
ENTITIES

William Bricken

June 1995

Entities

An entity is a collection of resources which exhibits behavior within an
environment. The entity-based model of programming has a long history,

growing from formal modeling of complex systems, object-oriented programming,

concurrent autonomous processing and artificial life.

Entities act as autonomous systems, providing a natural metaphor for

responsive, situational computation. When a single entity resides on a single

node, the entity is a stand-alone executable program that is equipped with the

VEOS functionalities of data management, process management, and inter-entity

communication. In a virtual environment composed of entities, any single

entity can cease to function (if, for example, the node supporting that entity

crashes) without effecting the rest of the environment.

Entities provide a uniform, singular metaphor and design philosophy for the

organization of both physical (hardware) and virtual (software) resources in

VEOS. Uniformity means that we can use the same editing, debugging, and

interaction tools for modifying each entity.

The biological/environmental metaphor for programming entities provides

functions that define perception, action and motivation within a dynamic

environment. Perceive functions determine which environmental transactions an
entity has access to. React functions determine how an entity responds to
environmental changes. Persist functions determine an entity’s repetitive or
goal-directed behavior.

Synchronization of entity processes (particularly for display) is achieved

through frames. A frame is a cycle of computation for an entity. Updates to
the environment are propagated by an entity as discrete actions. Each

behavioral output takes a local tick in local time. Since different entities

will have different workloads, each usually has a different frame rate. As

well, the frame rate of processes internal to an entity is decoupled from the

rate of activity an entity exhibits within an environment. Thus, entities can

respond to environmental perturbation (reacting) while carrying out more

complex internal calculations (persisting).

Systems-Oriented Programming

In object-oriented programming, an object consists of static data and

responsive functions, called methods or behaviors. Objects encapsulate

functionality and can be organized hierarchically, so that programming and

bookkeeping effort is minimized. In contrast, entities are objects which

include interface and computational resources, extending the object metaphor

to a systems metaphor. The basic prototype entity includes VEOS itself, so

that every entity is running VEOS and can be treated as if it were an

independent operating environment. VEOS could thus be considered to be an

implementation of systems-oriented programming.

Entities differ from objects in these ways:

• Environment: Each entity functions concurrently as both object
and environment. The environmental component of an entity

coordinates process sharing, control and communication between

entities contained in the environment. The root or global entity is

the virtual universe, since it contains all other entities.

• System: Each entity can be autonomous, managing its own resources
and supporting its own operation without dependence on other entities

or systems. Entities can be mutually independent and

organizationally closed.

• Participation: Entities can serve as virtual bodies. The
attributes and behaviors of an inhabited entity can be determined

dynamically by the physical activity of the human participant at

runtime.

In object-oriented systems, object attributes and inheritance hierarchies

commonly must be constructed by the programmer in advance. Efficiency in

object-oriented systems usually requires compiling objects. This means that

the programmer must know in advance all the objects in the environment and all

their potential interactions. In effect, the programmer must be omniscient.

Virtual worlds are simply too complex for such monolithic programming.

Although object-oriented approaches provide modularity and conceptual

organization, in large scale applications they can result in complex property

and method variants, generating hundreds of object classes and forming a

complex inheritance web. For many applications, a principled inheritance

hierarchy is not available, forcing the programmer to limit the

conceptualization of the world. In other cases, the computational interaction

between objects is context dependent, requiring attribute structures which

have not been preprogrammed.

Since entities are interactive, their attributes, attribute values,

relationships, inheritances and functionality can all be generated dynamically

at runtime. Structures across entities can be identified in real-time based

on arbitrary patterns, such as partial matches, unbound attribute values (i.e.

abstract objects), ranges of attribute values, similarities, and analogies.

Dynamic programming of entity behavior can be used by programmers for

debugging, by participants for construction and interaction, and by entities

for autonomous self-modification. Since the representation of data, function,

and message is uniform, entities can pass functional code into the processes

of other entities, providing the possibility of genetic and self-adaptive

programming styles.

Entity Organization

Each entity has the following components:

• A unique name. Entities use unique names to communicate with each
other. Naming is location transparent, so that names act as paths to

an entity’s database partition.

• A private partition of the global database. The entity database
consists of three sub-partitions. The external partition contains
the entity’s environmental observations. The boundary partition
contains an entity’s attributes and its observable form. The

internal partition contains recorded transactions and internal
structure.

• Any number of processes. Conceptually, these processes operate in
parallel within the context of the entity, as the entity's internal

activities. Collectively, they define the entity’s autonomous

behavior.

• Any number of interactions. Entities call upon each others'
relational data structures to perform communication and joint tasks.

Interactions are expressed as perceptions accompanied potentially by

both external reactions and internal model building.

