
Applied Formal Methods

1

Pattern Encoding

Encoding Algebraic Laws as Patterns

The laws of algebra can be expressed as transformation patterns. “Equal” means that one form

can be freely substituted for the other whenever the patterns match.

Commutative Law

x*y = y*x

equal[prod[x,y],prod[y,x]]

P[Q[x,y],Q[y,x]]

Associative Law

(x*y)*z = x*(y*z)

equal[prod[prod[x,y],z],prod[x,prod[y,z]]]

P[Q[Q[x,y],z],Q[x,Q[y,z]]]

Distributive Law

x*(y+z) = (x*y) + (x*z)

equal[prod[x,plus[y,z]],plus[prod[x,y],prod[x,z]]]

P[Q[x,R[y,z]],R[Q[x,y],Q[x,z]]]

Proof Needs Semantics

This example illustrates why automated proof (and intelligent computation) is very unlikely.

We must design programming and verification systems to be interactive, so that they augment

human intelligence rather than attempting to emulate it. Note that conventional programming

puts the interaction in a batch mode.

For any natural number n>=2, (n^3-n)/6 is an Integer

<[n,2] or isInt[div[minus[power[n,3],n],6]]

L[n,2] or P[Q[R[S[n,3],n],6]]

where the semantics is L is < less than
P is isInt type check, to be proved
Q is / divide
R is - subtract
S is ^ power

Applied Formal Methods

2

A person may elect to factor the expression in question, in order to understand more:

(n^3-n) = n*(n^2-1) = n*(n+1)*(n-1) = (n+1)*n*(n-1)

A machine can do this, not in order to understand, but as part of a set of automated

transformations to be explored.

R[S[n,x],n] => T[n,R[S[n,R[x,1]],1]]

 => T[n,T[U[n,1],S[n,1]]]

where T is * multiply
U is + add

Note how very specific these patterns are. These rules could be generalized, but it is difficult to

know in advance in which direction the generalization should be formulated.

Number Facts

A human might next retrieve a collection of esoteric number facts:

For any three numbers in a row,

there must be at least one even number

and at least one number divisible by three

and these two numbers are not the same number.

so, the product contains divisors of 2 and 3 (i.e. 6)

A machine can’t make this step, because there are too many esoteric number facts. Even with

very sophisticated meta-knowledge to steer the selection of which number facts to explore first,

finding the correct set of facts which leads to a proof is generally not possible. The problem, for

example, may be only slightly different, but would then require entirely different esoteric

number facts:

if n is odd, then (n^3-n)/8 is an Integer

div[n,2]
or

isInt[div[minus[power[n,3],n],8]]

Q[n,2] or P[Q[R[S[n,3],n],8]]

Induct ion

We simply do not know if there are automated paths, using different proof strategies, which

reduce all mathematical problems to trivialities. For example, machines can do induction.

Rather than recalling esoteric number facts to generate a natural, intelligent proof, we could

have gone blindly forth in the above problem, trying an inductive proof:

Applied Formal Methods

3

For any natural number n>=2, (n^3-n)/6 is an Integer

base: (2^3-2)/6 isInt (the base case is not n=0)

general: (k^3-k)/6 isInt

show: ((k+1)^3 - (k+1))/6 isInt

((k+1)^3 - (k+1))/6

= (k^3 +3k^2 + 3k +1 - k - 1)/6

= (k^3-k)/6 + 3(k^2+k)/6

if A isInt and B isInt, then (A + B) isInt

(k^3-k)/6 isInt assume general

3(k^2+k)/6 isInt to show

k(k+1)/2 isInt lemma

((k+1)^3 - (k+1))/6 isInt QED

Lemma: k(k+1)/2 isInt

base: 2(2+1)/2 isInt

general: k(k+1)/2 isInt

show: (k+1)(k+1+1)/2 isInt

(k+1)(k+2)/2

= (k^2 + 3k + 2)/2

= k(k+1)/2 + 2(k+1)/2

k(k+1)/2 isInt assume general

2(k+1)/2 isInt k isInt

(k+1)(k+2)/2 isInt QED

Existence Proof

An existence proof demonstrates that a particular object, or solution, does exist, but the proof

does not identify exactly what that object is. Automated systems cannot conduct existence proofs.

Applied Formal Methods

4

Essentially, existence proofs demonstrate universal principles, whereas computational proofs

demonstrate a verification of a particular principle.

Prove there exists a function that is both odd and even.

