
Mathematical Foundations

1

Course Information

Descr ipt ion

The class will emphasize both mathematical thinking and understanding mathematical tools,

with some commentary on programming and implementation issues. The goals of this class are

1) to become familiar with mathematical tools in general, and with the types of

mathematical tools used in software engineering for specification, formal modeling, and

programming in specific.

2) to gain multiple perspectives on the primary mathematical techniques of logic,

induction, proof, functions, relations, and graphs.

Homework will consist of substantial thinking and reflection on mathematical ideas and

content, plus short selected exercises on each topic. Problems and readings from the text will

accompany each class topic, however the lectures and class discussions will not necessarily

duplicate or refer to textual materials. In-class exercises will not be graded. No graded tests,

no final exam. The final assignment will be to outline the field of mathematics as you understand

it.

My general attitude is that each student is a mature adult responsible for his/her own learning

and motivation. As well, each student is an individual who will learn best with individually

tailored content and experiences. I will provide all standard educational structures for students

to choose between (assignments by the instructor, structured environments, multiple

resources and references, and self-motivated exploration). I expect each student to know the

style of both teaching and learning which best encourages his/her own positive educational

experience. I also expect each student to be aware of his/her own goals and motivations for

being here, and his/her own needs and expectations for success. Of course, you will need to let

me know your goals and needs for me to effectively address them.

Mathematical Foundations

2

Text

Edgar G. Goodaire and Michael M. Parmenter, Discrete Mathematics with Graph Theory,

Prentice-Hall, 1998.

This undergraduate text covers the elementary concepts of discrete mathematics. All students

are expected to read or to skim all material in the book, and to do selected exercises on topics

you do not fully undertstand.

The text is a supplement to the lectures and class time, not the primary content. Students are

expected to do text book exercises as part of reading, to the extent needed for individual

understanding. Class participation is in addition to the text readings and problems.

Unless specifically requested, the following chapters and sections of the text will not be covered

in depth in class, although I will mention each briefly:

Chapter Topic Pages

3.3 Prime Numbers 118-133

5 Principles of Counting 211-239

6 Permutations and Combinations 240-274

Lecture notes and special readings for each class will be distributed in hardcopy prior to class

meetings.

Eva luat ion

Available grades:

non-completion: Incomplete, Withdraw, etc.

completion: A A- B+ B B- C

A: reserved for superior performance

A- or B+: expected grade for conscientious performance

B: adequate work

B - : barely adequate

C: equivalent to failing

Grading Options:

1. Grading Contract: specify a set of behaviors and an associated grade.

2. Performance Quality: attendance, participation, assigned exercises

3. Self-determined: negotiate with instructor

Discussion:

If you already understand the subject, if you plan to excel, or if you need clear performance

goals for motivation, then OOption 1 is a good idea. If you prefer a clearly defined agenda, if you

do well with concrete task assignments, or if you need a schedule of activities for motivation,

then OOption 2 is a good idea. If you are not concerned about grades, if you intend to do what you

choose anyway, or if you are self-motivated, then OOption 3 is a good idea.

I will notify any student who is not on a trajectory for personal success.

Mathematical Foundations

3

Course Syllabus

Meet ing Topic Text Exe rc i ses

 1) introduction, overview of mathematics ch0 exercises

 2) formal systems, theories of computation

 3) propositional logic ch0 due

 4) history of logic

 5) proof strategies Ch 0 proof exercises

 6) predicate calculus

 7) boundary logic

 8) induction and recursion Ch 4 induction exercises

 9) set theory Ch 1

10) relational structure Ch 1

11) functional structure Ch 2 algebraic exercises

12) algebraic systems

13) exotic numbers Ch 3,5

14) algorithms Ch 7

15) graphs and trees Ch 8

16) paths and circuits Ch 9,10 graph exercises

17) graph algorithms Ch 12,13,14 final project

18) grammars, FSMs

19) review final project due

20) closure

 Mathematical Foundations

1

Chapter 0 Exercises

Almost all mathematical textbooks begin their story in the middle, as if you already knew the

assumptions, critical choices, and relevance of each topic. For example, your text begins to

teach about proof theory on page 1.

The following questions come prior to studying the content of mathematics. Answer each

question in one sentence or less. These questions identify what you believe about mathematics,

therefore there are no right or wrong answers, just answers that are less or more thoughtful.

HAND IN YOUR ANSWERS AT THE BEGINNING OF CLASS.

Science

1. Which of the following physically exist?
a. electrons

b. the temperature of the center of the Sun

c. the cosmological big bang

d. the state of the internet

2. Is length an objective concept;

that is, is the length of an object independent of a particular observer?

3. Can you know something about the world without changing the world?

Mathematics

4. Are mathematical ideas invented, discovered, or something else?

5. What is mathematical Truth?

6. In what sense does exist? Where might it exist?

Is a constant? Is it eternal or might it change over time?

7. Are there any mathematical concepts that have only one property

(i.e., are there pure concepts independent of other concepts)?

8. When is the following equation True?: 7 + 8 = 3

9. Is every number either even or odd? How do you know?

10. Prove the Pigeonhole Principle, that N+1 pigeons cannot fit into N holes without sharing.

11. Imagine two points as close together as possible. Is there another point in between them?

Are there an infinite number of points in between them?

 Mathematical Foundations

2

12. Is the following statement True or False or something else?:

Somewhere in the decimal expansion of , there are exactly 34 sevens in a row.

13. What kinds of mathematics can be beautiful?

Computation

14. What is the shortest program which will produce a random number?

15. Is a bit the simplest computational object?

16. Binary computation uses two states, 0 and 1. Is unary computation possible?

17. Name three mathematical concepts which cannot be computed.

Attitude

18. How many of the above questions have you thought about before today?

19. Look at the Chapter 0 quotes which follow. Make three lists of names:

people that you agree with,

people that you disagree with, and

people that you do not understand well enough to have an opinion about.

20. Essay: Write less than one page in response to this famous question:

Why is mathematics so unreasonably effective in describing and predicting reality?

 Mathematical Foundations

3

Chapter 0 Quotes

Attitude

"Multiplicity ought not be posited without necessity."

-- William of Occam (1340)

"The acts of the mind, wherein it exerts its power over simple ideas, are chiefly these three:

 1) Combining several simple ideas into one compound one, and thus all complex ideas are

made.

 2) The second is bringing two ideas, whether simple or complex, together, and setting them by

one another so as to take a view of them at once, without uniting them into one, by which

it gets all its ideas of relations.

 3) The third is separating them from all other ideas that accompany them in their real

existence; this is called abstraction, and thus all its general ideas are made."

-- John Locke (1690)

"The language of all art forms, such as cookery, drawing, programming, research, mathematics,

and music, is a set of instructions which, if followed, will lead the reader to the same ecstacies

as those experienced by the original artist."

-- G. Spencer-Brown

Science

"As far as the propositions of mathematics refer to reality, they are not certain; and as far as

they are certain, they do not refer to reality."

-- A. Einstein

"The axiomatization and algebraization of mathematics, after more than fifty years, has led to

the illegibility of such a large number of mathematical texts that the threat of complete loss of

contact with physics and the natural sciences has been realized."

-- V. I. Arnold

"I believe there are exactly

15,747,724,136,275,002,577,605,653,961,181,555,468,044,717,914,527,116,709,

366,231,425,076,185,631,031,296 protons in the universe, and the same number of

electrons."

-- Sir Arthur Eddington

Mathematics

"Mathematics has always skirted dangerously close to the shores of metaphysics."

-- S. G. Shanker

"We now come to the decisive step of mathematical abstraction: we forget about what the

symbols stand for. ... There are many operations which [the mathematician] may carry out with

these symbols, without ever having to look at the things they stand for."

-- H. Weyl

 Mathematical Foundations

4

"Of all escapes from reality, mathematics is the most successful ever. It is a fantasy that

becomes all the more addictive because it works back to improve the same reality we are trying

to evade. All other escapes -- sex, drugs, hobbies, whatever -- are ephemeral by comparison."

-- G.C. Rota

"Mathematics, this product of human activity, 'alienates itself' from the human activity which

has been producing it. It becomes a living, growing organism, that acquires a certain autonomy
from the activity which has produced it; it develops its own autonomous laws of growth, its own

dialect."

