
 Programming Methods

1

Smal l ta lk

Object-oriented programming is a fifth-generation style which emphasizes simulation of the

behavior of objects. Smalltalk was the first pure object-oriented (oo) language; Java is the

most popular oo language currently.

Alan Kay lead the development of Smalltalk, following his intuition in the late 60s that personal

computing (which did not exist at the time) would not succeed without a more friendly

programming language. Recall that Algol and other second generation languages of the time were

still closely tied to mainframe computing, and thus in the domain of computer specialists.

Smalltalk was the programming language for Kay’s seminal idea of the laptop computer. The

developmental philosophy was:

Simple things should be simple, complex things should be possible.

Smalltalk evolved from Simula (Nygaard), a simulation language, and LOGO (Papert), a very

simple pedagogical language used to teach programming to children 8-12 years old. The design

was also heavily influenced by research in developmental psychology (Dewey, Montesorri,

Piaget, Bruner), and by Sutherland’s Sketchpad, the first prototype VR system (late 60s). It

was also conceived as part of an integrated graphical development environment which was

developed at Xerox PARC in the early 70s, and lead eventually to the MacIntosh WIMP interface

(Windows, Icons, Menus, Pointing device).

These are the characteristics which were seen to compose a user-friendly language:

object-oriented simulation

graphical interface

interactive (interpreted)

programming through dialog

integrated development environment

Objects, Messages and Methods

The programming unit in oo languages is the object. Objects have both state and behavior.

Behavior is triggered by sending messages to objects. Repetitive behavior is simplified by

control structures. The functions which define object behavior are called methods.

It is important to realize the oo programming on a single processor machine is simply a

reorganization of code at the user level. Messages are procedure invocations. Objects are data

structures. Methods are functions. Consider finding the area of a rectangle:

rectangle[area-of] object-oriented

area-of[rectangle] functional

Swapping function and argument turns object-oriented into functional programming.

 Programming Methods

2

An abstract object, one with parameters rather than bound values, is a class. Instances are

created by instantiating a class description with values. In functional terms, a class is a set of

operators, an instance is applicative expansion of an operator. Class inheritance is normal

expansion of an operator.

The data values inside an object represent the properties and relations in which that object

participates. The methods inside an object simulate the behavior of the corresponding semantic

object. Objects then hold the state of the computation. In general, each object acts as an

autonomous agent that is responsible for its own behavior, and is not responsible for the

behavior of any other object. The memory organization of a computation is organized around

objects; the information usually carried in function activation frames is stored within each

object.

Classes

A class definition specifies all the properties and behaviors which are common to all instances

of that class. Decomposing a problem into classes is analogous to functional decomposition in

functional languages.

The biological analogy is that classes are genotypes while instances are phenotypes. Classes

contain the organization of an entity, those characteristics which are present in all individuals

of that type. Instances contain the structure of an entity, those characteristics which

differentiate one individual from another.

Classes (abstract objects) also have methods. Class methods are used to create new instances.

When a new message is sent to a class, the class constructs a copy of itself and binds the class

parameters to the instance values conveyed by the new message.

A class hierarchy develops when the class abstraction principle is applied to classes themselves.

(This is simply saying that operators can be composed without instantiation.) The class

hierarchy is an organizational technique at the interface. Unfortunately, semantic objects are

not orthogonal, class decomposition (like function decomposition) can be achieved in many

equally valid ways, each way being appropriate for some behaviors, and blind to other behaviors.

For example, consider the class mammal. A biological taxonomy places mammals in a kingdom-

phylum-species hierarchy, comparing mammals to other living creatures. A pragmatic

classification, on the other hand, may classify mammals by their utility, as pets, beasts of

burden, pests, sources of food, etc. A geological classification may classify mammals by their

ecological zone, temperate, island, arctic, etc. Each of these classification schemes is orthogonal

to the others, however a particular mammal gets classified by each differently.

The original solution was multiple inheritance, objects could inherit from several classes. This

idea introduces as many problems as it solves. For instance, inherited methods from two classes

may be contradictory. Inheritance from many classes builds objects which are far larger than

any class they may inherit from. And from an coding perspective, multiple inheritance is

extremely difficult to implement, essentially doubling the size of an oo compiler. Multiple

inheritance, from a functional perspective, is attempting to insert control logic into lambda

 Programming Methods

3

calculus, thus undermining the semantics of the model. For these reason, the Java language does

not provide the option of multiple inheritance.

As an example of a class hierarchy, a partial listing of the built-in classes in Smalltalk is

presented on the next page.

