
Programming the Interface

LECTURE NOTES

Design

Conceptual: requirements, system expectation, needed information

Physical: how to achieve objectives

Requi rements

Functional: what the interface must do

Data: what needs to be available for processing

Usability: user performance and satisfaction

System Models

Dataflow: data the passes between processes

rectangle: source or destination of data

circle: process which transforms data

named link: transacted data

bucket: database or store

Entity Relationship (ER)

entities: aggregate of data elements with a meaning

attributes: specific types of data

relationships: connections between entities

User Interface "Programming" Tools

command processors, scripting languages (SQL, UNIX shell, HTML)

menu systems (Mac, Windows)

form fill-in systems (Netscape, databases)

user interface toolkits (SUIT, NeXTStep, Visual Basic)

window managers (spreadsheets, MacOS, Win95)

user interface management systems (CLIM, JAVA)

Decision Types

structural: end user's conceptual model

functional: user actions and operations

dialog: content and sequence of information exchange

semantics, units of meaning

messages, units of content

sequences, flow of content

presentation: interaction objects and processes (widgets)

pragmatic: use of hardware and physical space

Programming the Interface

Desirable Properties of a Conceptual and Implementation Model

sufficiency: all the needed information

necessity: only the needed information

understandability: easy to learn, easy to use

independence: modify constructs with minimal interaction

reusability: generic and general

consistency: same activity in same manner

minimality: no overlapping definitions and actions

orthogonality: each object accomplishes a different objective

compatibility: all models use similar concepts

implementability: easy to build

Usabil ity requirements

learnability: time and effort to reach a level of proficiency

throughput: speed of execution and number of errors

flexibility: accommodation to changes in task and environment

attitude: satisfaction and acceptance

Task analysis techniques

Goals, tasks, actions

Hierarchical task analysis

Goals, operations, methods, selection rules (GOMS)

Task, semantic, syntactic, interaction

Usability testing techniques

direct observation

indirect observation (video recording)

verbal protocols (thinking aloud)

software logs

interviews (structured or flexible)

questionnaires

checklist, rating, semantic differential, ranking

Potential measurement criteria

time to complete task

percentage of task completed

speed (percentage of task per unit time)

ratio of success to failure

Programming the Interface

time spent on errors

number of commands used

frequency of use of help or documentation

time spent using help

percentage of favorable or unfavorable user comments

number of repetitions of failed commands

number of runs of success or failure

number of times the interface misleads the user

number of good and bad features recalled by users

number of available commands not invoked

number of regressive behaviors

number fo users choosing or preferring system

number of times users have to work around a problem

number of times user is disrupted from task

number of times user loses control of system

number of times user expressed frustration or satisfaction

