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Operator Calculus

Functional programming and mathematical programming are similar in that both support a

formal semantics.  Here are some examples of lambda calculus abstraction and evaluation.

F1[x] = +[x,1] x+1

F2[x,y] = *[x,-[2,y]] x(2-y)

Abstract F1:

F1[x] = +[x,1] x-->#

F1 = [#,+1 #]

Apply F1:

F1[3] = [#,+1 #] 3 = (subst 3 # (+1 #)) = +1 3 = 4

Abstract F2:

F2[x,y] = *[x,-[2,y]]   x-->%  y-->@

F2 = [%, *% (-2 y)] = [@, [%, *% (-2 @)]]

Apply F2:

F2[3,8] = [@, [%, *% (-2 @)]] 3 8 = [@, [%, *% (-2 @)] 3] 8

Note:  The binding x=3 must descend inward so that the abstraction x=% is paired correctly with

the binding 3.  The direct descent used above is non-standard (I have changed the notation

slightly so that the rule is easier to follow).

There are two possible evaluation orders, normal  and applicative.  These align with the

mathematical and accumulative forms of recursion.

Normal evaluation expands functions within functions, without accumulating intermediate

results.  When all functions are evaluated, the entire expression is then simplified.  Should

some bindings not be available, normal evaluation returns the remaining function.  In normal

order, a function that is not fully defined could be passed for expansion (lenient semantics).

Applicative evaluation is standard in programming languages.  Innermost functions are

evaluated, reduced to ground, and then that reduced result is handed to the next outer function.

In applicative order, all variables to be evaluated are guaranteed to be bound (strict semantics).

Evaluation strategies can be mixed, any step can be of either type.  As with all algebraic

languages, the order of application of substitutions does not matter.
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Applicative Order, innermost leftmost first (data-driven, eager, call-by-value)

F2[3,8] = [@, [%, *% (-2 @)] 3] 8

        = [@, (subst 3 % (*% (-2 @))] 8

        = [@, (*3 (-2 @))] 8

        = (subst 8 @ (*3 (-2 @))

        = (*3 (-2 8)) = *3 -6 = -18

Normal Order, outermost leftmost first (demand-driven, lazy, call-by-need)

F2[3,8] = [@, [%, *% (-2 @)] 3] 8

        = (subst 8 @ [%, *% (-2 @)]) 3

        = [%, *% (-2 8)] 3

        = (subst 3 % (*% (-2 8)))

        = (*3 (-2 8)) = -18

Composing F1 and F2:

F1[F2[x,y]]

F1 = [#,+1 #]
F2 = [@, [%, *% (-2 @)]]

F3 = F1[F2] = [#,+1 #] [@, [%, *% (-2 @)]]

Evaluating F3:

F3[3,8] = [#,+1 #] [@, [%, *% (-2 @)]] 3 8

        = [#,+1 #] [@, [%, *% (-2 @)] 3] 8

Note that there are three forms in sequence:  F1 F2 8.  We could apply F1 to F2 first (normal),

or we could apply F2 to 8 (mixed), or we could apply the inner abstraction in F2 to 3
(applicative).
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Applicative Order:

F3[3,8] = [#,+1 #] [@, [%, *% (-2 @)] 3] 8

        = [#,+1 #] [@, (subst 3 % (*% (-2 @)))] 8

        = [#,+1 #] [@, (*3 (-2 @))] 8

        = (subst [@, (*3 (-2 @))] # (+1 #)) 8

        = +1 [@, (*3 (-2 @))] 8

        = +1 (subst 8 @ (*3 (-2 @))

        = +1 (*3 (-2 8)) = -17

Normal Order:

F3[3,8] = [#,+1 #] [@, [%, *% (-2 @)] 3] 8

        = [#,+1 #] (subst 8 @ [%, *% (-2 @)]) 3

        = [#,+1 #] [%, *% (-2 8)] 3

        = [#,+1 #] (subst 3 % (*% -6))

        = [#,+1 #] (*3 -6)

        = [#,+1 #] -18

        = (subst -18 # (+1 #))

        = +1 -18 = -17

In the following example of the recursive factorial function, the Y combinator in lambda

calculus specifies the recursive use of a function.  Its behavior is to substitute the function

definition whenever an operator hole is filled with the name of the recursive function.
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FACTORIAL:     (define FAC (n) (if n=0 then 1 else (* n (FAC (-1 n)))))

Abstract  n --> %   FAC --> Y #

FAC = Y [#, [%, (COND (=0 %) 1 (* % (# (-1 %))))]]

FAC 2 = Y [#, [%, (COND (=0 %) 1 (* % (# (-1 %))))]] 2

      = Y [#, [%, (COND (=0 %) 1 (* % (# (-1 %))))] 2]

      = Y [#, (subst 2 % (COND (=0 %) 1 (* % (# (-1 %)))))]

      = Y [#, (COND (=0 2) 1 (* 2 (# (-1 2))))]

      = Y [#, (COND False 1 (*2 (# 1)))]

      = Y [#, (*2 (# 1))]

      = (subst FAC # (*2 (# 1)))

      = *2 (FAC 1)

      = *2 (Y [#, [%, (COND (=0 %) 1 (* % (# (-1 %))))]] 1)

      = *2 Y [#, [%, (COND (=0 %) 1 (* % (# (-1 %))))] 1]

      = *2 Y [#, (subst 1 % (COND (=0 %) 1 (* % (# (-1 %)))))]

      = *2 Y [#, (COND (=0 1) 1 (* 1 (# (-1 1))))]

      = *2 Y [#, (COND False 1 (* 1 (# 0)))]

      = *2 Y [#, (*1 (# 0))]

      = *2 (subst FAC # (*1 (# 0)))

      = *2 (*1 (FAC 0))

      = *2 (*1 (Y [#, [%, (COND (=0 %) 1 (* % (# (-1 %))))]] 0))

      = *2 *1 Y [#, [%, (COND (=0 %) 1 (* % (# (-1 %))))] 0]

      = *2 *1 Y [#, (subst 0 % (COND (=0 %) 1 (* % (# (-1 %))))]

      = *2 *1 Y [#, (COND (=0 0) 1 (* 0 (# (-1 0)))]

      = *2 *1 Y [#, (COND True 1 (*0 (# -1))]

      = *2 *1 Y [#, 1]

      = *2 *1 (subst FAC # 1)

      = *2 *1 1 = 2


