropriate messages. To return to the histogram example

introduced above, one can imagine a single bar in a histogram belonging to a

class of histogram bars which, among other things, can respond to a grow n-

units message.

The metaphor of a candidate display built up as a hierarchy of objects, each

of which can change its behavior subsequent to the reception of appropriate

messages is a powerful one. Simulations can be readily built (the concept of

object-oriented simulations is addressed in the next section) to drive

candidate displays, and the hierarchical nature of the display definition

readily supports a rapid prototyping display development environment.

A number of commercially available display development tools support the

object-oriented metaphor. We has had a good deal of experience, for example,

with a product known as the Object-Oriented Graphical Modeling System

(OOGMS). This product, based upon the SmallTalk-80 programming paradigm is

written in C and runs on a variety of popular workstations (VAX, SUN, Apollo

etc.). Accompanied by a powerful drawing package, OOGMS allows the user to

design and classify complex hierarchies of graphical objects. The objects

themselves can be assigned behaviors and via the reception of appropriate

messages, the displays can be animated and controlled in real time.

Object Oriented Simulation

The prototyping and development of displays and human-computer interfaces, as

described in the previous section, is potentially a very difficult and time

consuming task. A crucial aspect to the interface testing process involves

the ability to test displays via simulation. Treating the display elements

themselves as addressable objects argues for an object oriented approach to

simulation. The traditional approach to simulation design and construction

create several problems for simulation development and maintenance. The

procedurally-oriented programming paradigm with which simulation developers

typically model their domain ensures that even carefully specified

assumptions, dependencies and behaviors will become obscure as levels of

detail are added to the developing simulation. Concomitantly, procedural

simulations tend to be monolithic, unwieldy creations that are slow to build,

awkward to modify and difficult to interpret.

These difficulties are, to some extent, resolved by an object-oriented,

knowledge-based paradigm for simulation design. Domain experts often find the

object-oriented metaphor to be particularly intuitive, especially when the

domain to be modeled consists of numbers of autonomous, interacting entities.

Development, maintenance and verification of knowledge based simulations is

facilitated by the separation of domain knowledge from control structure and

by the use of inheritance as a mechanism for the parsimonious representation

of knowledge. The message passing metaphor for simulation driving permits

sophisticated tracing and debugging during development and provides a

convenient mechanism for animating the simulation at run time.

Although object-oriented knowledge-based simulation is a powerful

methodology, it is not without its problems. Current exemplars of the

approach indicate that simulation development is a rather tedious

undertaking. For example, the "natural-language" style of the ROSS language,

although an attractive feature for the novice, becomes somewhat of an

impediment as expertise accumulates. Other problems include the modeling of

non-intentional events, the issue of grain size, the delegation of

responsibility across objects, dynamic modification, and the problem of

execution speed.

We have adopted a systems-based modeling approach which extends the object

metaphor. Systems are objects with processing capabilities, such as an

input-agenda and prioritization mechanism, an internal process with self-

definition and message handlers, and a model of the environment. The

systems-oriented approach solves many of the deficiencies of static and

procedural objects by providing more computational power local to an object.

Control of the simulation, rather than being a global characteristic, can be

distributed to the values/priorities of the system-objects. Composite

systems can be formed that permit control of the grain-size and abstraction

level of the simulation. Dynamic modification of systems is the rule rather

than the exception, since systems are inherently dynamic. This approach

permits a strong form of parallelism, distributing computational resources

and responsibilities over the object-systems in the model. We have developed

formal transformational procedures that permit principled construction of

networks of systems. Theories and world models expressed in Predicate

Calculus can be mapped onto these networks so that the semantics of the model

is preserved while the control of inference is distributed. We are also

committed to the dynamic visual display of system-objects and their

interactions. We are currently developing a purely visual display language

which represents computation as transformations on planar maps and networks.

In summary, we has developed a theory and an infrastructure to implement a

distributed knowledge-based simulation environment based on dynamic objects

(systems), with a parallel inference engine, a visual programming language

and a network-oriented development interface.

The natural location for an object oriented simulation tool is alongside the

interface/display prototyping system on the Display Development workstation.