Odd function: F[-x] = -F[x] e.g. sine

Even function: F[-x] = F[x] e.g. cosine

Find an F[x] such that:

E[F[R[0,x]], R[0,F[x]]] and E[F[R[0,x]],F[x]]

where E is = and R is -

An example of such a function is: F[x] = 0

For pattern-matching, we are looking for two different matches to the second argument of E.

Equivalently, we can eliminate F[-x] algebraically, so that we are looking for the single

pattern:
F[x] = -F[x]

E[F[x], R[0,F[x]]]

From here, the example of F[x]=0 is easy to identify, since R[0,0]=0 and E[0,0] isTrue. In

general, the problem is to show:

Exists F. E[F[x],R[0,F[x]]]

One problem is that the existential quantifier is over *functions*, not variables. This requires

Second Order Logic, for which theorem provers are not yet well developed. What is the Domain
of all Functions? How do we enumerate, even recursively, all possible functions?

Verifying a Condition from a Search Program

Suppose that the inner loop of a search program is protected (defined) by the following

assertion (also called a guard, or a loop invariant).
Line

(j<i 1

and m<=p<=q<=n 2

and All x,y. (m<=x<i and j<y<=n) implies G[x]<=G[y] 3

and All x,y. m<=x<=y<=j implies G[x]<=G[y] 4

and All x,y. i<=x<=y<=n implies G[x]<=G[y] 5
)

implies G[p]<=G[q] 6

The above conjunctive constraint is an assertion about the state of a program. We have six

database items being searched {i,j,m,n,p,q}, and a property G.

Applied Formal Methods

5

M and n are minimal and maximal bounds for the item ids.

I and j relative bounds between m and n.

P and q are arbitrary entries for which we want to determine

if their G properties are ordered.

We know the following:

(line 1) the bounding items j and i are ordered

(line 2) m,p,q,n are partially ordered

The constraints on the G property (lines 3,4 and 5) state that G is ordered in these cases:

(line 3) all items are bounded below between m and i and above between j and n
(line 4) ordered items are bounded below between m and j
(line 5) ordered items are bounded above between i and n

When all of the orderings are satisfied, the G property is assured to be ordered as well.

Without the modern language capability of including assertions within the code, these

constraints must be proved independently (using a logic programming and verification system).

The first step in a proof is to add defining axioms for the functions and relations used by the

constraints. Here we need to add the ordering axiom

x<=y xor y<x

Next we form clauses out of multiple constraints on single lines (e.g. line 2)

m<=p
p<=q
q<=n

Now Skolemize to eliminate quantifiers. The labels {i,j,m,n,p,q} are Skolem constants and

the labels {x,y} are universal variables. C9 is the conclusion.

C1. x<=y xor y<x
C2. j<i
C3. m<=p
C4. p<=q
C5. q<=n
C6. (m<=x and x<i and j<y and y<=n) implies (G[x]<=G[y])
C7. (m<=x and x<=y and y<=j) implies (G[x]<=G[y])
C8. (i<=x and x<=y and y<=n) implies (G[x]<=G[y])
C9. G[p]<=G[q]

Here are the highlights of a backward chaining, natural deduction proof. The form of the

conclusion suggests a strategy: immediately bind the universal variables to constants. We seek

to find a set of ordering conditions that are subgoals of C6-C8, and that are satisfied by C1-C5.

Applied Formal Methods

6

 (1) G[p]<=G[q] ? C9
 (2) (m<=p and p<i and j<q and q<=n) implies (G[p]<=G[q]) C6,(1)
 (3) m<=p and p<i and j<q and q<=n ? (2)
 (4) (m<=p and p<=q and q<=j) implies (G[p]<=G[q]) C7,(1)
 (5) m<=p and p<=q and q<=j ? (4)
 (6) (i<=p and p<=q and q<=n) implies (G[p]<=G[q]) C8,(1)
 (7) i<=p and p<=q and q<=n ? (6)

 (8) p<i and j<q and q<=n ? (3),C3
 (9) p<i and j<q ? (8),C5
(10) p<=q and q<=j ? (5),C3
(11) q<=j ? (10),C4
(12) i<=p and q<=n ? (7),C4
(13) i<=p ? (12),C5

At this point, satisfying the equations on any one of lines (9), (11), or (13) achieves the goal.

In this case, all three lines are needed for the proof, which demonstrates that the guard is not

overly restrictive. The proof strategy is case analysis.

