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The Structure of Domain Theories

A ddomain theory (or abstract knowledge structure) consists of a domain of objects, and

axioms and rules which define the symbolic interaction between the symbolic form of these

objects.  In particular, a domain theory consists of:

1.  A collection of symbols, including

constants

variables naming arbitrary forms

functions

relations

2.  Generation axioms
These define the typing hierarchy of forms

3.  Uniqueness axioms
These define how forms stay the same when they are manipulated, and how forms

are composed of atomic units.

4.  Special axioms
These define the characteristics of special types.

5.  An Induction Principle
This rule template is the mechanism which allows construction and

deconstruction of arbitrary forms, and provides an algebraic (abstract)

approach to domain forms.

For proof and for programming, several ccomposition tools are then proved/provided for

construction and deconstruction.

6.  Decomposition
Permission to take apart an arbitrary form into atomic components and functions

to do the construction/deconstruction.

7.  Equality under Decomposition
Equal forms don't change if you do equivalent things to them.  Generally, forms

are mmappable, you can map a function across the atomic parts.

8.  Special functions as theorems
With the above basis (1-7), we now begin to build specialized functions

(macros) which make it easier to take large steps while manipulating forms.  A

recursive definition axiom says what we mean by the new function in terms of

the basis functions.  Then other theorems relate all the other mechanisms to the

new function.  Generally each new function has analogous axioms for each item

above.
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Abstract Domain Theory:  STRINGS

Here is the TTheory of Strings as an example.  Note that the TTheory of Sequences and the

Theory of Non-Embedded Lists are almost identical.

Constants: {E} the Empty string

Variables (typed): {u,v,...} characters

{x,y,z,...} strings

Functions: {•, head, tail, *, rev, rev-accum, butlast, last}

• is prefix, attach a character to the front of a string

* is concatenate, attach a string to the front of another string

[the rest are defined below as special functions]

Relations: {isString, isChar, isEmpty, =}

isEmpty[x] test for the empty string

isChar[x] test for valid character

isString[x] test for valid string

GeneratorFacts:
isString[E]
isString[u]
isString[u•x]

Uniqueness:
not(u•x = E)
if (u•x = v•y) then u=v and x=y

Special char axiom:
u•E = u
E•u = u

Decomposition:
if not(x=E) then (x = u•y)
head[u•x] = u
tail[u•x] = x
if not(x=E) then (x = head[x]•tail[x])

Decompose equality:
if (u=v) then (u•x = v•x)
if (x=y) then (u•x = u•y)

Mapping:
F[u•x] = F[u]•F[x]
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The String IInduction Principle:

if F[E] and
forall x: if not[x=E],

then if F[tail[x]] then F[x]
then  forall x: F[x]

Recursion, mapping:

F[E] base

F[u•x] = F[u]•F[x] general1

F[x] = F[head[x]]•F[tail[x]] general2

Pseudo-code for testing string equality, using the Induction and Recursion templates for

binary relations

if =[E,E] and
   forall x,y:

if (not[x=E] and not[y=E]),
  then if (=[head[x],head[y]] and =[tail[x],tail[y]])

   then =[x,y]
  then forall x,y: =[x,y]

=[E,E] base

=[x,y] = =[head[x],head[y]] and =[tail[x],tail[y]] general1

=[a,b]  =def=
(a=E and b=E)

   or (=[head[a],head[b]] and =[tail[a],tail[b])

Some axioms and theorems for specialized functions

Concatenate, *, for joining strings together:

