
Programming Methods

1

A Small Interpreted Language

What would you need to build a small computing language based on mathematical principles?

The language should be simple, Turing equivalent (i.e.: it can compute anything that any other

language can compute) and relatively easy to use.  Assume the computing hardware is

constrained to vonNeumann processes, with memory, an ALU, and appropriate registers.  We

will also assume that we know about formal mathematical languages and the necessary

mathematical pieces:  representation, recognizer, constructor, accessor,  invariants/facts,

functions, and induction/recursion.

Base Representation of Atoms

First, the alphabet of a language is simply a collection of unique identifiers, called atoms.  The

essential memory management trick is to divide each memory cell into two parts, an address

part (call it FFirst) and a contents part (call it RRest).  Addresses are also called pointers.   We

begin with an array of empty cells, each having some empty representation in both the FFirst

and the RRest parts.  This is the free list of memory cells.

The ground:  We need an atom which means nothing, the null atom.  Call it nnil.

The symbol table:   This table consists of a collection of non-empty memory cells, one cell

for each atom in the language.  The FFirst part of an atom cell contains nil.  The actual literal

representation of the atom is in the RRest of the cell.  The symbol table is a dynamic array.

Constructor of Compound Expressions

We need to construct compound expressions.  Consider an expression which uses two atoms, say

FOO BAR.  The symbol table contains each atom, so all we need is a way to connect them.  This can

be done simply by building another memory cell which contains the two addresses of FOO and

BAR.  We put all atom addresses in the FFirst part of a cell (see cell 005 below) and connecting

addresses in the  Rest part. The instruction to build connecting cells is called CCons.   The end of

an expression has nnil in the RRest.

If we build the expression  (TRUE BAR TRUE FOO) in cell 007, memory would look like this:

Address F i r s t Rest

000 nil nil symbol table
001 nil FOO
002 nil BAR
003 nil BAZ
004 nil TRUE end of symbol table
005 001 006 the expression (FOO BAZ)
006 003 000 end of expression
007 004 008 the expression (TRUE BAR TRUE FOO)
008 002 009
009 004 010
010 001 000 end of expression
011 empty empty begin free list
...



Programming Methods

2

To construct an expression, we CCons smaller pieces together.  For instance:

Cons JOHN (TRUE BAR TRUE FOO) ==> (JOHN TRUE BAR TRUE FOO)

The operational memory changes are:

011 nil JOHN the atom JOHN
012 011 007 connect JOHN to (TRUE BAR TRUE FOO)
013 empty empty

Consider CConsing two compound expressions together:

Cons (FOO BAZ) (TRUE BAR TRUE FOO) ==> (FOO BAZ TRUE BAR TRUE FOO)

This operation is slightly more complex.  For the entire expression to begin in cell 012, we

need memory to end up as

011 003 007 (BAZ TRUE BAR TRUE FOO)
012 001 011 (FOO BAZ TRUE BAR TRUE FOO)
013 empty empty

Several design decisions are involved with this result.  Technically, we have used structure
sharing for (TRUE BAR TRUE FOO) since both the original four atom expression and the final six

atom expression use some of the same memory cells.    However, the front of the expression,

(FOO BAZ) is not engaged in structure sharing, and this may seem a little unsymmetrical.  As it

is,  (TRUE BAR TRUE FOO) is confounded with RRest (RRest (FOO BAZ TRUE BAR TRUE FOO)).

An alternative which would allow us to continue to refer to the original would be to duplicate the

four atom expression entirely in constructing the six atom expression.

Note also that the construction is slightly different, rather than adding a symbol cell, as in the

case of JOHN, we have added a cons cell.  To acknowledge these differences, we might consider

Cons of two compound expressions to be a different operation.  Call it AAppend.    Now the first

object in a CCons operation is restricted to be an atom.  AAppend is used when the first object is

compound.  To keep the language simple, we would want to be able to build new operations out of

the existing ones.  For this, we use a recursive definition:

Append <obj1> <obj2> =def=
  If Isa-atom <obj1>
    then ERROR
    else if Is-empty <obj1>
      then <obj2>
      else Cons (First <obj1>)(Append (Rest <obj1>) <obj2>)