(14) q<=j xor j<q C1
(15) i<=p xor p<i C1
(16) if q<=j then QED else j<q 11,14
(17) if i<=p then QED else p<i 13,15
(18) if not QED then (j<q and p<i) 16,17
(19) if (j<q and p<i) then QED 9
(20) QED in all cases 16-19

The natural logic in line (18) says: all I need is to satisfy either line (11) or line (13). If I

don’t succeed, it must be because both j<q and p<i hold.

Pattern-matching as Computation

Here is a simple example of using Resolution to conduct computation.

The accumulating factorial function as resolution clauses:

{Fac[0,1]} base

{~Fac[x,r], Fac[S[x],*[S[x],r]} general

Supporting clauses define the successor function and multiplication:

{~S[0], 1}

{~S[x], +1[x]}

{~*[x,1], x}

{~*[S[x],y], +[*[x,y],y]}

Applied Formal Methods

7

These clauses will need to be renamed with unique variable identifiers. Note that the Successor

notation is designed for nested recursive pattern-matching. The numeral 3 is a shorthand

notation for S[S[S[0]]].

The query form, what is the Factorial of 3?

{~Fac[S[S[S[0]]], ANS]}

The resolution computation begins by matching the query to the general recursive part of the

function definition:

match Fac[S[S[S[0]]], to Fac[S[x],
binding x to S[S[0]]
and binding ANS to *[S[x],r], which is *[S[S[S[0]]],r]]

generating the new renamed clause:

{~Fac[S[S[0]],ANS1]} ANS = *[S[S[S[0]]],ANS1]]

Using the general clause of the definition two more times yields these new clauses:

match Fac[S[S[0]], to Fac[S[x],
binding x to S[0]
and binding ANS1 to *[S[x],r] which is *[S[S[0]],r]

new renamed clause:

{~Fac[S[0],ANS2]} ANS1 = *[S[S[0]],ANS2]

match Fac[S[0], to Fac[S[x],
binding x to 0
and binding ANS2 to *[S[x],r], which is *[S[0],r]

new renamed clause:

{~Fac[0,ANS3]} ANS2 = *[S[0],ANS3]

This last clause matches the base rule:

match ANS3 to 1

new renamed clause (the termination of the computation):

{}

The result itself is embedded in the ANS variables, which require backwards substitution and

arithmetic evaluation:

Applied Formal Methods

8

ANS3 = 1

ANS2 = *[S[0],ANS3] = *[S[0],1] = *[1,1] = 1

ANS1 = *[S[S[0]],ANS2] = *[S[S[0]],*[S[0],1]] = *[2,1] = 2

ANS = *[S[S[S[0]]],ANS1]] = *[S[S[S[0]]],*[S[S[0]],*[S[0],1]]]]
 = *[3,2] = 6

Representing a Procedural Program Fragment as a Resolution Pattern

Consider the following pseudo-code fragment for in-place sorting of the elements of an array A.

The code moves elements indexed i+1 to j one position earlier in the array. The question is to

verify that the subscripts of A never go outside the bounds of 0 to n as the DO loop executes.

INTEGER A[n]
INTEGER k
...
k := i+1
DO WHILE (k <= j)
 A[k-1] := A[k]
 k := k+1
END DO
...

We assume that i and j are iteration variables that are ordered and bounded by the array size:

0<=i<=n
0<=j<=n
i<j

State (Simulating Memory)

The binding list (also called the environment) represents all variables in memory and their

current value. We model it using a recursive nested notation which works well for pattern-

matching. The arguments to the State function (technically State is not a function, it is just a

labeled pattern) are the current variable name, its value, and another State pattern which

contains the rest of the program variables and their bindings.

State[<variable>,<value>,State[<next-variable,<next-value>,State[...]]]

The symbolic state of the example program may look like this:

State[i,4,State[k,?,State[j,n,nil]]]

The question mark is used to mean “not-initialized”, i.e. the value of k is not known. The

variable i is bound to the numerical value 4, the variable j is bound to the symbolic value n.

Applied Formal Methods

9

A r r a y s

Arrays are slightly more complex that simple binding lists, since array indexing must be used

for access. Lets assume that the environment is stored symbolically as an array. For pattern-

matching, it is convenient to represent an array as a recursive nested form, with three

arguments (index, value, and rest):

Array[<index>, <value>, Array[<next-index>,...]]

The pattern representation of an example array A follows:

variable n k i j x
index 0 1 2 3 4
value 4 ? 4 n 0

A[0,4,A[1,?,A[2,4,A[3,n,A[4,0,nil]]]]]

Array has the same pattern structure as State; they are both representations of memory. The

index of an array serves the same purpose as the memory address used by the CPU, both are

pointers to the symbolic name and its value. However, in simulation, the array is treated like a

list; the time-savings of indexed access is a physical implementation detail rather than a

symbolic quality.