-- I. Lakatos

Computation

"Computer science also differs from physics in that it is not actually a science. It does not study

natural objects. Neither is it, as you might think, mathematics."

-- R. Feynman

"There is no need for infinities; there are quite enough finite numbers to serve any purpose."

-- D. Knuth

"Calculation is a method of getting rid of information in which you are not interested. You throw

away what is not relevant."

-- T. Norretranders

 Mathematical Foundations

1

Formal Symbol Systems

"We obscure our knowledge with technical details in order to take a voyage of discovery that will

eventually lead us back to what we already know."

-- Arthur "Arty" Fischell

Computing and Mathematics

-- David Parnas

Types of mathematical training needed by computer professionals:

calculus

discrete mathematics

logic

linear algebra

graph theory

differential equations

probability and applied statistics

optimization

numerical analysis

Software Engineering and Formal Methods

-- J. B. Wordsworth, in Formal Methods of Software Engineering

The roles in which software engineers need formal methods:

specification engineer

design engineer

programmer

documentation engineer

test engineer

service engineer

Approaches to Specification

-- Dean and Hinchey, in Teaching and Learning Formal Methods

"Natural language...is hopelessly inadequate when we have to deal unambiguously with situations

of great intricacy...in such activities as legislation, arbitration, mathematics or programming."

Three Approaches

Only do what natural language can handle. Exclude and redefine intracacy.

Bend natural language to fit the purpose.

Design a completely new language (mathematics, programming).

 Mathematical Foundations

2

Beauty

Scientific beauty consists of

1. simplicity (completeness, economy)

2. harmony (symmetry)

3. brilliance (clarity, connectedness)

"Beauty is the primary standard for scientific truth."

-- Augos and Staneiv, The New Story of Science, p.39

"You can recognize truth by its beauty and simplicity"

-- Richard Feynman

"Frequently a theorist will throw out a lot of data on the grounds that if they don't fit an

elegant scheme, they are wrong."

-- Murray Gell-Mann

"A theory is more impressive the greater the simplicity of its premises is, the more

different kinds of things it relates, and the more extended is its area of applicability."

-- Albret Einstein

The Modeling Hierarchy

Conceptualization (imaginary, perceptual, ideal, cognitive)

Mathematical Model (formal, symbolic, abstract, mathematical)

Data Structure and Algorithms (representation, computational, software)

Machine Implementation (actual, structured, physical hardware)

Formal Symbol Systems

• a universe of discrete, stable, unique, disjoint, localized objects

• stable maps between objects. A territory with paths that can be traversed. A graph.

• State Space: the graph of states and transforms between states.

• an interpretation which maps symbols/tokens one-to-one onto objects/meanings.

• a defined and stable notion of truth.

Formal Modeling

A formal system consists of

• several sets of labels (for objects, functions, relations) called constants,

• rules for building compound sentences (or equations or expressions), and

• rules for evaluating and simplifying compound expressions.

 Mathematical Foundations

3

Using a Formal System

[situation] --difficult route--> [solution]
 | / \
 | |

 {meaning in} {meaning out}
 | |
 \ / |
[representation] --easy route--> [symbolic result]

 (blind rules)

Numeric or Symbolic Computation

Compute symbolically, unless no efficient symbolic technique is known;

then use optimized numeric techniques.

SYMBOLIC:

meaning

-- written as -->

symbol structures

-- reduced by -->

symbolic transformation rules

-- turning into -->

simpler symbol structures

-- read for -->

meaning

NUMERIC:

meaning

-- exemplified by -->

selected instances

-- substituted into -->

symbol structures

-- reduced by -->

numeric simplification rules

-- turning into -->

approximate results

-- read for -->

meaning

Computation

“A computational process is indeed much like a sorcerer's idea of spirit.

It cannot be seen or touched.

It is not composed of matter at all.

However, it is very real.”

-- Abelson and Sussman,

Structure and Interpretation of Computer Programs, p.1

 Mathematical Foundations

4

Computation is that which can be done by an effective procedure, or by a Universal machine.

EFFECTIVE PROCEDURE

well-founded recursive algorithm

UNIVERSAL MACHINE

Turing tape

programming language + instruction sequence

transistor network + timing

cellular automata

game of Life

FSM + stack

spreadsheet (like Excel)

database (like Access)

Models of computer

Levels of computational architecture

hierarchy of abstraction specification languages

machine language specification

vonNeumann tradeoff

circuit behavioral specification

hierarchy of realization specification languages

design model abstract behavior

architecture model abstract structure

performance model abstract efficiency

correctness of behavior functionality

efficiency of behavior performance

actual behavior of physical circuit reality

bit, word, instruction, program, message, application, user interface

Programming hierarchy

• User interface: metaphoric system which makes design interface accessible to non-

experts.

• Design interface: hidden symbolic system which provide conceptual language for non-

expert human to specify design abstractions.

• Design abstraction: pure symbolic system which expresses a human objective

 Mathematical Foundations

5

• High-level programming language: symbolic system which closely models expert

human models (math) and hides machine needs [Often math and algorithm are confused.]

• Programming language: symbolic system which expresses assembly steps in human

writable form. Does not cleanly differentiate between requirements of the human and those of

the machine.

• Assembly language: symbolic system which expresses machine language in process

steps over specific logic function systems

• Machine language: symbolic system which transfers low level machine instructions

into processes within designed physical logic function systems

• Hardware design language: symbolic system which specifies parallel operation of gate

arrays

• Logic function systems: physical system, integrated networks of gates

• Gates: abstract physical system of logic operations and connecting wires

• Transistors: ignored physical system, assumed to be bundled in gates

Theories of Computation

All are formal, all are distinctly different.

• Formal Symbol Manipulation

The result of a century of work in metamathematics.

The mechanical manipulation of symbolic structures, without regard to meaning.

• Effective Computability

What can be done mechanically by an abstract mathematical model of a machine.

How difficult such a computation is to perform.

• Rule-base Reasoning, algorithm execution

The behavior produced by following an explicit set of rules or transformations.

How to construct rule following machines.

• Digital State Machines

Circuits and machines with a finite, disjoint set of internal, homogeneous states.

A state is an array of values or configurations when time is stopped.

• Information Processing

Storing, manipulating, displaying, and transferring "information"

Encoding utility in vast arrays of bits.

• Physical Symbol Systems

Computers are made of, and interact with, symbols, in a way which depends upon

 Mathematical Foundations

6

the physical embodiment of the symbols.

Physical embodiment occurs in bit arrays and streams, in instruction sets,

in cellular arrays, and in minds.

• Interactive Agents

Agents embodied in an environment interact and communicate with each other.

Atomic programs with specific functionality moving in an emergent network.

• Non-linear Dynamic Systems

Fractals, chaos theory.

Non-linear phenomena and computations,

modelled by solutions to differential equations and iterative systems.

• Complex Adaptive Systems

Artificial life, complex systems.

Entities and programs in array-based environments which respond to

changes in the environment by survival adjustments.

Learning through evolution

• Clockwork Universe

Dated: 17th and 18th centuries.

The Universe and everything in it

is like the mechanism of a large, perfectly tuned clock.

• Quantum Computing

All observation and behavior is generated by the "collapse"

of a superposed wave function.

Probabilistic indistinguishability yields reality through measurement.

• Molecular Computing

Massive numbers (~10^23) of molecules transact chemical and physical

exchanges.

Results are the statistical average of dominant configurations (i.e. types of

molecules)

• Biological Computing

DNA and RNA structures perform replicate pattern-matching.

Results are functional systems whcih compute behavior in an environment.

• Agoric Computing

Economic agents and programs transact tokens of value to accumulate processing

resources.

Competitive survival of function in a free market.

The Virtues of Mathematical Models

-- Gries and Schneider, A Logical Approach to Discrete Math

• A mathematical model may be more understandable, concise, precise, or rigorous

 Mathematical Foundations

7

than an informal description in natural language.

• Answers to questions about an object or phenomenon can often be computed directly
using a mathematical model of the object or phenomenon.

• Mathematics provides methods for reasoning:

for manipulating expressions,

for proving properties, and

for obtaining new results from known facts.

This reasoning can be done without knowing or caring

what the symbols being manipulated mean.

The Trouble with Mathematical Models

• Only a small portion of the world and of our experience can be discretely objectified.

