
Virtual World Development

THE STRUCTURE OF A CUBE

The key idea is that the structure (geometry) of an object is an intrinsic

property. Structure should make no reference to external relations.

Note that translation, rotation, scale, and orientation are Relations between

an object and an external coordinate system, and are thus not part of a

cube's geometry.

Fortunately, there are established conceptual tools (Cartesian geometry, unit

vectors) for describing "cube space".

EMBED THE CUBE IN A SPACE

Assume unit vectors i, j, and k. Associate each with an orthogonal side of

the Cube.

Given rules for ijk: i*j = i*k = j*k = 0

Assume a local origin (0i 0j 0k).

i = (1i 0j 0k)

j = (0i 1j 0k)

k = (0i 0j 1k)

DIFFERENTIATE PARTS

Cubes have 27 parts: 8 vertices, 12 edges, 6 faces, 1 volume.

Notation: (ai bj ck) for all parts.

Let {a, b, c} take on three possible states: {0, _, 1},

where _ is any value 0 =< _ =< 1

Let d = {0, 1} (Knonecker delta, either 0 or 1)

Vertices: {di dj dk}

Edges: {di dj _k} or {di _j dk} or {_i dj dk}

Faces: {di _j _k} or {_i dj _k} or {_i _j dk}

Solid: {_i _j _k}

Virtual World Development

More notation:

Let i, j, and k be symmetrically equivalent, and thus unlabeled.

Vertices: {d d d} (all three states are Kronecker)

Edges: {d d _} (one state is not Kronecker)

Faces: {d _ _} (only one state is Kronecker)

Solid: {_ _ _} (no state is Kronecker)

Let u stand for any of i, j, or k.

PROPERTIES

Parallel(e1_ e2_) = e1{d d _} = e2{d d _} _ in same location

Parallel(f1_ f2_) = f1{d _ _} = f2{d _ _} _ _ in same location

Perpendicular(e1_ e2_) = not(Parallel(e1 e2))

Perpendicular(f1_ f2_) = not(Parallel(f1 f2))

On(v_ e_) = v{du} = e{du} values of d equal

On(v_ f_) = v{du} = f{du} value of d equal

On(e_ f_) = e{du} = f{du} value of d equal

Meets(e1_ e2_) = e1{du} = e2{du} some d equal

Meets(f1_ f2_) = not(Parallel(f1 f2))

Distance(v1_ v2_) = number of different {du}

Distance(e1_ e2_) = number of different {du}

Virtual World Development

PICTORIALLY

 011 _11 111

 0_1 __1 1_1

 001 _01 101

 01_ _1_ 11_

 0__ ___ 1__

 00_ _0_ 10_

010 _10 110

0_0 __0 1_0

000 _00 100

 back = __1

 top = _1_

 011 ----------_11------------ 111

 / | / |

 / | / |

 / | / |

 01_ | 11_ |

 / | / |

 / 0_1 / 1_1

 / | / | rside = 1__

 010 -----------_10----------- 110 |

 | | | |

 | | | |

 lside = 0__ | | | |

 | 001 ----------_01----|------- 101

 | / | /

 0_0 / 1_0 /

 | / | /

 | 00_ | 10_

 | / | /

 | / | /

 | / | /

 000 -----------_00----------- 100

 bottom = _0_

 front = __0

 solid = ___

Virtual World Development

MULTIPLICATION TABLES

To determine vertex of intersection of two edges (or edge of intersection of

two faces, or more generally, lower dimensional element defined by two other

elements), down-multiply representation:

* 0 _ 1

0 0 0 _

_ 0 _ 1

1 _ 1 1

To determine edge formed by two vertices (or general up element), up-multiply

representations:

% 0 _ 1

0 0 _ _

_ _ _ _

1 _ _ 1

Note than non-intersecting vertices identify faces (or solids)

NOTES ON REPRESENTATION

By multiplying i, j, or k by a scalar, the cube generalizes to an arbitrary

block.

ijk provides lots of established mathematical support.

{0 _ 1} provides unification of different parts of a cube and visual imagery.

Binary Kronecker delta provides easy implementation, but could be renamed (0

= low, 1 = high, _ = any) for understanding.

Properties are trivial calculations.

Generality of notation is difficult to express algebraically. In general, the

more abstract, the more powerful and the harder to express.