To represent arrays as a State pattern, the array is simply treated like a compound variable:

State[<array-name>,<array>,State[...]]

In the example, the name of the array is A:

State[A, A[0,4,A[1,?,A[2,4,A[3,n,A[4,0,nil]]]]], State[k...]]

Execution (Simulating Process)

We need a representation of execution, the action upon the program statement currently being

executed in the current binding environment that produces a computational step. In the

resolution simulation, all actions are substitutions (unifications), essentially the same action

that CPU registers use at the physical level. The simulation executes symbolic substitution, the

CPU executes physical substitution.

Execute[<statement>,<environment>]

The initial Execute process, when we enter into the example program, would look like this:

Execute[assign1,
 State[A, A[0,4,A[1,?,A[2,4,A[3,n,A[4,0,nil]]]]],
 State[n,4,
 State[k,?,
 State[i,2,
 State[j,n,
 State[x,0,nil]]]]]]]

Applied Formal Methods

10

Program Statements

We now provide a general pattern, or clause, for each type of program statement. Each

statement type will have the abstract form:

<Statement-type>[<statement-name>,<action>,<next-statement>]

This pattern identifies the statement type by the outer label, and the specific instance of that

type by the first argument. Action is the unique transformation which defines the statement

type. Next-statement achieves sequential actions, it is equivalent to the sequence operator

“;” in procedural languages such as C, and specifies the next program statement in sequence.

The evaluation strategy for program statements in general has the form:

If the computation is at statement P1 and at state S1

then execute statement P2 with resulting new state S2.

Environment S2 is the result of processing statement P1 in the context of environment S1. S2 is

S1 with changes introduced by P1. An abstract example of process would look like this:

If Execute[P1,S1] and <Statement-type>[P1,<action>,P2],
then Execute[P2,<new-state-changed-by-statement>]

Variable Declarations

Rather than a conditional execution statement, the initializations included in variable and array

declarations are treated directly as equality assertions for match-and-substitute.

INTEGER k INIT:0

Equal[k,0]

INTEGER A[n]

Equal[HighBound[A],n]

HighBound is the maximal array size of array A.

Assignment

The procedural form of assignment translates into a declarative, resolution-based template for

the assignment computation. The form of assignment is

NEW := OLD

Assign[<statement>,<new>,<old>,<next-statement>]

Applied Formal Methods

11

Example: k := i+1 assign1

Assign[assign1,k,+[i,1],dowhile1]

The meaning of the Assign pattern is provided through its execution/evaluation template

If Execute[P1,S1] and Assign[P1,<new>,<old>,P2],
then Execute[P2,Save[<new>,Eval[<old>,S1],S1]]

This says that if the current program statement P1 is an Assign, then move forward to the next

program statement P2, by asserting that P1 has been processed and the result of that processing

has changed the current state S1 into the next state S2.

The new patterns, Save and Eval, manage memory storage and ground evaluation respectively,

implementing the match-and-substitute process. Eval binds any variables in <old> to their

current values stored in S1. Save substitutes the result of Eval into the value field of the

variable <new> in S1, constructing S2 in the process.

Expressed as a resolution clause, the Assign execution template looks like:

{ ~Execute[P1,S1],
 ~Assign[P1,new,old,P2],
 Execute[P2, Save[new,Eval[old,S1],S1]] }

In the example, we are entering the fragment with the program statement assign1, binding the

new k to the old i+1, and preparing for the following program statement dowhile1.

{ Assign[assign1,k,+[i,1],dowhile1] }

Resolving, bind

P1 to assign1
new to k
old to +[i,1]
P2 to dowhile1

New clause:

{ ~Execute[fragment-entry,S1],
 Execute[dowhile1, Save[k,Eval[+[i,1],S1],S1]] }

Eval[+[i,1],S1] finds i in S1 and binds it to its value (which is 4 in the example). Then

+[4,1] is evaluated to 5.

Save[k,5,S1] stores 5 as the value of variable k in S1, constructing S2 in the process.

Note that both Eval and Save achieve their functionality also through pattern-matching and

substitution, using resolution. Details have been omitted.

Applied Formal Methods

12

DoWh i l e

The DoWhile program statement evaluates a test in the context of a binding environment,

branching to P2 or P3 depending on the outcome of the test.