• Abstraction discards information.

• Modeling does not reflect human processes.

(Students taught how to think in models generally make poor programmers.)

• Modeling dictates a worldview which, at times, may be dysfunctional.
"Present mathematical and scientific education is a hotbed of authoritarianism

and is the worst enemy of independent and critical thought." -- Lakatos

• Human reasoning is physiologically mediated by human emotion.

Discovery is intuitive and involves guesswork.

The Pattern of Growth of Theories

-- Lakatos, Proofs and Refutations

1. Primitive conjecture
2. Proof (a rough thought experiment)

3. Global counterexamples emerge, questioning the proof.

4. Proof reexamined. The incorrect portion of the proof is made explicit,

and either the conjecture is limited or the definitions are broadened.

Steps 1-4 are the basic cycle, also

5. The proofs of other theorems are examined to see if the newly corrected portion

(from 4) is relevant.

6. Consequences of the proof are examined.

7. Counterexamples are turned into new examples,

and new theories or fields are created.

Mathematical Foundations

1

Chapter 0 Responses

Science

1. Which of the following physically exist? EXIST NOT
a. electrons 15 2

b. the temperature of the center of the Sun 6 11

c. the cosmological big bang 3 14

d. the state of the internet 3 14

2. Is length an objective concept;

that is, is the length of an object independent of a particular observer?

OBJECTIVE: 8 NOT: 9

3. Can you know something about the world without changing the world?

YES: 7 NO: 10

Mathematics

4. Are mathematical ideas invented, discovered, or something else?

INVENTED: 2 DISCOVERED: 8 OTHER: 7

5. What is mathematical Truth?

Universally true, follows the rules, anything is possible, logically/deductively true,
consistency of results, laws that can’t be disproved, reality in numbers, true or false, validity

6. In what sense does exist? Where might it exist?

Is a constant? Is it eternal or might it change over time?

EXISTS yes: 9 no: 1 as a concept: 3
CONSTANT yes: 14 no: 0
ETERNAL yes: 10 no: 2

7. Are there any mathematical concepts that have only one property

(i.e., are there pure concepts independent of other concepts)?

YES: 9 (zero, void, axioms) NO: 8

8. When is the following equation True?: 7 + 8 = 3

watch-time, mod12, based on false premise, mod10, = means >,
 change the definition of the symbols

NEVER: 4

Mathematical Foundations

2

9. Is every number either even or odd? How do you know?

YES: 11 not the other, every integer, by generalization, theory of divisors,
years of learning, whole numbers, by induction

NO: 5 zero, infinity-1, Pi, fractions, irrationals,

10. Prove the Pigeonhole Principle, that N+1 pigeons cannot fit into N holes without sharing.

By contradiction: assume N+1 pigeons can fit into N holes. There are N holes, therefore N
pigeons, (one-to-one correspondence). Thus N+1 = N contradiction. This is an example of
something that cannot be proved by an algorithm.

11. Imagine two points as close together as possible. Is there another point in between them?

Are there an infinite number of points in between them?

YES, one and infinite: 13 NO: 4 (finite geometry)

12. Is the following statement True or False or something else?:

Somewhere in the decimal expansion of , there are exactly 34 sevens in a row.

TRUE: 3 non-repeating
FALSE: 9 non-terminating algorithm, non-repeating
OTHER: 5 can’t determine

13. What kinds of mathematics can be beautiful?

subjective choice, any kind, all, elegant and abstract, following rules, Mandelbrot set, language
of science, gives explanations, analytical, fractal, integral calculus, simple clear and correct.

Computation

14. What is the shortest program which will produce a random number?

NONE: 7
 EGS: sampling noise, pop a number 1, pick a number, non-trivial algorithm, rand() %n

15. Is a bit the simplest computational object?

YES: 15 NO: 2

16. Binary computation uses two states, 0 and 1. Is unary computation possible?

YES: 11 (stroke arithmetic, change sensitive systems) NO: 6

17. Name three mathematical concepts which cannot be computed.

Pi , infinity, i, point, circle, irrational numbers, void, chaos theory, empty, set, space,
division by zero, black holes, real numbers, trisecting an angle, doubling a cube, squaring a
circle, 1/3, set of natural numbers.

Mathematical Foundations

3

Attitude

18. How many of the above questions have you thought about before today?

0: 8 1-2: 4 3: 3 >3: 2

19. Look at the Chapter 0 quotes which follow. Make three lists of names:

people that you agree with,

people that you disagree with, and

people that you do not understand well enough to have an opinion about.

AGREE DISAGREE HUH?

William of Occam 7 2 5
John Locke 12 2 0
G. Spencer-Brown 8 8 0
A. Einstein 12 0 4
V.I. Arnold 4 5 5
A. Eddington 2 7 7
S.G. Shankar 4 3 8
H. Weyl 13 2 1
G. Rota 9 4 3
I. Lakatos 9 3 3
R. Feynman 8 3 3
D. Knuth 8 8 1
T. Norretrandres 10 1 4

20. Essay: Write less than one page in response to this famous question:

Why is mathematics so unreasonably effective in describing and predicting reality?

Math concepts come from reality.
From years of discovery and quantification, well defined rules.
Objective and precise, can prove anything that is true, builds upon itself.
Simple, clear and correct. reasonable, applicable to real-life.
Build upon known principles, symbols and abstraction, what leads to wisdom?
The way to understand the Universe, sea of interrelated details, successful prediction, laws.
Makes a lot of assumptions and not precise, rules of the way reality works.
Humans avoid analysis and reasoning, reality comes through visionary senses.
An invention of human minds, doesn’t apply to feelings, may not apply outside our experience.
Determines patterns, simplicity of concepts, describes what we perceive.
Math truncates information, simulates world, based on probability.
Explains natural mechanisms, prediction helps survival, identifies structural stabilities.
Ineffective, misses non-linear relations and rapid changes and irregular shapes.
Encompasses objective information, misses intangibles and complexities, simplified view.
Removes emotion, rigid rule sets, scientific beauty (simplicity, harmony, brilliance).

Mathematical Foundations

1

Models of Computation

What is Mathematical Computation?

At the turn of the 20th century, mathematicians believed that proof required skill and

ingenuity. Logic had just been formalized, so the natural questions were

What is proof? What is a mathematical system?

In particular, mathematicians wanted to know if all mathematical proofs could be verified by an

algorithm. This is very similar to the constructivist philosophy that any mathematical object

must come with a means to generate it. The trouble was with infinities, like the set of real

numbers or the set of points on a plane, neither of which can be constructed, or shown to

actually exist.

The initial program was simply to show that the arithmetic of natural numbers, a very small

portion of mathematical knowledge, could be placed on a firm, unambiguous basis.

In 1931, Kurt Godel’s incompleteness theorem ended all hopes that mathematics generated

certain knowledge or Truth.

Incompleteness theorem:

Any formal system as complex as the arithmetic of positive integers is either

incomplete: there are some statements

which cannot be proven to be either True or False

or

inconsistent: there are provable statements

which are contradictory

Until very recently, inconsistent theories were felt to be intolerable, therefore the idea of

incompleteness was necessarily accepted.

1 9 3 6

In 1936 four independent mathematical models of the meaning of “computation” appeared. This

was prior to the invention of silicon computers but inspired by large mechanical computers, the

equivalent of today’s one dollar calculators.

partial recursive functions Kurt Godel and Stephen Kleene

functions which can be defined through recursion on well-formed sequences

equational general recursive functions Jacques Herbrand

recursive functions combined with equality

Mathematical Foundations

2

lambda calculus Alonzo Church

a very small functional system based on substitution and abstraction

Turing machines Alan Turing

a mechanistic model of problem solving

Interestingly, each of these unrelated models defines the same set of functions, thus they are

functionally identical.

Computer Science Models of Computation

Since the Turing machine model is mechanical, it appealed to computer scientists, who in the

1940s were dealing with large machines rather than mathematical systems. The Turing

machine model is the most clumsy and difficult of the alternatives.

In 1963, a model of computation was introduced which was closely based on the structure of

modern computers:

Universal register machines Sheppardson and Sturgis

The hardware point of view is

An algorithm is a piece of machinery which realizes a desired computation.

The set of instructions for the algorithm is defined by the hardware architecture.