This recursive definition first does a type-check on <obj1>.  It then tests the base case, that

<obj1> is nnil.  Appending nothing onto <obj2> results in <obj2>.  Otherwise we proceed one

piece at a time.  The recursion bottoms-out when RRest <obj1> is nnil.  For this to be the case,

<obj1> must have only one atom, as in (BAZ), which is CConsed onto <obj2>. At that time, BAZ is

the FFirst of <obj1>.  Just prior to this case, <obj2> is actually (BAZ TRUE BAR TRUE FOO),

since we have CConsed BAZ to (TRUE BAR TRUE FOO).  <Obj1> is (FOO BAZ), and we are about to

Cons FFirst <obj1>, i.e. FOO, onto (BAZ TRUE BAR TRUE FOO).



Programming Methods

3

This description has backed up from the end to the beginning.  Tracing the events in memory:

Append nil (TRUE BAR TRUE FOO) ==> (TRUE BAR TRUE FOO)

011 000 007 Append nil
012 empty empty begin free list

By definition, cell 011 is the same as 007, so operationally this step is not necessary to take.

We leave 011 free, treating AAppending nnil as a no-op.

Cons BAZ (TRUE BAR TRUE FOO) ==> (BAZ TRUE BAR TRUE FOO)

011 003 007

Cons FOO (BAZ TRUE BAR TRUE FOO) ==> (FOO BAZ TRUE BAR TRUE FOO)

012 001 011
013 empty empty

What we have done here is to specify exactly the sequence of operations on memory that result

in the action of AAppending.  And we have used the single construction tool of CCons.

This example illustrates the close connection between a software program, the attendant changes

in memory, and the hardware architecture which unites both.

Recognizer of Atoms

The recognizer of each atom is a function which looks in the symbol table for the memory cell

which contains that atom.  For instance, the predicate IIsa-atom is true if its argument can be

found in the RRest portion of the symbol table.  At this point, we have three separate memory

areas (or uses):    free cells, atom cells, and cons cells.

Isa-atom: Atom cells are recognized by having nnil in the FFirst part.

Is-empty:  Empty expressions can be uniquely recognized

because they have nnil in the RRest part.

Equal:  Tests if two atoms are the same atom.

Isa-express ion :  CCons cells are recognized as those cells having two addresses.

An expression ends with nnil in the RRest part.

The above are close to operational definitions.  Here are some slightly more elaborated

operational definitions.  We will assume that each part of a memory cell (address, first, rest)

has eight bits.

Is-empty <obj>:

Assign nnil a special binary code, 00000000, and put it in address 00000000.

An object is empty, that is, it is equal to nnil, if the RRest part is equal to the code of nnil.

To distinguish nnil from an empty cell on the free list, we could put a special code in free

list cells, perhaps 11111111.  A better approach is to use only seven bits of the

address for address information, and use the eighth bit for marking if a cell is

free.  This is the basis for many garbage collection algorithms.

Is-empty <obj> =def= Equal (Rest <obj>) 00000000



Programming Methods

4

Isa-atom <obj>:

Test the encoding of <obj> against all the encodings in the RRest part of memory which

also have nnil in the FFirst part.

Isa-atom <obj> =def= for some memory cell
  (Equal (First <obj>) nil) and (Equal (Rest <obj>) <obj>)

Here is another design choice:  is nnil an atom or not?  If it is not an atom, we will have to have

special tests for atoms vs nnil.  For simplicity, let’s say it is an atom:

(Isa-atom nil) is True

This design choice is our first fact, or invariant.

More generally:

Isa-atom (Is-empty <obj>) =def=
True iff (Is-empty <obj>) is True

Recognizer of Expressions

We can use the instructions FFirst and RRest to access and decompose all expressions.

(FFirst <obj>) looks at the first part of memory for the specific object, (RRest <obj>)  looks at

the rest part.

To recognize compound expressions, we test to see if each part of that expression is in the

memory table, and the linking structure of the expression matches the rules for constructing

that expression.  Operationally:

Isa-expression <obj> =def=
  (Isa-expression (First <obj>)) and
  (Isa-expression (Rest <obj>))

Since we know that decomposing an expression will end in either atoms or nil, we will have to

add those rules:

Isa-expression (Isa-atom <obj>) =def=
  True iff (Isa-atom <obj>) is True

(Isa-expression nil) is True.

