
Artificial Intelligence

1

AI Exotics

Conventional AI Topics in 1999

knowledge representation and articulation

commonsense and uncertain reasoning, belief structures

inference and deduction, expert systems

search (heuristics, strategies, competitive)

blackboard systems

learning and adaptation

deliberation, planning, and acting

situated modeling

speech and language processing

image understanding and synthesis

manipulation and locomotion (robotics)

autonomous agents and robots

multiagent systems

cognitive modeling

mathematical foundations

Probable Directions of Research over the next few years

representing the environment as messy, changing, and hostile

huge knowledge bases, data mining

interaction with human collaborators

system self-understanding

self-motivated learning and agents

more agents and multiagent systems (the next big thing)

Exotic Topics in AI

neural networks (1985 old, has own technical societies)

multiagent systems (becoming mainstream)

autonomous agents, artificial life

data mining, particularly in dynamic web environmnets

fuzzy logics (1990 old)

constraint reasoning (1980 old)

chaotic systems, cellular automata (1980 old)

genetic algorithms (1990 old)

machine evolution (1996)

reactive machines (1990 old)

robot perception (1980 old but little progress)

diagrammatic systems (1990)

web intelligence

Artificial Intelligence

2

Neural Networks

Densely connected networks with input, middle, and output layers

Inherently parallel architecture

Good for pattern-recognition after training

Sub-symbolic (no map between representation and meaning)

Knowledge (and programming) is in the strength of connections between network units

Each middle unit "averages" inputs, eg: outK@t = Sum(weightJ * inJ@t) + biasK

Weighted summation is a discrete model of differential calculus

Logistic summation: out@t = 1/(1 + e^(sum(weightJ*inJ)))

simulates perceptual threshhold model

Training is accomplished by modifying weights to meet a performance objective

Programming is reflexive,

ie the system reprograms its own weights through error feedback

Open issues:

How to learn to solve a problem without training in the exact problem?

Are there other useful architectures (compared to three layer approach)?

Can training be less extensive fro hard problems; does training scale up?

How can a network generalize to a class of problem when trained in a subset?

How can you know the state of the system's knowledge? (validation issue)

Experience cautions:

The training examples must sufficiently constrain the problem.

Selection of appropriate input data is a design problem.

Known symmetries must be included in the training set.

The task needs a probabilistic model.

Don't train with binary vectors (errors are fatal)

Course coding (information blurring) is good for pre-training

Cellular Automata

"discrete dynamical systems whose behavior is completely specified in terms of a

local relation, much as is the case for a large class of continuous dynamical systems

defined by partial differential equations" Tommaso & Toffoli

Simple example is domino runs.

Highly parallel recursive technique

Complex behavior (or is it?) from simple rules

Primary example of self-generating infinite systems

Most simple automata are Turing equivalent

Outcome is not "predictable", since running the automata is the only computational model

Main result: Complexity occurs at phase transitions between simple and random

Agents

Software agents are programs with "attitude", or disposition

Agents act autonomously in support of a user's requirement

Programming techniques for agents include

Artificial Intelligence

3

reactivity (selective activity depending on context)

autonomony (goal directed and self-initializing activity)

collaboration (attunement to work with other agents)

knowledge-based (use rules for communication protocols)

inferential (deduce consequences from inputs)

temporal (persistence of state and identity)

personality (believable interface with emotional simulations)

adaptivity (self-changing over time)

mobility (migrate to different environments, usually in search)

Purposes of agent approaches

simplify distributed computing

automated interoperability

resource management

improve user interface

simulate more human activity

relieve burden of direct interface

indirect management (vague specification)

system architecture

Genetic and Evolutionary Algorithms

Genetic algorithms are designed using "natural selection" and random permutation.

Code fragments or bit-strings are modified by

selection (those meeting a criteria are strengthened)

crossover (two fragments swap pieces at a cut point)

mutation (parts of a fragment are changed, usually randomly)

Millions of cycles are required for algorithm growth or evolution

Art is a good application.

Artif icial Life

Self-replicating programs (viruses)

True autonomy ("Sorry, Dave, I can't let you do that.")

Graphics for Hollywood

Animal construction kits

Cellular autonoma, chaos, and fractal mathematics

Issues:

physical grounding hypothesis (representation is not needed)

What is autonomy? What is emergent behavior?

What is the relationship between behavior and environment?