The software point of view is

An algorithm is a sequence of textual instructions.

Programming Language

In 1955, John McCarthy built the programming language LISP based on lambda calculus. LISP

is the most elegant and abstract of all popular programming languages. However, the important

point is that no matter what software language you use on what hardware architecture, and no

matter how poorly an algorithm is implemented, all implementations are the same with regard

to what can be expressed or computed.

A programming language is a formal language for specifying effective procedures.

Programming languages define a class of mathematical functions, those functions which can be

stated in the language. At best a programming language specifies the set of recursive functions.

Mathematical Foundations

3

Church-Turing Thesis

All reasonable formulations of the intuitive notion of computability are equivalent.

Wolfram’s Fundamental Theorem (2000)

All nontrivial interactions have effective computability as a minimal model.

Effective Procedures

All algorithms (and models of computation) have these properties:

1. finite set of instructions from a finite set of types of instruction

2. discrete stepwise process

3. deterministic (no random elements)

4. finite time and space for the process

5. each step involves a finite amount of data.

Algorithms are Not Functions

 An algorithm computes a recursive function.

A lgor i thm FFunction

a text an idea

a string of tokens a set of pairs

instructions no instructions

input --> output domain and range

Algorithms are effective procedures which solve a problem.

The types of problem that programming can solve are

1. deciding set membership

2. computing a recursive function

It is therefore desirable to specify problems for computers in one or both of the above ways.

Mathematical Foundations

4

Non-computational Mathematics

Here are some mathematical objects and operations which cannot be expressed as an algorithm

or within an effective procedure.

real numbers (absolute precision arithmetic)

transcendental numbers (such as Pi and e)

infinity (in any variety)

void (non-symbolic grounds)

sets (requires a parallel processor, one for each set member)

existence proof (demonstration without producing a specific object)

Non-computational Functions

Here are some computational machine behaviors which cannot be expressed as recursive

functions, and thus cannot be decided through computation.

Halting Problem

Does machine model M halt when given input string S?

Empty String Acceptance

Does machine model M accept the empty string?

Empty Language Acceptance

Does machine model M accept an empty language?

Regular Machine Recognition

Does a machine exist which can determine

if another machine accepts a regular language?

Rice’s Theorem

No algorithm exists which accepts a machine description M

and determines if M accepts an effective procedure.

Self-terminating Machine

Does a machine halt when given a description of itself?

Mathematical Foundations

1

The Age of Mathematical Concepts and Symbols

Our clarity of understanding of mathematical concepts corresponds to the time evolution of these

concepts. That is, older is simpler. As well, the sequence of math concepts taught in schools

pretty much follows the historical evolution of mathematical ideas. Here is a rough road map of

the time evolution of various mathematical concepts. Asterisks, *, mark content covered in

class.

8000 BC* one-to-one correspondence

4000 BC* counting

1000 BC . zero (as dot)

 400 BC* zero as blank space

 300 BC* 0 zero

 300 BC* syllogistic logic

1050 __ horizontal fraction bar

1417 + plus

1425 % percent

1432* mathematician

1484 exponent

1484 billion, trillion,…

1530 0.0 decimal fractions

1544 division

1549 parallel

1551 irrational numbers

1551 theorem

1556* () parentheses

1557* = equals

1570 equation

1570 prime number

1575 x variables as letters

1583 sin sine function

1618 * times (X in 1618, * in 1659)

1624 log logarithm function

1631 > greater/less than

1634 angle

1637 imaginary, real (Descartes)

1647 p i

1655 A,B,C lettering for triangles

1655 infinity

1672 “math” (Newton)

1674 cos cosine function

1675 d/dx derivative, integral

1690 e base of natural logs

Mathematical Foundations

2

Mathematical Foundations

3

1718 probability

1734 f(x) function symbol

1763 natural number

1770 partial derivative

1777 i imaginary unit

1786 l i m l imit

1808 ! factorial

1816 ax = bx+c linear equation

1827 long division

1839 “Fermat’s last theorem”

1840 pencil

1841 | | absolute value

1843 [] matrices

1848 factor

1851* set

1882* isomorphism

1883 eigenvalue

1887 tensor

1888* U union, intersection

1891 histogram

1892 standard deviation

1902* e identity element

1910* ~, V not, or, and symbols

1921* truth table

1931 spinor

1935* homomorphism

1938 googol, googolplex

1940* Ø null set

1940* onto

1975 fractal

1975 chaos

1989* boundary mathematics

Mathematical Foundations

1

Propositional Logic

What is Logic?

the laws of thought (Boole, c1850, mathematics)

principles of right reasoning (religion)

methodology of valid argumentation (law)

study of grammar (linguistics)

stages of cognitive development (Piaget, developmental psychology)

truths based solely on the meaning of the terms (math)

the most abstract and general description of reality (philosophy)

force of reason rather than dogma (politics)

science or history of the human mind (Encyclopedia Britannica, 1771)

technique for design of (computer science)

circuitry

program control

process description

structured programming

deductive computation

programming connectivity

decision making in algorithms

The Elements of Programming

"A powerful programming language...serves as a framework

within which we organize our ideas about processes."

-- Abelson and Sussman, "Structure and Interpretation of Computer Programs"

Three Mechanisms

1. Primitive expressions
the simplest entities that the language addresses

2. Means of combination
compound elements are built from simpler ones

3. Means of abstraction
compound elements are named and manipulated as units.

Representat ion

Lexicon: the typographical forms which represent statements

Syntax: the rules of composition, making compound forms out of objects and functions.

Atomic objects are propositions, functions and relations.

Sentences are atomic objects + logical connectives.

Semantics: the rules of meaning, connecting statements to values

Mathematical Foundations

2

Boolean Algebra = Propositional Logic

Boolean algebra is the algebraic approach (match and substitute using equations), and

Propositional calculus is the logical approach (inference using conjunction of facts)

to the same mathematical structure

(even though the fields developed independently, and don’t talk to each other)

Both address the eeasiest and simplest useful formal system,

 which poses the hhardest and most important technical issues for computation.

Propositional Calculus

The simplest formal system with great utility. A proposition is the simplest complete unit of

thought. Any statement or decision with a Yes/No or True/False result.

Value Domain: {True, False}

Object Domain: statements (propositions) that are either True or False

{p, q, r, s...}

Operator Domain: connectives {not, or, and, if-then, if-and-only-if}

Constructing Sentences

The llogical connectives allow construction of compound ideas, which can include several

propositions. for example: (if (A and B) then (C or (not D)))

The ttruth value of a compound sentence is the truth value of its component parts.

(A and B) isTrue exactly when both A isTrue and B isTrue.

(not A) isTrue exactly when A is False.

(A or B) isTrue exactly when either A isTrue or B isTrue.

(A implies B) isTrue exactly when either (not A) isTrue or B isTrue

(A iff B) isTrue exactly when either A and B are both True

or A and B are both False

There are 16 unique Boolean connectives of two variables, but only five are common {and, or,

not, if-then, if-and-only-if}. All connectives can be expressed using only one {nor}.

Tautologies, Contradictions, and Indeterminate Sentences

Sentences that are always true regardless of the values of the atoms are called

tautologies. A tautology conveys no information about its components.

Sentences that are always false are contradictions.

Sentences which do depend on (at least one of) their component atoms are indeterminate.

Mathematical Foundations

1

History of Logic

Ancient Party Games

Logic has confused, perplexed, and challenged philosophers and scholars from the beginning of

culture. It was built into our language (and presumably our thinking) from the beginning of

language. However, philosophers did not (and still do not) understand the subtleties of the

simple words {true, false, and, or, not, if, equal, some, all, therefore}

Some men are barbarians.

Some barbarians are kind.

Thus, some men are kind. Is this a proper conclusion?

If it is raining, then I am happy. Is this necessarily True when I am in the rain?

If I am dead, then I am happy Is this "if" the same as the above "if"?

He or me. Are there two types of "or"?

Watch or listen. (exclusive and inclusive)

If you say that you are lying

 and that is the truth,

then you are lying. What do paradoxes mean? (Cicero)

Is.

Not is. Does “not not” mean nothing at all?

Not not is.