This is another application of recursive decomposition.  The rules specify the base cases, while

the definition specifies the general recursive case.  The two together specify a program.

The definition above is another example of pseudo-code, that is, machine specific instructions

written in a mathematical style that is independent of the specifics of any programming

language, yet specific enough to be implemented in any language.  Of course, a high level
programming language accepts something very close to pseudo-code specification as valid input.

Another strong advantage of pseudo-code is that it can be proven to be correct using the

Induction Principle.



Programming Methods

5

The primary reasons that current programming languages appear to be very different than

pseudo-code are

1.  Many programming tasks lack a formal model (i.e. they are hacks).

2.  Many programming languages lack mathematical structure (i.e. they are machine

architecture specific.)

Accessors of Atoms and Expressions

First and RRest are the accessors.  They let us take apart an expression.  In this

implementation, FFirst and RRest have simple mappings onto the idealized physical structure of

memory.

All objects except nnil are constructed by CCons.  Since CCons uses two objects as arguments, this

means that all FFirst and RRest parts are also objects.  Eventually all objects end in nnil, so nnil

is also an object, although a very special kind.

Cons is related to FFirst and RRest by the following invariant, or rule:

<obj> = Cons (First <obj>) (Rest <obj>)

This says that all valid objects have been constructed by CCons to have a FFirst part and a RRest

part in memory.  Alternatively, all objects in memory can be accessed through their FFirst and

Rest parts.  The essential mathematical condition is that all valid objects are decomposable into

unique subcomponents which bottom-out at the base cases.  This is simply to say that all

compound expressions are defined recursively.

Although recursive composition and decomposition are necessary to define data structures and

algorithms, the more important aspect of recursive definition is to provide access to proof

through the Induction Principle.  Procedural languages do not provide this capability;  they are

thus immature.  Declarative, functional, and mathematical programming languages all provide

the capability of abstract proof (minimally in pseudo-code).

Note that recognizing, constructing, and accessing an expression involve almost the same steps.

The difference is in the initial goal and the final result.

GOAL PROCESS RESULT

Constructor:

build a pattern rearrange memory the pattern is in memory

Recognizer:

test a pattern access memory true if the pattern is accessible

Accessor:

get a pattern access memory return the pattern if found



Programming Methods

6

SUMMARY of the ABSTRACT DATA STRUCTURE FUNCTIONS

First <obj> returns the expression indicated by the FFirst of the <obj>

Rest <obj> returns the expression indicated by the RRest of the <obj>

Is-empty <obj> returns True if the cell containing <obj> has nnil in RRest.

Isa-atom <obj> returns True if the <obj> is in the RRest part of a cell

and nnil is in the FFirst part.

Isa-expression <obj> returns True if the <obj> has either nnil or any address in the

First part.

Equal <obj1> <obj2> In the case of atoms, returns True if both objects are in the RRest

of the same symbol cell.  In the case of compound expressions,

returns True if following the addresses in the FFirst leads to the

same set of RRest symbol cells.

Cons <obj1> <obj2> builds an expression by adding <obj1> to the front of <obj2>

I n va r i a n t s

The equality invariant (also called the Uniqueness Axiom) assures that each object is

unambiguous.  That is, objects are the same object when they are equal;  equal objects are

constructed and deconstructed in exactly the same way.  This is a physical kind of equality,

structural equality, in that the structure of memory is the same for two objects.  It is not

necessary that the same memory cells are used for both objects (structure-sharing), just that

the contents of memory for both objects are the same.  Recursively,

Equal <obj1> <obj2> =def=
  (Equal (First <obj1>) (First <obj2>)) and
  (Equal (Rest <obj1>) (Rest <obj2>))

We need to support this definition with base cases.  For instance,

(Equal nil nil) is True

This is also an example of the Induction Principle at work in our implementation.  To implement

an equality test for expressions, the computation will test for identical structure over all

memory cells of both objects.  The Induction Principle is the only guarantee that this recursive

process will end.  The only end point is (EEqual nnil nnil), all other cases are failures.

