
Applied Formal Methods

1

The Function Eval

Evaluation is an implicit action of the ALU. By claiming evaluation is automatic, we are

committed to wiring the ALU in a specific way. However handling memory can be made flexible

by defining EEval in the programming language itself. This process is called meta-circular
evaluation, cause it uses a language itself to define how that language should behave. All we have

to do is to define the evaluation function by telling the system what to do when an expression is

typed in. The function EEval takes two arguments, the expression to be evaluated and the binding
environment, that is, an address of the memory array which contains all of the primitive

functions and atoms (and any other symbols which we may have added) in the language. The

binding environment contains the definitions of all user defined functions, and the values of each

of the variables (function arguments).

Since the binding environment does not change in this example, (i.e. we have not designed the

language to establish separate environments for each function call), we will treat the token

Eval to mean “Eval-in-environment”. (Some of the syntax has been changed to make EEval

more readable.)

The definition of EEval which follows recognizes only seven reserved words as primitive

functions. In addition, EEval uses three built-in tests to determine the types of objects.

F i r s t Rest Cons

I fThenE lse Equa l Quote Let

I s - e m p t y I sa -a tom I sa - exp res s i on

[Notes and supporting functions are on this page to save space. EEval itself is on the next page.]

Notes, * process Atom in First: This defines a syntax for parsing. Every expression begins

with an atom or is an atom. If an expression begins with an atom, the processor assumes that

that atom is an operator, and thus a processing instruction. The operator QQuote is the no-op.

Notes, ** Cons Eval of Rest: This is again a syntax constraint. Once we have removed the

beginning operator of an expression, what follows is either an atom, or another expression

which itself begins with an atom operator.

EvalLogic exp =def=
If Equal (Eval (First exp)) (Quote True) ;if First is TRUE

 Then ;Eval second argument
 Eval (Rest exp)
 Else ;Eval third argument
 Eval (Rest (Rest exp)))

EvalExp exp =def=
If Is-empty exp ;if at the end

 Then ;return ground
 nil
 Else ;Eval the parts

 Cons (Eval (First exp)) (Eval (Rest exp)) ; and put them together

Applied Formal Methods

2

Eval exp =def=

If Isa-atom exp
 Then ;process atom
 If Is-empty (First exp)
 Then ;return the SYMBOL
 Rest exp
 Else ; or its VALUE
 First exp
 Else ;process expression
 If Isa-atom (First exp)
 Then ;process Atom in First*

 Let token (First exp) ;naming the atom
 If Equal token (Quote Quote)
 Then ;return what follows
 Rest exp
 Else ;other operators
 If Equal token (Quote IfThenElse)
 Then ;process logic operator
 EvalLogic (Rest exp)
 Else ;other operators
 If Equal token (Quote First)
 Then ;First of Eval of Rest
 First (Eval (Rest exp))
 Else ;other operators
 If Equal token (Quote Rest)
 Then ;Rest of Eval of Rest
 Rest (Eval (Rest exp))
 Else ;other operators
 If Equal token (Quote Isa-atom)
 Then ;Isa-atom Eval of Rest
 Isa-atom (Eval (Rest exp))
 Else ;other operators
 If Isa-expression token
 Then ;process expression
 EvalExp (Rest exp)
 Else ;other operators
 If Equal token (Quote Cons)
 Then ;Cons Eval of Rest**
 Cons (Eval (Rest exp))
 (Eval (Rest (Rest exp)))
 Else ;other operators
 If Equal token (Quote Equal)
 Then ;Equal Eval of args
 Equal (Eval (Rest exp))
 (Eval (Rest (Rest exp)))
 Else ;replace the token

 Eval ; with its value
 Cons (First token) (Rest exp)
 Else ERROR))