DO WHILE <test> <body> END

DoWhile[P1,<test>,P2,P3]

END DO

DoEnd[P1,P2]

Example: DO WHILE (k <= j) dowhile1
 A[k-1] := A[k] assign2
 k := k+1 assign3
END DO doend1
... fragment-exit

DoWhile[dowhile1,<=[k,j],assign2,doend1]

DoEnd[doend1,fragment-exit]

When the test succeeds, the next program statement inside the DO body, P2, is queued for

execution. When the test fails, the next program statement outside the DO body, P3, is queued.

The execution template for DOWHILE:

If Execute[P1,S1] and DoWhile[P1,test,P2,P3]
then Execute[If[Eval[test,S1],P2,P3],S1]

The semantics of DOWHILE is to Eval test, and branch using if-then-else to either P2 or P3.

The DoEnd statement terminates the DOWHILE by moving Execute to the next program

statement.

If Execute[P1,S1] and DoEnd[P1,P2]
then Execute[P2,S1]

Finally, the looping process of DOWHILE, when the exit test fails, is achieved simply by

encoding the <next-statement> field of the last statement inside the DO body to be the start of the

DOWHILE loop:

Assign[assign3,k,+[k,1],dowhile1]

E r r o r s

In order to answer questions about array out-of-bounds, we need to treat errors as legitimate

program statements. (This need is also reflected in the evolution from C to Java, in that Java

incorporates errors as first-class program entities.)

Applied Formal Methods

13

In procedural programming languages which do not support error checking through assertions,

the checks must be written directly into the program:

INTEGER A[n]
INTEGER k
...
k := i+1
DO WHILE (k <= j)
IF (k-1 > HighBound[A]) ERROR
IF (1 > k-1) ERROR
IF (k > HighBound[A]) ERROR
IF (1 > k) ERROR
 A[k-1] := A[k]
 k := k+1
END DO
...

This approach is an obsoleted programming style, in that the ERROR halts the program flow. A

more modern approach would be use If-Then-Else to incorporate the error branch directly into

the program flow:

If[<test>,<throw-to-error-handler>,<next-statement>]

The IfError statement has the following form:

IF <test> ERROR

IfError[P1,<test>,P2]

Example: IF (1 > k-1) ERROR iferr2

IfError[iferr2,>[1,-[k,1]],iferr3]

The execution template for IfError is identical to that of If-Then-Else:

if Execute[P1,S1] and IfError[P1,test,P2]
then Execute[If[Eval[test,S1],Error,P2],S1]

The Transcribed Program Fragment

Finally, all the program statement patterns can be assembled into a resolution database. The

program statement templates come first, followed by the program itself. Finally the initial

Execute clause triggers the computational process; the end result is stored in the State clause

which remains after all executions have been resolved.

Note that all variables in the statement templates have been given unique names. However, what

we call program variables {k,i,j,A} are symbolic constant labels here (Skolem constants),

since they identify an arbitrary but not specific value. Statement names are also constants.

Statement constants are carried without change throughout the set of clauses representing the

program.

Applied Formal Methods

14

{ ~Execute[P1,S1],
 ~Assign[P1,new,old,P2],
 Execute[P2, Save[new,Eval[old,S1],S1]] }

{ ~Execute[P3,S2],
 ~DoWhile[P3,test,P4,P5],
 Execute[If[Eval[test,S2],P4,P5],S2] }

{ ~Execute[P6,S3],
 ~DoEnd[P6,P7],
 Execute[P7,S3] }

{ ~Execute[P8,S4],
 ~IfError[P8,errtest,P9],
 Execute[If[Eval[errtest,S4],Error,P9],S4] }

{ Equal[HighBound[A],n] }

{ Equal[arrayA, A[0,4,A[1,?,A[2,4,A[3,n,A[4,0,nil]]]]] }

{ Assign[assign1,k,+[i,1],dowhile1] }

{ DoWhile[dowhile1,<=[k,j],iferr1,fragment-exit] }

{ IfError[iferr1,>[-[k,1],HighBound[A]],iferr2] }

{ IfError[iferr2,>[1,-[k,1]],iferr3] }

{ IfError[iferr3,>[k,HighBound[A]],iferr4] }

{ IfError[iferr4,>[1,k],assign2] }

{ Assign[assign2,A[i1,-[k,1]],A[i2,k],assign3] }

{ Assign[assign3,k,+[k,1],dowhile1] }

{ DoEnd[doend1,fragment-exit] }

{ Execute[assign1,
 State[A, arrayA,
 State[n,4,
 State[k,?,
 State[i,2,
 State[j,n,
 State[x,0,nil]]]]]]] }