Ar i stot le

Aristotle was the first person to classify declarative language. He used three polar categories:

single vs compound Socrates is happy vs Man is happy.

universal vs particular Everyone vs someone.

affirm vs deny Everyone vs no one.

The latter two categories form the SSquare of Opposition.

A F F I R M DENY

UNIVERSAL A Every__is__.. EE No__is__.

(Everyone is happy.) (No one is happy.)

PARTICULAR I Some__is__. OO Some__is not__.

(Someone is happy.) (Someone is not happy.)

Mathematical Foundations

2

The Syllogism

According to Aristotle, the fundamental unit of reasoning is the syllogism. He defined it as

"discussion in which, when things are posited, other things necessarily follow."

All men are mortal.

Socrates is a man.

Thus, Socrates is mortal.

The syllogistic form of logic was developed into

the first ever AAxiomatic System with variables.

The Figures of the Syllogism

The ancients discovered these four figures or forms of syllogism, which applied no matter what

proposition was substituted for each of the three terms. Here,

C stands for the major term,

M stands for the middle term, and

B stands for the minor term of a syllogism.

The figures (or forms) of reasoning:

C _ M M _ C C _ M M _ C
M _ B M _ B B _ M B _ M

Thus B _ C B _ C B _ C B _ C

The blanks can be any one of the "AEIO" forms from the square of opposition.

A: Every _ is _.
E: No _ is _.
I: Some _ is _.
O: Some _ is not _.

Scholastic Logic

The syllogism survived the Dark Ages in the form of the rrules of theological debate.

During the 13th century, Pope John XXI wrote a book on logic which dominated logical thought

for the next 300 years. He observed that:

Nouns and Verbs form Subjects and Predicates

These subjects and predicates are CATEGORMATA; they have a rreferent in the real world.

The logical connectives are SYNCATEGOREMATA; they are wwithout a referent in the real world.

Mathematical Foundations

3

Theological debates noticed the uuse/mention distinction:

Man is mortal. versus Man is a noun.

and the pparadoxes generated by the absence of articles in Latin:

The man is mortal. versus Man is mortal.

The Categorical Syllogism Chant

There were only 19 syllogisms (rules of logic) in the middle ages; no one had figured out the

mathematical symmetries (or the logic) which generate 24 balanced syllogisms formed by

taking three pairs of four things. No one was bothered by the contradictions in the naming

scheme either, since logic was to be memorized rather than deduced. The vowels in each of the

Latin names for the moods of the syllogism are a mnemonic for the AEIO form, which had become

associated with the logical connectives.

A: -> (implies)
E: ->~ (implies not)
I: & (and)
O: &~ (and not)

Quantification also began to show up in unprincipled ways (Q in some forms is "there exists").

Figure I
Barbara: M -> C and B -> M thus B -> C (AAA)
Celarent: M -> ~C and B -> M thus B -> ~C (EAE)
Darii: M -> C and B & M thus B & C (AII)
Ferio: M -> ~C and B & M thus B & ~C (EIO)

Figure II
Cesare: C -> ~M and B -> M thus B -> ~C (EAE)
Camestres: C -> M and B -> ~M thus B -> ~C (AEE)
Festino: C -> ~M and B -> M thus B & ~C (EIO)
Baroco: C -> M and B -> ~M thus B & ~C (AOO)

Figure III
Darapti: M -> C and QM -> B thus B & C (AAI)
Disamis: M & C and M -> B thus B & C (IAI)
Datisi: M -> C and M & B thus B & C (AII)
Felapton: M -> ~C and QM -> B thus B & ~C (EAO)
Bocardo: M & ~C and M -> B thus B & ~C (OAO)
Feriso: M -> ~C and M & B thus B & ~C (EIO)

Figure IV
Bamalip: C -> M and M -> B thus B & QC (AAI)
Calemes: C -> M and M -> ~B thus B -> ~C (AEE)
Dimatis: C & M and M -> B thus B & C (IAI)
Fesapo: C -> ~M and QM -> B thus B & ~C (EAO)
Fresison: C -> ~M and M & B thus B & ~C (EIO)

Mathematical Foundations

4

Meanwhile in the Non-European World

In 10th century Baghdad, the Nestorian AAbu Bishr Matta ibn Yunus refined Aristotle's

logic, but his work was lost in the passage of time.

In India, logic was hotly debated in a form which differed only slightly from the syllogism:

The mountain is fiery that is the Proposition

Because smoky that is the Reason

All that is smoky is fiery that is the Example

So here that is the Application

Therefore it is so. that is the Conclusion

The use of negation caused debate:

why should the same words in different order have different meanings?

He shall-not look.

He shall not-look.

Not-he shall look.

"Absence of constant absence of pot is essentially identical with pot"

-- Mathuranatha c. 1700

In the West, Logic Evolved into Formal Systems

Renaissance: Logic was ignored (experience was in vogue)

Enlightenment: Leibniz sought a Universal Calculus of Reason,

and studied Indistinguishability.

1850 BBoole: expressed sentences and noun expressions as algebra

x + y = y + x associativity of OR

x (y + z) = x y + x z distribution of AND over OR

if x = y then x + z = y + z algebraic substitution

1880 VVenn: logical diagrams

1885 PPe i rce : truth tables

1900 RRusse l l : logical foundations of mathematics

1920 PPost: metalogic (just what are we doing?)

Mathematical Foundations

5

Crisis in the Twentieth Century

Oh No! There is nno consistency in mathematics, there are paradoxes in every system.

Logicism Bertrand Russell

Mathematics is identical to logic.

(We'll patch the holes.)

Intu it ion ism L.E. Brouwer

Mathematics presupposes concepts.

Concepts rest on natural numbers.

(We'll construct what is known, and not admit infinity.)

Formal ism David Hilbert

Mathematics is a set of syntactic transformations.

(We'll refuse to interpret it.)

Mathematical Foundations

1

Logic and Computation

From Conceptualization to Formalization

Here's what we do when we build a formal model (or do a computation):

0. Identify a ccollection of objects/events in the real world. This is the semantic mapping,

how math is linked with reality. The objects/events must have these properties:

unique not confused with different objects/events

stable and permanent not in flux or changing too rapidly to identify

discrete not lacking well defined borders

comprehendible not confusing or too ambiguous

relevant not outside of what we consider to be the objects in question

permitted not in violation of tacit understandings about how things are

1. Use uunique labels to identify each of the things in the semantic mapping. The value of a

label is the thing it identifies.

2. Limit our interest in the types of things in the real world to an aabstract mathematical

property, such as Truth or Count or Membership.

3. Use different labels to nname different abstract things:

labels for things object labels
labels for an entire set of things property labels
labels for an arbitrary thing in the set variable labels
labels to name properties of things indirectly function labels
labels to name combinations of things relation labels

4. Follow the rules of symbol transformation to mmanipulate the labels as if they were the

things. However, the labels do not have to share any of the real world properties of the physical

things.

In summary, we convert from physical to virtual, ignore the physical aspects of reality,

manipulate the virtual (or digital) aspects using the rules of virtuality, and then return to

physical reality with new knowledge. The rules of virtuality are listed in the handout The
Canons of Formal Symbol Systems.

Virtuality has become so prevalent in the current Information Age that much of what we do is

never part of physical reality in the first place. Computer Science, for example, is a discipline

in which the only connection to physical reality is silicon hardware. Study of the physicality of

hardware is a different discipline, Electrical Engineering.

Computational hardware is engineered (constructed) to behave as if it were a mathematical

system called Timed Boolean Logic. “Timed” simply means that some parts of the physical

hardware are used more than once to do the Boolean logic task for which they were constructed.

Mathematical Foundations

2

Formal Simplicity

The simplest interesting formal domain is PPropositional Calculus, also known as Boolean

Logic, and also known as BBoolean Algebra.

In Boolean algebra, the labels for real world objects are sentences in human language which can

be evaluated as either True or False. These sentences are composed of atoms (propositions) and

logical connectives. The atoms are labels for things which exist and are in some way actual, or

real, or True. The logical connectives are those parts of language which do not refer to

something in physical reality.

More generally, Boolean algebra includes all of decision theory, which phrases a problem space

as a sequence of binary decisions. (Note that more complex decisions can usually be phrased as a

collection of binary decisions.)