Note that equality for atoms is also covered in the above definition.  What happens, though, when

we have two atoms which have the same encodings, but each is in a different memory cell?  This

is an inconvenience for an implementation, since testing each object would require looking

through the entire symbol table.  A better approach is to insist that each atom is unique and

occurs only once in the symbol table.  This is why Equality and Uniqueness are the same ideas.



Programming Methods

7

The uniqueness of atoms is implemented by having each new atom register itself in the symbol

table.  In the background, when an unrecognized, new atom is entered, the implementation

verifies that it is new, and then puts it in the symbol table.  To do this is to intern the atom.  If

the atom already exists, then the address of the cell which contains that object is associated with

the new input.

 A different kind of equality refers to equality under transformation.  The actual expressions

may be different, but transformation rules allow us to say that the meaning of the different

expressions is the same.  This is semantic equality, also called algebraic equality and

mathematical equality.  Only defined transformations are allowed;  all transformations (with

the exception of CCons) are required to keep meaning consistent.  It takes a special symbolic
architecture to implement mathematical equality, mainly because transformations refer to sets

or classes of objects rather than to specific objects.  In the above, we have designed a literal
architecture, as yet it has no capacity for dealing with sets of objects.

Now on to the functional part of the language.  We will elect to use lambda calculus as the

mathematical model.

Functions and Recurs ions

A function is an expression with the function name first and then the arguments.  (The order of

operators and arguments is somewhat arbitrary, just so long as it is consistent and

unambiguous.)  For example:

+ 3 4

The Arithmetic Logic Unit (ALU) can process logical and arithmetic operators when applied to

atoms.  Internally, both arithmetic and logic are encoded by binary sequences, so it is the

responsibility of the operator, or of a type test, to make sure that expressions meant to

represent numbers are channeled to the arithmetic units and expressions intended to represent

logic are channeled to the logic units.

One way to implement the difference between logic and arithmetic is to assign another single bit

in the memory cell that records the type of object in that cell.  Note that silicon gates process

only logic.  Thus arithmetic objects must be encoded into a logical form for processing.  In

computation, logic is fundamental, arithmetic is derivative.

All logic functions can be defined in terms of a single function, so we need only one primitive

logic function.  Let's use IIfThenElse (NNand and NNor are alternatives).

IfThenElse <obj1> <obj2> <obj3>

IfThenElse will evaluate <obj1> and then either evaluate <obj2> (if <obj1> is True) or

evaluate <obj3> (if <obj1> is False).  Here we have another function which uses different types

of objects (the first example was CCons).  In particular, <obj1> must be a logical type,

returning either True or False.

Function composition permits complex sequences of operations.   A function expression can be

put in any place that an atom can be put, since all functions will reduce to single atoms.  To

separate composed functions, we can use parentheses to contain each function expression.  We

will choose to evaluate all inner arguments first, then use these results to evaluate outer



Programming Methods

8

functions.  Lambda calculus permits another order of evaluation, outermost first.  This choice is

a design decision, and is based on mathematical characteristics of each form of evaluation.

For example, an innermost evaluation:

(* (+ 3 4) (+ 1 2)) or ((3 + 4) * (1 + 2))

means that expressions with atoms as arguments are evaluated, or reduced, first.

The memory for this object would look like this:

Address F i r s t Rest
000 nil nil symbol table
001 nil   1
002 nil   2
003 nil   3
004 nil   4
005 nil   +
006 nil   * end of symbol table
007 006 008 expression ((3 + 4) * (1 + 2))
008 005 009
009 003 010
010 004 011
011 005 012
012 001 013
013 002 000 end of expression
014 empty empty begin free list
...

There are several things to note about the above memory configuration.

Operators and numbers are not distinguished in memory, they are distinguished by what

happens when they are handed to the ALU.

Each operator has two arguments, but we have no way to have two references in one memory

cell.  The solution is to order the expression so that operators are followed by their arguments.

When an operator is fetched for evaluation, the machine code recognizes that that operator

requires two more fetches.  Should a fetch return another operator, then the first operator

waits until the second operator converts its two arguments into one result.

