BLOCKS WORLD, DESCRIPTION

Blocks World is a simple exercise in generative specification. A specification is generative if there is enough information for a computer to implement the described world. The specification below has *not* been implemented, it is a first pass at knowledge engineering the Blocks World domain.

Domain:	{a, b, c, d} {Table}	are Blocks. is the Table.
Variables:	x, y, z,	represent single, unique objects from the domain.
Relations:	x On y	Block x is directly resting on Block y.
Terms:	X, Y, Z	are collections of On relations that specify a (true) configuration of Blocks and Table.

Example:

[a]	is	expressed as	{(a	0n	b)
[b] [c]			(b	0n	T)
	-		(c	0n	T)}

The curly brackets indicate a term.

Constraints on Terms:

Every block is On something:	(x On y) or (x = T)
The Table is On nothing:	not(T On x)
Asymmetric:	if (x On y) then not(y On x)
Not default:	
not(x On y) means (x	On y) cannot exist in term set

Get-rid-of-Table: make a binary relation into a unary predicate

 $(x \ 0n \ T) = (x \ 0nT)$

Functions: Move(x Onto y) maps terms onto terms

preconditions:	(y = T) or not(u On y)	y has empty top	
	not(v On x)	x has empty top	
action:	Remove(x On z)	Pickup x	
	Add(x On y)	Putdown x	
postconditions:	(z = T) or not(w On z)	z has empty top	