The truth of a sentence, the direction of a decision, and the voltage in a digital circuit wire are

all binary properties. Every object label in a Boolean problem has the binary property, either

0 or 1, and that is the only property of interest. Logic is the set of rules which maintains the

invariance of the value of binary properties.

Labeling Reality

Let {a, b, c, ...} be simple Boolean variables identifying a set of decision events. Encode the

value of each decision (yes/no, true/false, act/pass) as 1/0.

Combinations of Boolean operators and Boolean variables are called sentences or expressions.

Let {A, B, C, ...} be names of Boolean expressions.

Valid Boolean expressions are defined recursively,

a simple variables are expressions

not A negated expressions are expressions

A or B expressions joined by disjunction are expressions

Since all other Boolean operators can be expressed in terms of nnot and oor, they are all included

in the above definition. This definition means that Boolean expressions are composable and

decomposable; the recursive rules provide Constructors and Accessors.

Symbolic Complexity

The truth table (or Boolean property table) of a Boolean operator specifies how that operator

combines the Boolean properties, or the values, joined by the operator. But here things start to

get complex. Mainly, we can form a huge variety of expressions, and to find the Boolean value of

any expression, we must examine a table with a size exponential in the number of variables

(2^n entries). So a logic circuit with 200 input variables requires an impractical 2^200 rows

in the truth table.

Mathematical Foundations

3

So all decision problems which require a large number of decisions become intractably

inconvenient to examine in the whole. Boolean algebra provides transformation rules which

hold for all expressions, regardless of which Boolean value an expression has. For example,

not (not A) = A

is valid regardless of the expression A.

Axioms and Theorems

Transformation rules can be decomposed into axioms and theorems. The axioms are a minimal

set of rules which preserve the Boolean property and serve as a basis for all other possible

theorems. All the axioms of an axiomatic formal system can be compressed into one single,

usually complex axiom. For Boolean logic, the simplest single axiom which supports all other

Boolean transformations is the Kauffman/Flagg formalization of the Robbins problem:

(A or B) and (A or (not B)) = A EXTENSION

Similarly, the Resolution rule is a single rule which supports all Boolean transformation. The

many rules of Natural Deduction provide another, more complex set of axioms. One

particularly simple set of supporting axioms (Bricken’s formalization of Boundary Logic) is

the following:

A or True = True DOMINION

not (not A) = A INVOLUTION

A or (not (A or B)) = A or (not B) PERVASION

This set is particularly useful for pattern-matching and automated deduction, since the patterns

to be matched are relatively simple, and the right-hand-side of each equation is simpler than

the left-hand-side solely through erasing something from the right-hand-side.

P roo f

Boolean algebra axioms and theorems (valid transformations) provide a way to explore decision

spaces without making the actual decisions. This is called logical or algebraic proof. However,

the situation remains complex because now we must select which theorem to apply and where to

apply it. Although the search space is more abstract, it is still intractable and inconvenient.

Although Boolean algebra abstracts the physical properties of decisions, it is still a real world
problem to use Boolean algebra efficiently.

Mathematical Foundations

4

The Equivalence of Deduction and Computation

From 1920 to 1970, a central issue for theoretical computer science was whether a

computation maintained the meaning of a logical (deductive) process. Fortunately the answer is

yes, given that the programming language follows the rules of logic. These are the essential

concepts:

P |- Q Single turnstile: Q is ccomputed from P

P |= Q Double turnstile: Q is deducible from P

Soundness: IIf P |- Q, then P |= Q

A sound computation always maintains the deductive model. The computation

never generates a False model, it never produces an incorrect fact.

Completeness: IIf P |= Q, then P |- Q

A complete computation never varies from the deductive model. The computation

generates all True models. If something can be deduced, the computation will be

able to deduce it.

Sound and Complete: PP |- Q = P |= Q

The deductive model and the computation represent the same Universe. The

computation produces all that can be deduced, and only what can be deduced.

Dec idab i l i t y

Un i ve r sa l :

If it can be computed formally, then it can be computed using First Order Logic

(Turing equivalence).

Decidable:

The computational procedure will terminate with a Yes/No result.

Semi-dec idab le :

The computation might halt, but you don't know when. It may never halt if you

ask the wrong kind of question. What we can't do is ask questions which depend on

the ffailure to prove something:

No: "Check to see if nothing is wrong"

No: "Prove that this search will fail to find X"

Mathematical Foundations

5

SAT and TAUT

The most important theoretical question in Computer Science (with the most critical

practical applications) is

Can we write an algorithm which runs

in polynomial space and time with regard to the number of variables

that shows that an arbitrary expression in Propositional Calculus

has a non-trivial variable in it?

SAT: Is a Boolean expression SATisfiable?

That is, is there an assignment of variable values (True or False) which results

in different outcomes for the entire expression (again either True or False)?

TAUT: Is a Boolean expression a TAUTology

That is, is every variable in the expression irrelevant? Is the expression

always True regardless of the values assigned to the variables in it?

If TAUT or SAT is solvable within polynomial bounds, then PP = NP

P =?= NP

Almost all complex but common computational problems can be mapped onto the SAT problem. If

you can show propositional satisfiability within polynomial bounds, then most computational

problems have an efficient solution. In particular, programs and circuits can be verified

efficiently.

Polynomial complexity: O[n^some-power]

some polynomials: n^2 (n+1)(n - 1) 14n^6 + 3n^3 + n + 104

Non-deterministic polynomial complexity: O[2^n] or worse

some non-polynomials: 2^n 7^(n + 3) n! 2^(2^n)

Polynomial algorithms are called tractable: they all run in "reasonable" time. Non-

polynomial algorithms are intractable: none of them are efficient enough to be useful for

problems of arbitrary size.

 Mathematical Foundations

1

Logical Proof

Ways of Expressing the Mathematics of Logic

Boolean connectives (and, or, not, if-then, if-and-only-if)

function tables (truth tables)

Boolean algebra

Venn diagrams

switching circuits

transistor arrays (silicon chips)

Boolean lattice

Boolean cubes (blocks in space)

matrix logic

boundary logic

Ways of Computing the Mathematics of Logic

exhaustive listing of possibilities (truth tables)

deduction/inference (Boolean connectives)

algebra (Boolean algebra)

spatial overlap (Venn diagrams)

current through transistors (circuitry)

partial orderings (lattices)

spatial conjunction (cubes)

operators (matrix logic)

containment (boundary logic)

Mechanisms of Proof

Truth tables

Natural deduction

Resolution (not covered in class)

Boundary logic

Induction

Truth Table Analysis

Examining all possibilities is exponential in number of cases: there are 2^n cases to evaluate

for n variables even in the simplest case of propositional logic without functions or relations.

However, lookup tables are a brute force algorithm that is easy to understand and to implement.

The technique is to list all possible combinations of values for each variable, and use simple

definitions of the logical connectives to evaluate compound sub-expressions.

 Mathematical Foundations

2

Example: if (P and Q) then (R = (not S))

P Q R S (not S) (P and Q) (R = (not S)) (if P&Q then R=~S)

T T T T F T F F
T T T F T T T T
T T F T F T T T
T T F F T T F F
T F T T F F F T
T F T F T F T T
T F F T F F T T
T F F F T F F T
F T T T F F F T
F T T F T F T T
F T F T F F T T
F T F F T F F T
F F T T F F F T
F F T F T F T T
F F F T F F T T
F F F F T F F T

Deduction

The rules of inference, or natural deduction, apply at three different llevels of

abstraction: individual propositions, individual sentences, and collections of

sentences. Modus Ponens serves as an example.

Atoms: (p and (p -> q)) -> q

Sentences: (A and (A -> B)) -> B

Sets of sentences: ({A,B...} and ({A,B...} -> {C,D...})) -> {C,D...}

Deductive Steps

There are three separate concepts of pproof step (written above as "implies") which

have been shown to be equivalent:

material implication, logical implication, and computation.

Material impl ication: p -> q

 is defined by the Truth Table of values. Notice that "(if False then True) is True",

 (the second row) does not make sense in language structures, it is True by definition.

p q (p -> q)
0 0 1
0 1 1
1 0 0
1 1 1

 Mathematical Foundations

3

Logical Implication: p |= q

 is defined by common sense and by the rules of deduction.

