
Programming Methods

1

Syntactic Modeling Tools

The Compilation Process

Source program
|

<-------- Lexical analyzer
| |
<-------- Syntax analyzer
| |

Symbol table ---> Intermediate code, semantic analyzer --> Optimization
| | |
--------> Machine language code generator <---------------

|
Hardware computation

Lexical and Syntactic Analysis

Programs are strings.

Lexical analysis scans the program string for valid character sequences. Syntactic analysis
parses the program string for valid word sequences.

Structural rules for both character and words strings are defined by a context-free language.

Formal specification techniques include BNF, diagrammatic BNF, finite automata, production

rules, and syntax graphs.

Formal Languages

alphabet a finite set of symbols {i,j,k,+,*,0,1,2,...}

string a finite ordered list of symbols

language all possible strings using a given alphabet

grammar a subset of all possible strings constrained by a set of composition rules

Classes of Languages

These categories form a hierarchy, in that regular languages are fully contained in context-free

languages, etc.

Context sensitive languages have rules

A --> B such that |A| =< |B|

That is, the result B is never smaller that the input B

Programming Methods

2

Context free languages have rules

A --> B such that A is a single non-terminal string

That is, the input A never branches.

Regular languages have rules

A --> B such that B is a terminal or a terminal and a non-terminal

That is, the output B either ends the rule, or triggers another terminating rule.

Context-free Languages

These three operations define a regular language:

JOIN concatenate tokens and strings

OR choose between alternatives for one location

LOOP Kleene closure, Kleene star *

The Kleene star, s*, is a notation for repeating a given string zero or more times. The Kleene

plus, r+, means repeat the given string one or more times.

RECURSION handle nested structures

Expressed as production rules, recursion allows

A --> B such that B can contain reference to A

For termination, at least one rule associated with A must not contain recursive reference to A.

Regular languages are defined by placing a constraint on context-free languages, that of not

permitting recursion. Recursion is necessary to construct nested and hierarchical forms;

regular languages permit only construction of flat strings and lists.

Backus-Naur Form

One way to specify structural rules is using BNF, Backus-Naur Form. BNF is a collection of

transformation, or pattern-matching, rules to apply to a given expression. BNF defines a

regular language. Valid token strings can be specified by

Base cases: empty string E
single character u

Compound cases: concatenation r*s
disjunction r|s
repetition r*

Programming Methods

3

Parentheses are used to disambiguate forms.

A diagrammatic version of regular language specifications uses

JOIN A --> B arrow from A to B

OR A --> branching paths
 \-->

LOOP A --> Kleene star
\<--/

Example: PASCAL numerical strings

digit --> 0|1|2|3|4|5|6|7|8|9

integer --> digit digit*

number --> integer ((. integer)| E)

Language classes and grammars were developed by Noam Chomsky. Computing languages became

connected to grammars because Backus’ BNF formalism was equivalent to Chomsky’s. Thus, a

context-free language can be defined as a BNF form with recursion.

Examples of Grammars

Balanced Parentheses

alphabet {(,)}

strings {(,),S}

grammar1 S --> empty
S --> S S
S --> (S)

grammar2 S --> S1* Star allows zero occurrences
S1 --> (S)

Simple Algebra

alphabet {,0,1,2,...,a,b,c,...,+,*,(,)}

strings {+,*,(...), id, Term, Factor, Expression}

grammar Expression --> Expression + Term | Term

Term --> Term * Factor | Factor

Factor --> (Expression) | id

Programming Methods

4

Terms, Factors, and Expressions are defined formally by the rules of the grammar.

Intuitively, an Expression is any valid linear algebraic form. A Term is two forms

multiplied together. A Factor is an id or any Expression (separated by parentheses for

grouping).

Simple Arithmetic Parsing Example

(3 * (4 + 5)) * (2 + 7)

(3 * (4 + 5)) * (2 + 7) expression1
--> term1

(3 * (4 + 5)) * (2 + 7) term1
--> term2 * factor1

(3 * (4 + 5)) term2
--> factor2

(3 * (4 + 5)) factor2
--> (expression2)

 3 * (4 + 5) expression2
--> term3

 3 * (4 + 5) term3
--> term4 * factor3

 3 term4
--> factor4

 3 factor4
--> id1

 (4 + 5) factor3
--> (expression3)

4 + 5 expression3
--> expression4 + term5

4 expression4
--> term6

4 term6
--> factor5

4 factor5
--> id2

 5 term5
--> factor6

 5 factor6
--> id3

 (2 + 7) factor1
--> (expression5)

 2 + 7 expression5
--> expression6 + term7

 2 expression6
--> term8

 2 term8
--> factor7

 2 factor7
--> id4

 7 term7
--> factor8

 7 factor --> id5