E*x = x,    x*E = x base definition

(u•x)*y  =  u•(x*y) recursive definition

isString[x*y] type

u*x = u•x character special

x*(y*z) = (x*y)*z associativity

if x*y = E, then x=E and y=E empty string

if not(x=E) then head[x*y] = head[x] head

if not(x=E) then tail[x*y] = tail[x]*y tail
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Reverse, rev, for turning strings around:

rev[E] = E base definition

rev[u•x] = rev[x]*u recursive definition

isString[rev[x]] type

rev[u] = u character special

rev[x*y] = rev[y]*rev[x] concatenation

rev[rev[x]] = x double reverse

rev[x*u] = u•rev[x] suffix

Reverse-accumulate, reverse the tail and prefix the head onto the accumulator:

rev-acc[x,E] = rev[x] identicality

rev-acc[E,x] = x base definition

rev-acc[u•x,y] = rev-acc[x,u•y] recursive definition

Last and Butlast, for symmetrical processing of the end of a string:

butlast[x*u] = x definition

last[x*u] = u definition

if not(x=E) then isString[butlast[x]] type

if not(x=E) then char[last[x]] type

if not(x=E) then x = butlast[x]*last[x] decomposition

if not(x=E) then butlast[x] = rev[tail[rev[x]]] tail reverse

if not(x=E) then last[x] = head[rev[x]] head reverse

Here is a function which mixes two domains, Strings and Integers:

Length, for counting the number of characters in a string

length[E] = 0

length[u•x] = length[x] + 1

length[x*y] = length[x] + length[y]
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A symbolic proof by induction

To prove:  rev[rev[x]] = x x is of type STRING

Base case: Rule applied:

rev[rev[E]] =?= E 1. problem

rev[E] =?= E 2. rev[E] = E

E =?= E 3. rev[E] = E

QED 4. identity

Inductive case:

rev[rev[x]] =?= x 1. problem

rev[rev[u•x]] = u•x 2. assume by induction rule

rev[rev[x]*u] = u•x 3. rev[a•b] = rev[b]*a

rev[u]*rev[rev[x]] = u•x 4. rev[a*b] = rev[b]*rev[a]

u*rev[rev[x]] = u•x 5. rev[a] = a     a is a char

u•rev[rev[x]] = u•x 6. lemma  a*b=a•b   a is a char

rev[rev[x]] = x 7. a•b = a•c   iff   b=c

QED

Lemma:

u*x =?= u•x 1. problem

(u•x)*y = u•(x*y) 2. prefix/concatenate distribution

(u•E)*y = u•(E*y) 3. let x=E

u*y = u•(E*y) 4. a•E = a

u*y = u•y 5. E*a = a

QED



Applied Formal Methods

6

Abstract Domain Theory:  TREES

Predicates
atom[x]
tree[x]

Constructor
+[x,y]

Uniqueness
not[atom[+[x,y]]]
if (+[x1,x2] = +[y1,y2]) then (x1=y1 and x2=y2)

Left and Right
left[+[x,y]] = x
right[+[x,y]] = y

Decomposition
if not[atom[x]] then x = +[left[x],right[x]]

Induction
if F[atom] and
   (if F[x1] and F[x2] then F[+[x1,x2]])
then F[x]

Some recursive tree functions

size[x] =def= size[atom[x]] = 1;
size[+[x,y]] = size[x] + size[y] + 1

leaves[x] =def= leaves[atom[x]] = 1;
leaves[+[x,y]] = leaves[x] + leaves[y]

depth[x] =def= depth[atom[x]] = 1;
depth[+[x,y]] = max[depth[x],depth[y]] + 1

(pseudocode for leaves)
leaves[x] =def= if empty[x] then 0

  else if atom[x] then 1
   else leaves[left[x]] + leaves[right[x]]

(pseudocode for leaves-accumulate)
leaves-acc[x,res] =def=

if empty[x] then res
  else if atom[x] then leaves-acc[(), res + 1]
  else leaves-acc[right[x], res + leaves-acc[left[x]]]
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Abstract Domain Theory:  SETS

An sset implementation with the functions Insert, Delete, and Member is called a dictionary.