"if (p is logically True) then (q is logically True)"

Formal Proof: p |- q

 is defined by taking logical implication steps from p to q

"if (p is True) then a sequence of implications shows (q is True)"

The Rules of Natural Deduction

Natural deduction evolved from natural language and from human intuition, so it is relatively

easy to understand. It is very difficult to find the right rules to apply at the right time

(exponential in difficulty of use). Recall that humankind has had an extremely difficult time

coming to understand logic, and logic itself is still undergoing extreme revision. "||=" means

"logically implies" while "-->" is simply a symbol referring to a particular truth table. The

same subtle difference exists between "aand" and "&&".

Modus Ponens: A and A -> B |= B

Modus Tollens: ~B and A -> B |= ~A

Double negation: A |= ~~A
~~A |= A

Conjunction: A and B |= A & B

S imp l i f i cat ion : A & B |= A
A & B |= B

Addition: A |= A v B

Natural Deduction Proof Techniques

Modus Ponens: A and A |- B |= B

Modus Tollens: ~B and A |- B |= ~A

Conditional proof: A |- B |= A -> B

Di lemma: (A or B) and (A |- C)
 and (B |- C) |= C

Contradiction: (A |- B) and ~B |= ~A

Cases: (A is True |- B) and
(A is False |- B) |= B

Note that "|-" is a sequence of formal steps, while "|=" is assurance of logical truth.

 Mathematical Foundations

4

Natural Deduction Example

Premise 1: If he is lying, then (if we can't find the gun, then he'll get away).

Premise 2: If he gets away,

then (if he is drunk or not careful, then we can find the gun).

Premise 3 It is not the case that (if he has a car, then we can find the gun).

Conclusion: It is not the case that he is both lying and drunk.

Encode the propositions as letters: L = he is lying

G = we can find the gun

A = he will get away

D = he is drunk

C = he is careful

H = he has a car

Premise 1: If L then (if (not G) A)

Premise 2: If A then (if (D or not C) then G)

Premise 3: Not (if H then G)

Conclusion: Not (L and D)

Encode the logical connectives:

P1: L -> (~G -> A)
P2: A -> ((D v ~C) -> G)
P3: ~(H -> G)
C: ~(L & D)

Figure out a good proof strategy. This step is not algorithmic, and is the source of difficulty in

natural deduction approaches. Here the Contradiction strategy works:

1. (L & D) assume the negation of the conclusion,

and plan to show a contradiction

2. L simplification of 1

3. D simplification of 1

4. ~G -> A modus ponens with 2 and P1

5. ~(~H v G) rewrite P3 with conditional exchange: X -> Y = ~X v Y

6. ~(~H v ~~G) double negation of part of 5

7. H & ~G rewrite 6 with DeMorgan: ~(~X v ~Y) = X & Y

8. ~G simplification of 8

9. A modus ponens with 8 and 4

10. ((D v ~C) -> G) modus ponens with 9 and P2

11. (D v ~C) addition of ~C to 3

12. G modus ponens with 11 and 10

13. G & ~G conjunction of 8 and 12

14. ~(L & D) steps from 1 to 13 have created a contradiction:

G & ~G = False, therefore the assumption

on line 1 is false. But that assumption is the

negation of the conclusion. Therefore the

negation of the negation of the conclusion is

True. That is, the conclusion is True.

Mathematical Foundations

1

Deduction Exercises

Here are some theorems to prove using each of the different Boolean computational techniques.

Prove that each sentence is a tautology.

Double negation: (not (not A)) = A

Modus Ponens: (A and (A -> B)) -> B

Subsumption: (A and (A or B)) = A

Resolution: ((A -> B) and ((not A) -> C)) -> (B or C)

Drunken Liars/Fruit: ((L -> ((not G) -> A)) and
 (A -> ((D or (not C)) -> G)) and
 (not (H -> G))) -> (not (L and D))

To make the deduction exercises more relevant, here are some pseudocode fragments (using

infix notation). Capital letters represent calls to existing subprograms. You should transform

each into a more efficient code fragment using any of the deductive tools we have discussed.

1. (not ((not A) or (not B)))

2. (if ((if test then A else True) and test) then A else True)

3. ((not A) and (B or (not A)))

4. (block (if test1 then A else B); (if test2 then B else A); A)

5. (if (test1[A D E F] and (not test2[A B C D]))
 then ((not A) or (not E)) else True)

test1[A D E F] =def= (if D then (A or (not (E or (not F)))) else True)
test2[A B C D] =def= ((not (A or (not B))) and

 (if C then (A or D) else True)

6. (if test then A else B)

A[] =def= (if test then C else True)
B[] =def= (if test then D else True)

7. You are working on a Y2K problem, and you know that

(if ((X has-two-digits) or (X isa-name-of-a-month))
 then (X isa-two-digit-month))

and
(if ((X isa-name-of-a-month) or (not (X isa-two-digit-month)))
 then (if (not (X has-three-digits)) then (X isa-date)))

and
(not ((X isa-two-digit-month) or (X has-three-digits)))

Prove that (X isa-date)

Mathematical Foundations

2

Mathematical Foundations

3

Determine which of these sentences is a tautology. For those that are not tautologies, determine

a set of values for the relevant variables that satisfy the sentence.

1. (or (if t t t) (if f f f))

2. (iff (and t f) (or t f))

3. (if (or a b) (or b a))

4. (if (not a) (or a a))

5. (and p p)

6. (and (or a b) (or (nor a b) (nor a b)))

7. (iff (if a a a) a)

8. (iff (or p (and q r)) (and (or p q) (or p r)))

9. (not (iff (not (and a (or a b))) (not a)))

10. (not (if (and a b) a b))

11. (if (if a b) (if a (or b c)))

12. (if (and p q) (if (and p q) p))

13. (or (and (or a b) (or a c)) (and (or a b) (or b e)))

14. (if (and (and p (not p)) (if r u)) (or q s))

15. (if (and (if d (or a c)) (and d (not a))) c)

16. (if (and (if a b) (if b c) (if c d) (not d)) (not a))

17. (iff (if (if a b c) d e) (if a (if b d e) (if c d e)))

18. (and (or (not a) (not c)) (or (not a) c)
 (or a b) (or a c) (or a (not b) (not c)))

19. (if (and (if (or a b) (or c d)) (if (or c f) h)
 (and e (not d)) (if e a)) (or h i))

20. (iff (nor (and a c) (and b (or a (not c)) (or c (not a))))
 (or (nor a (nor c (not b))) (nor c (nor a (not b)))))

21. (and (or a c) (or (not a) (not c))
 (or (and (not a) (not b)) (and a b (not c)))
 (or (and (not b) (not c)) (and b c (not a))))

22. (if (and (if (or b c) a) (if a (or s u))
 (and b (not s)) (if (and u a) (if w s))) (not w))

23. (iff (or (and a b c) (and a (not b) c)
 (and a (not b) (not c)) (and (not a) (not b) c)
 (and (not a) (not b) (not c)))
 (or (not b) (and a c)))

 Mathematical Foundations

1

Logical Tautologies

1. P v ~P excluded middle

2. ~(P & ~P) noncontradiction

3. ~~P = P double negation

4. (P & Q) -> P simplification

5. P -> (P v Q) simplification

6. (P & P) = P idempotence

7. (P v P) = P idempotence

8. (P & (P -> Q)) -> Q modus ponens

9. ((P -> Q) & (Q -> R)) -> (P -> R) syllogism

10. (P -> Q) = (~Q -> ~P) contraposition

11. ((P -> Q) & ~Q) -> ~P modus tollens

12. ((P v Q) & ~P) -> Q disjunctive syllogism

13. (P -> Q) = (~P v Q) conditional disjunction

14. (~P -> (Q & ~Q)) -> P reductio ad absurdum

15. (((P -> R) & (Q -> S)) & (P v Q)) -> (R v S) dilemma

16. (P -> (Q -> R)) = ((P & Q) -> R) exportation

17. (P = Q) = ((P -> Q) & (Q -> P)) biconditional

18. ~(P v Q) = (~P & ~Q) DeMorgan

19. ~(P & Q) = (~P V ~Q) DeMorgan

20. ~(P -> Q) = (P & ~Q) negation of conditional

21. ~(P = Q) = (~P = Q) negation of biconditional

 Mathematical Foundations

2

22. (P v Q) = (Q v P) commutativity

23. (P & Q) = (Q & P) commutativity

24. (P = Q) = (Q = P) commutativity

25. ((P v Q) v R) = (P v (Q v R)) associativity

26. ((P & Q) & R) = (P & (Q & R)) associativity

27. ((P = Q) = R) = (P = (Q = R)) associativity

28. (P & (Q v R)) = ((P & Q) v (P & R)) distribution

29. (P v (Q & R)) = ((P v Q) & (P v R)) distribution

30. (P -> (Q v R)) = ((P -> Q) v (P -> R)) distribution

31. (P -> (Q & R)) = ((P -> Q) & (P -> R)) distribution

32. ((P v Q) -> R) = ((P -> R) & (Q -> R)) disjunction/conditional

33. ((P & Q) -> R) = ((P -> R) v (Q -> R)) conjunction/conditional

34. (P -> Q) -> ((R & P) -> (R & Q)) factorization

35. (P -> Q) -> ((R v P) -> (R v Q)) summation

Mathematical Foundations

1

Algebraic Logic

Equational Logic A=B

Logical expressions joined by ‘equals’.

