
Programming Methods

1

Pure LISP

LISP is a unique language in the following ways:

• symbolic rather than numeric computation.

• functional/applicative style.

• indefinitely extensible.

• interpreted/interactive rather than compiled. LISP can be compiled after debugging.

• uniform data representation. Programs are data, which means LISP programs can

modify themselves at run-time.

• LISP is written in LISP. This bootstrapping means that the LISP evaluation

mechanism and compiler are easily available to the programmer for modification

and customization.

Pure LISP excludes most of the programming ideas which lead to poor code. Most programming

language innovations (such as garbage collection, streams, closures and continuations, symbol

packages, first-class errors, object orientation, provability) were pioneered in LISP. Pure

LISP does not allow:

• destructive data operations

• gotos

• explicit pointers and dereferencing

• side effects (only the direct results of the function being processed)

• unbound and global variables

• do loops (use recursion instead, this rule is not firm)

• block structure (functions provide grouping)

P r i m i t i v e s

LISP has a very small kernel of primitive functions. These are:

n i l empty list, false, nothing to return

atom predicate to determine valid labels

eq predicate to test equality of atoms

car, cdr selectors/accessors of list data structure

cons constructor for list data structures

cond basic logic function

eval, quote controlling the difference between program and data

Special functions have a non-standard format. Some important special functions include:

setq setting or assigning labels to the results of functions

l i s t constructing a list

Programming Methods

2

defun defining named functions

lambda constructing an unnamed function

l e t defining the scope of variables

LISP debugging tools include:

<whitespace> ignored by the evaluator

trace follow the evaluation sequence

p p r i n t print data in pretty form

r e a d - e v a l - p r i n t the basic evaluation process

Disadvantages of LISP (and their solutions)

• hard to read syntax with lots of parentheses
redefine the syntax to look the way you want it to

• one data type
build the data types you want and wrap them in an abstraction barrier

• inefficiency
no longer true, LISP runs at 95% the speed of C. It is possible to write

inefficient LISP programs, but the rules to avoid this are straight forward and

can be learned with practice. It is easier to write inefficient programs in other

languages.

• many dialects
the community has standardized on Common LISP. Dialects built from the same

foundation are a good idea.

• no first class functions
dialects for higher order programming are available (i.e. Scheme)

Storage Reclamation

Most programming languages use explicit erasure to reclaim storage cells. This is a bad idea

since it makes a low-level maintenance chore the responsibility of the programmer. As well, it

violates security. Suppose the value in a cell is erased, but the cell is still referenced by some

data structures. These dangling pointers are unprotected and undocumented, and the source of

difficult to trace errors.

Once automated way to keep track of memory usage is reference counting. Whenever a cell is

used, or referred to, by part of a program, the reference count of that cell is increased by one.

When a cell has no existing references, that cell is not accessible to the current program, and is

thus on the list of free cells.

Another approach is garbage collection. Here inaccessible cells are simply abandoned. When the

list of free cells is exhausted, the processor interrupts normal computation and enters a

Programming Methods

3

garbage collection phase. A mark-and-sweep garbage collector passes twice over all memory

cells. On the first pass, inaccessible cells are marked as such. On the second pass, the marked

cells are returned to free storage. A serious problem for garbage collection is nonuniform
response time, in that processing halts while garbage collection is occurring. If there are many

cells to be reclaimed, this interrupt may be several seconds.

Some Observations about the LISP Language

• All valid expressions are valid programs. This provides arbitrary granularity.

Programming consists of building up hierarchical languages built on a solid foundation.

• You are always in control of what is data and what is process. Programming is building data,

then testing processes on it, then making those processes into data, and so on.

• All defined functions are provable, that is they are data structures you can talk about, and the

way to talk about them is to assert their correctness.

• The programmer is always part of the computation. The rread-eval-print loop can be seen

as an interactive dialog. RRead means listen to what the person says. Eval means do what the

person asks you. PPrint means tell the person the results of the request.

• All objects are the same. There are base objects (atomic data) and compound objects built

from atomic objects. Atomic objects (atoms) are the pieces of a program, the bricks. Function

composition is the cement holding the atoms together. Nothing else is happening. Atoms define

your conceptualization, the pieces of the world. Functions just define bigger pieces. Object-

orientation is function composition turned inside out.

• Variables are just convenient and arbitrary names for compound objects. So a variable is

meaningful only when it is in the same context as the object it names. This is called scoping.

• Function names are also variables. You can rename functions at any time, and you should

always use names that are meaningful to you. Write languages not programs. Think like a

human, not like a computer and write code that matches human thought.

• There are always two levels when programming, the syntactic and the semantic: what you see

and what you mean. Representation and value. Try to align the two by defining the look of a

program to remind you of its meaning. In general, programs that look good are good.

• Formulate knowledge in terms of patterns, and look for those patterns. Patterns can be

abstract, with many things of the same class fitting a particular spot.

• Formulate operations as functions. Operations can be abstract, with many functions fitting

the same operation. Use operations that address all objects at the same time. For example,

rather than explicitly checking each object for a property (by writing a DO loop), just ask if

the property is true for everything (using the function EVERY).