Fetches occur by following the addresses in sequence.  This is efficient since the address register

(the register which keeps track of what to fetch next) need only be decremented by one to find

the next memory cell.

It is possible to turn all functions into one argument functions (the technique is called

currying).  This is effectively what has happened by storing the expression in the operator first
form (also known as reverse Polish notation).

Finally, consider how close the syntax of many programming languages is to what actually

happens at the register transfer level of the computer.  We are still at the very early stages of

development of computing languages, since the syntax reflects low level data shuffling rather

than high level task requirements.  Progress means moving our profession toward human

capabilities, and moving away from low level machine details.



Programming Methods

9

We need a way to define arbitrary functions and a way to bind the variables of functions to

values for the ALU to process.  For example

Square <obj> =def= (* <obj> <obj>)

so that  Square 4 => (* 4 4) => 16

First consider variables, names which stand for any valid object.  We have been using the names

<obj1>, <obj2>, etc. as variables names.  The angle brackets notate that the name in question is

not the name of a single thing, but rather it is the name of a class, or set, of things, all of which

are of a particular type.

Variables (or parameters, when the names are arguments of a function) are atoms also, so they

are simply added to the symbol table.  To assign a value to a variable symbol, we can put a

reference to the location of the value we wish to associate with the variable in the FFirst part of

the memory cell for the variable.  Thus variables are distinguished from objects representing a

specific value because their FFirst part is not nnil.  It is an error to access a variable which has

nil as the FFirst part.  Objects which do have nnil in the FFirst part are called ground objects.

The function which assigns ground objects to variable objects is called LLet.

We can use this same mechanism to store the definitions of functions.  The memory cell which

contains the name of the function in the RRest part can contain the address of the definition of the

function in its FFirst part.  Consider the memory configuration for the above definition of

Square:

Address F i r s t Rest
000 nil nil symbol table
010 nil OBJECT
011 nil * end of symbol table
012 013 SQUARE function definition
013 011 014
014 010 015
015 010 000 end of function definition

When the call SSquare 4 is added to memory we get:

016 nil 4 symbol table
017 012 018 function call (Square 4)
018 016 000

To bind OBJECT to the value 4, we use the call LLet object 4:

019 nil LET symbol table
020 019 021 function call   (Let object 4)
021 010 022
022 016 000

Finally we need to get the processor to actually evaluate the function call.  Let's call this EEval.

We can actually make EEval the default.  Whenever a new expression is added it can be

automatically evaluated.  This just shifts the issue to needing an instruction to stop evaluation.

Let's call this evaluation stopper QQuote.



Programming Methods

10

What the above memory configuration contains is QQuote (SSquare 4), which simply puts the

data structure  SSquare 4 into memory.  If we write the function  SSquare 4, then evaluation

will happen automatically.  This process consists of changing the value of object from nnil to 4,

and following the sequence until a single atom is returned.  That is, the function LLet says to the

processor:  go to the symbol which immediately follows LLet and put the address of the second

symbol which follows LLet (i.e. 4) in its FFirst part.  This results in

010 016 OBJECT

Now the definition of SSquare will find the value of OBJECT and use it rather than using the

symbolic variable “OBJECT”.  And, of course, symbolic variables are the only items in the

symbol table which can contain something other than nnil.

There is a slight problem here because the symbol “OBJECT” might be used in more than one

function.  This can be handled in one of two ways:

1)  make sure all of the symbols are unique, or

2)  divide the symbol table into subtables which associate and isolate each function with

its own variables.

Finally, we simply use recursion  directly as repeated actions of the same sort, since nothing in

the above structuring stops this from working.

The Function Eval

In the above description, evaluation is an implicit action of the ALU.  By claiming evaluation is

automatic, we are committed to wiring the ALU in a specific way.  However the above mechanism

for handling memory can be made flexible by defining EEval in the programming language itself.
This process is called meta-circular evaluation, cause it uses a language itself to define how that

language should behave.  All we have to do is to define the evaluation function by telling the

system what to do when an expression is typed in.  The function EEval takes two arguments, the

expression to be evaluated and the binding environment, that is, an address of the memory array

which contains all of the primitive functions and atoms (and any other symbols which we may

have added) in the language.  The binding environment contains the definitions of all user defined

functions, and the values of each of the variables (function arguments).