Mathematical model:

S = {x| <statement about x>} extensional, collection defined by common property

S = {a,b,c,...} intensional, collection defined by naming the members

empty set: not (x in S) forall x

membership: x in S  =def=  x=s1 or x=s2 or x=s3 or ...

subset: if (x in S1) then (x in S2)

union: (x in S1) or (x in S2)

intersection: (x in S1) and (x in S2)

difference: (x in S1) and not(x in S2)

recursive set membership:

x in S  =def=
not[x=empty-set]
and
x = get-one[S] or (x in rest[S])

Implementation functions:

Make-empty-set
Make-set[elements]
Insert[element,set]
Delete[element,set]
Equal[set1,set2]

Cardinality[set] = count of members

Characteristic function F:

(F[x] = 1 iff x in S)  and  (F[x] = 0 iff not(x in S))
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Algebraic Specification of Sets:

This algebraic specification is also a functional implementation (ie code) in a

programming language designed for formal verification.

theory    TRIVIAL   is

   sorts    Elt

endtheory    TRIVIAL

module    BASICSET [ELT :: TRIVIAL]   is

   sorts    Set

   functions  
Phi, Universe : Set
{_}: Elt -> Set
_ symmetric-diff _ : Set, Set -> Set

(  assoc     comm     ident   : 0)
_ intersect _ : Set, Set -> Set

(  assoc     comm     idem       ident   : Universe)

   variables  
S,S’,S’’: Set
Elt,Elt’: Elt

   axioms   
(S sym-diff S) = Phi

{Elt} intersect {Elt’} = Phi  :-  not(Elt = Elt’)

S intersect Phi = Phi

S intersect (S’ sym-diff S’’)
= (S intersect S’) sym-diff (S intersect S’’)

endmodule    BASICSET

module    SET [X :: TRIVIAL]   using   NAT, BASICSET[X]   is

   functions  
_ union _ : Set, Set -> Set
_ - _ : Set, Set -> Set
#_ : Set -> Nat

   predicates
_ member _ : Elt, Set
_ subset _ : Set, Set
empty : Set
_ not-member _ : Elt, Set
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   variables  
X: Elt
S,S’,S’’: Set

   axioms   
S union S’ = ((S intersect S’) sym-diff S) sym-diff S’
S - S’ = S intersect (S sym-diff S’)
empty(S) :- S = Phi
X member S :- {X} union S = S
X not-member S :- {X} intersect S = Phi
S subset S’ :- S union S’ = S’
# Phi = 0
#({X} sym-diff S) = #(S) - 1 :- X member S
#({X} sym-diff S) = #(S) + 1 :- X not-member S

endmodule    SET

Abstract Domain Theory:  RATIONAL NUMBERS

base 0
recognizer is-number[n]
constructor +1[n]
accessor -1[n]

some invariants is-number[n] or not[is-number[n]]
is-number[+1[n]]
is-number[0]
+1[n] =/= 0
(is-number[n] and n =/= 0) implies (+1[-1[n]] = n)
is-number[n] implies (-1[+1[n]] = n)

induction if F[0] and (F[n] implies F[-1[n]]) then F[n]

module    BASICRAT   using    INT   is

   sorts    Rat
   subsorts  Int =< Rat

   functions  
_ / _ : Int, NzInt -> Rat
_ * _ : Rat, Rat -> Rat  (  assoc       commut       ident   : 1)
_ + _ : Rat, Rat -> Rat  (  assoc       comm       ident   : 0)

   variables  
N,X,Z: Int
Y,W: NzInt
A: NzNat



Applied Formal Methods

10

   axioms   
nzint(Y*W)

N/1 = N

0/Y = 0

N/(-A) = (-N)/A

X/Y = (X/gcd(X,Y))/(Y/gcd(X,Y)) :- not(gcd(X,Y)=1)

(X/Y)+(Z/W) = ((X*W)+(Z*Y))/(Y*W)

N+(X/Y) = ((N*Y)+X)/Y

(X/Y)*(Z/W) = (X*Z)/(Y*W)

N*(X/Y) = (N*X)/Y

endmodule    BASICRAT


