BLOCKS WORLD, BOUNDARY REPRESENTATION

An appropriate change in representation can make a problem trivial.
New notation: The <i>stack</i> []
A stack contains ordered labels, the right most is OnT.
[] is the empty Table
[][] = [] Infinite Table Space Axiom
][= minimal form of axiom
[a] = (a On T)
[a b] = {(a 0n b) (b 0n T)}
[a][] = [a]
Representation of example problem: [a b][c] ==> [a b c]
<i>Move(a Onto b)</i> : [a . X][b . Y] = [. X] [a b . Y]
Dot means "the rest of the stack".
Level(stack): [a b] ==> [a][b]
==>][minimal form of Level
PutInOrder(level stack to pattern stack):
term: [b][a] pattern: [a b] order: [a][b]
To PutInOrder, match the sequence of labels in level term to pattern term.
Convert(old to new): new = Move(PutInOrder(Level(old)))