Since the binding environment does not change in this example, (i.e. we have not designed the

language to establish separate environments for each function call), we will treat the token

Eval to mean “Eval-in-environment”

The definition of EEval which follows uses only primitive functions introduced above.  Some of

the syntax has been changed to make it more readable.

This EEval function recognizes seven operators:

F i r s t Rest Cons

I fThenE lse Equa l Quote Let

In addition, EEval uses built-in tests to determine the types of objects, as operationalized above.

I s - e m p t y I sa -a tom I sa - exp res s i on



Programming Methods

11

Eval exp  =def=

If Isa-atom exp
 Then ;process atom
   If ((Is-empty exp) or (Equal exp (Quote True)))
    Then ;return the SYMBOL
      exp
    Else ; or its VALUE
      Get-value-in-env exp
 Else ;process expression
   If Isa-atom (First exp)
    Then ;process Atom in First*

      Let token (First exp) ;naming the atom
        If Equal token (Quote Quote)
         Then ;return what follows
           Second exp
         Else ;other operators
           If Equal token (Quote IfThenElse)
            Then ;process logic operator
              EvalLogic (Rest exp)
            Else ;other operators
              If Equal token (Quote First)
               Then                                       ;First of Eval of Rest
                 First (Eval (Second exp))
               Else ;other operators
                 If Equal token (Quote Rest)
                  Then ;Rest of Eval of Rest
                    Rest (Eval (Second exp))
                  Else ;other operators
                    If Equal token (Quote Isa-atom)
                     Then ;Isa-atom Eval of Rest
                       Isa-atom (Eval (Second exp))
                     Else ;other operators
                       If Equal token (Quote Cons)
                        Then ;Cons Eval of Rest**
                          Cons (Eval (Second exp))
                                (Eval (Third exp))
                        Else ;other operators
                          If Equal token (Quote Equal)
                           Then ;Equal Eval of args
                             Equal (Eval (Second exp))
                                    (Eval (Third exp))
                           Else                           ;replace the token with

                             Eval (Cons                  ;its value
                                     (Get-value-in-env token) (Rest exp))
    Else ;compound First
      If Isa-expression (First exp)
       Then ;process expression
         EvalExp exp
       Else ERROR



Programming Methods

12

EvalLogic exp  =def=

If Equal (Eval (First exp)) (Quote True) ;if First is TRUE

 Then ;Eval second argument
   Eval (Second exp)
 Else ;Eval third argument
   Eval (Third exp))

EvalExp exp   =def=

If Is-empty exp ;if at the end

 Then ;return ground
   nil
 Else ;Eval the parts

  Cons (Eval (First exp)) (Eval (Rest exp)) ; and put them together

Notes:

*  process Atom in First:  Here we have defined a syntax for parsing.  Every expression begins

with an atom or is an atom.  If an expression begins with an atom, that atom is taken by

the processor to be an operator, and thus a processing instruction.  The operator QQuote

is the no-op.

**  Cons Eval of Rest:  This is again a syntax constraint.  Once we have removed the beginning

operator of an expression, what follows is either an atom, or another expression which

itself begins with an atom operator.

The syntax of the language is thus:

Expression ::= Atom | (Atom Expression*)

The Kleene star means that an operator atom can have any number of following arguments.  Note

that this BNF specification is one of a regular language.

Finally, note that a meta-circular language can evaluate its own definition of EEval, since the

above definition is self-consistent.

The Punch Line

The above programming language actually exists, it is one of the very few oldest programming

languages still in active use.  Its name is LISP.

In 1955, John McCarthy followed a similar line of reasoning in developing LISP.  Currently

LISP stands uniquely among programming languages in that it is rigorous, efficient, largely

machine independent, and permits simulation of all other programming language models (such

as procedural, functional, object-oriented, logical, and mathematical).  As well, when the

function EEval is processing input, LISP is interpreted, responding dynamically to new inputs

and definitions, and requiring no compilation or linking.  It thus provides a powerful interactive

programming environment which supports real-time debugging and symbolic proof of

correctness.