Object

Magnitude

Character

Date

Time

Number

Float

Fraction

Integer

LargePositiveInteger

LargeNegativeInteger

SmallInteger

Collection

SequenceableCollection

LinkedList

ArrayedCollection

Array

Bitmap

String

Interval

OrderedCollection

Bag

MappedCollection

Set

DisplayObject

DisplayMedium

Form

Cursor

DisplayScreen

InfiniteForm

OpaqueForm

Path

Arc

Curve

Line

Spline

Behavior

In this class hierarchy we see a structured decomposition of concepts from mathematics (e.g.

collections), programming (e.g. float numbers), and graphics (e.g. DisplayObject). The

decomposition is rather ad hoc (e.g. bags are a mathematical extension of sets but both are listed

at the same level of abstraction), and is quite interface dependent (e.g. DisplayObejcts assume a

WIMP interface).

 Programming Methods

4

Overloading, Information Hiding and Extensibility

Overloading refers to using the same token to trigger different behaviors in different objects.

Since the organizational structure isolates bindings and methods within specific objects and

classes, the issues of scoping and binding regimes are not troublesome. That is, oo techniques

remove the machine dependencies associated with names in procedural languages. Again from

the functional perspective, this is simply that functional organization does not require

variables.

Classes serve as abstract data types, therefore they provide an abstraction barrier between

model and implementation. These ideas are the same as those which motivated packages, generic

packages, and tasks in Ada. Classes provide enforced modularity.

Due to class inheritance, Smalltalk is flexible and extensible. The programmer can define a new

class which inherits from existing classes, thus significantly reducing both programming effort

and possibility of errors.

Message Sending and Protocols

In procedural languages, programs are active and data structures are passive. This reflects a

hardware architecture model in which memory is used to passively store, while computational

circuitry is used to modify bits and words. In oo, objects are active, they respond to

communications from other objects, modify themselves, and send messages intended to

communicate with and change other objects.

The set of messages a particular object responds to is called its protocol. It is an error to send a

message to an object which does not include that type of message in its protocol. Names in

Smalltalk are not typed, any name can be associated with any object. Instead, protocols provide

strong type checking, in that all valid messages are responded to by the receiving object. Since

messages are sent at runtime, Smalltalk uses dynamic, as opposed to static, type checking.

Dropped messages signal run-time errors which halt computation (without crashing the

system), much like an interpreted language.

All objects are identified by a pointer, or object reference. Since there are no functions in an oo

language, the cost of storing both variables and message invocations is identical. Activation

frames are no longer a relevant concept. OO techniques allow algorithms to be factored out of the

program without complication.

In a single processor system, messages are still procedure invocations. The major difference

from procedural approaches is that instances of objects are constructed and initialized

dynamically, at run-time, rather than statically in the object code.

There are three message formats in Smalltalk. For messages with no parameters, the name of

the message serves as a keyword to trigger the message functionality. For messages with one or

more parameters, keywords are again used to identify parameters, as in

Box grow: 100 color: green scrollbar: false

 Programming Methods

5

This approach however is awkward for numerical operators, for instance

x plus: 2

sends the plus message to the object x, with the parameter binding 2. Smalltalk originally

began as a pure oo language, even each number was an object. In a design concession, Smalltalk

was changed to treat numerical computational more conventionally. So,

x + 2

is written instead, although this code still sends the + message to the object x.

Top Level

Smalltalk is meta-circular, its main loop is written in Smalltalk:

true whileTrue: [Display put: user run]

The true object is sent the whileTrue message which is bound to the object generated by

sending the Display object a put message bound to user. Inside user, an object userTask
responds to the run message by reading an expression, evaluating it, and returning the result to

Display. Run is defined as:

run =def= Keyboard read eval print

Note that the Smalltalk style is similar to function invocation. The operational semantics of the

language is to send the leading object the first message which follows. The object returns a

different object which then responds to the next remaining message, and so on.

Above, the Keyboard object responds to the read message by prompting the user interface and

returning the string typed by the user. This input string then responds to the message eval by

calling the Smalltalk interpreter for evaluation. The resultant object responds to the message

print by printing the result to output.

Concurrency

The autonomous nature of objects makes concurrency natural for oo languages. In Smalltalk,

concurrency is achieved by having an object capable of processing a set of messages. Smalltalk

uses the functional concept of mapping. To run several concurrent tasks, map the object over

the tasks. This in turn is converted into time-sharing threads by the os.

concurrent-run =def= scheduler map: [...]