Axioms of Equations

1. Equality (and Truth) is preserved

whenever an expression is substituted for its equal.

If A = B and B = C, then A = C

2. Functions of equals are equal.

If A = B, then F(A) = F(B).

Axioms of Equals

1. Identity: A = A

2. Commutative: A = B iff B = A

3. Transitive: if A = B and B = C, then A = C

Axioms of Substitution

0. A[X/Y] means “substitute Y for every X in A”

1. Substituting one expression for another in an equation

preserves the equality.

If A = B, then A[C/E] = B[C/E]

2. Substituting equal expressions for any subexpressions in an expression

preserves the equality.

If A = B, then C[A/E] = C[B/E]

Rule of Standardization

 A = B iff (A iff B) = True

Mathematical Foundations

2

Algebraic Proof Techniques

Standard Form:

A = B iff ((A -> B) and (B -> A)) = True

Direct Transformation:

A = B iff A => B or B => A

Mutual Transformation:

A = B iff A => C and B => C

Case Analysis:

A = B iff A[T/E] = B[T/E]
 and A[F/E] = B[F/E]

Linear Algebra:

 A = B iff A => T and B => T
or A => F and B => F

Lattice Theory

Lattice theory is the study of a single binary relation

to be read as “is contained in”.

A lattice is a partially-ordered set (poset), and two elements of which have a

greater lower bound (glb, meet) and a lleast upper bound (lub, join)

A boolean lattice is a complemented, distributed lattice, and forms a boolean algebra.

 Mathematical Foundations

1

Techniques for Logical Deduction

Approaches to Deduction

Asterisks indicate primary features of approach

Truth Tables

* easy to understand

exhaustive listing of all cases (doesn’t work for infinite domains)

* brute force, little thinking

exponential (2^n) in number of variables

Natural Deduction

relatively easy to follow, hard to understand

flexible input form

* many one-directional inference rules

requires insight and cleverness

stored intermediate facts grow exponentially

Reso lut ion

hard to understand

standardized input (CNF), grows exponentially

* single one-directional inference rule (good for algorithms)

stored intermediate facts grow exponentially

Algebraic Logic

easy to understand

flexible input form

* few bidirectional simplification rules

requires some insight

stored intermediate facts not used

Matrix Logic

relatively easy to understand

* every object is an operator

* standard matrix addition and multiplication

brute force

exponential (effectively the same as truth tables)

Boundary Logic (void-based reasoning)

hard to understand

flexible input form (any logical form)

* few easy to apply rules

requires little thinking

* facts shrink instead of growing

 Mathematical Foundations

2

Logic Gates

When numbers are expressed in binary, addition can be expressed in terms of logical gates.

32 16 8 4 2 1 powers of 2

 13 • • • summand

+22 • • • summand

=35 • • • sum

Rules of combination:

A B sum carry

0 0 0 0
0 1 1 0
1 0 1 0
1 1 0 1

XOR AND

N-variable Boolean Functions

Different Boolean functions have different binary values associated with each combination of

values of variables. For N variables, there are 2^N combinations of values (all the rows in a

truth table). For the 2^N combinations, there are two ways to assign a truth value, resulting in

(2^2^N) Boolean functions of N variables.

Number of variables Number of functions

0 2 2^2^0
1 4 2^2^1
2 16 2^2^2
3 256 2^2^3
4 65536 2^2^4
5 very large 2^2^5

These functions can be arranged at the nodes of an N-dimensional hypercube, which is also a

binary, complemented, distributed lattice. Here are the listing for 0,1, and 2 variables:

0 variables

functions

0 1

function names True False

 Mathematical Foundations

3

1 variable

a functions

0 0 0 1 1
1 0 1 0 1

function names False a ~a True

2 variables

 a b functions

 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
 0 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
 1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

names F & a b xor v nor = ~b ~a if nand T
 nif nfi fi

nif = ~(a -> b) fi = (b -> a) nfi = ~(b -> a)

Some of the 16 two-variable functions have common names, some have technical names from

Electrical Engineering, and others are not named. Note that the above columns for the functions

are the truth tables for that function.

Normal Forms

Any Boolean function can be expressed as a conjunction of disjunctive clauses:

CNF: Conjugate Normal Form

E.g.: (A v B v ~C) & (A v C) & (B v ~C v D)

Groupings of forms joined by OR are called cclauses. Clauses are joined by AND.

CNF has minimal depth (2 layers deep) and

a maximal number of variable references (up to 2^n)

CNF is a normal form in that a specific Boolean function will have a single CNF form.

Any Boolean function can be expressed as a nesting of implications:

INF : Implicate Normal Form

E.g.: ((((A -> ~B) -> C) -> (D -> E)) -> ~G)

INF has maximal nesting, or depth and a minimal number of variable references.

 Mathematical Foundations

4

There are many INF forms for a given Boolean function (so it’s not truly a normal form)

It is always possible to express a Boolean function

with only two occurrences of a selected variable.

Minimal Bases

It is possible to express many the Boolean functions in terms of other functions. The basis set
is the set of functions which are taken to be non-decomposable.

Common Basis Sets: {and, or, not, T}
{not, if, T}

Small Basis Sets {nor, F}
{nand, T}

Minimal Basis Set: {nor} (this requires an innovative notation)

Reso lut ion

Resolution expresses Boolean functions as sets of literals. This is a different way to express

CNF. The disjunctive forms in each clause form a set with implicit disjunction. Each clause

forms a different set.

L i te ra l s : atoms and negated atoms

Clauses: sets of literals joined by OR

The Resolution Rule

Let S1 and S2 be sets of clauses, and U be the set Union operator:

({a,b,...} U S1) & ({~a,b,...} U S2) ==> {b,...} U S1 U S2

E.g.: {a,b,~c} & {~a,b,d} ==> {b,~c,d} resolve on a

Terminat ion

{a} & {~a} ==> { } ==> False

{a,~a} ==> True

Not complete

~{~a,~b} & { } ==> no action

 Mathematical Foundations

5

Resolution and Natural Deduction

Resolution Natural deduction

End Case:
{a} & {~a} = { } (a & ~a) = False

Modus Ponens:
{a} & {~a,b} ==> {b} a & (~a v b) ==> b

a & (a -> b) ==> b

Chain ing:
{a,b} & {~a,c} ==> {b,c} (a v b) & (~a v c) ==> (b v c)

Lattices

A lattice is a directed graph with links representing an ordering relation. Lattices can have a

maximal and a minimal element

 () maximal
 |
 ()
 | > greater than
 ()
 |
 () minimal

A partial ordering uses the ordering relation greater-than-or-equal-to.

 () maximal
 / \
 (1) (2) 1 = 2
 \ /
 () minimal

Hasse Diagrams (aka lattices)

A set and an ordering relation {S,>}, such that

• each object is a vertex

• if (a > b), then a is higher than b.

• if there is no c such that (a > c > b), then a is connected to b.

 (a) (b) no maximal element
 \ /
 (c) (a>c) & (b>c) & (c>d)
 |
 (d) minimal

 Mathematical Foundations

6

Matrix Logic

By arranging the truth table of a Boolean function in a matrix form, the rules of logic can be

converted into the rules of matrix algebra. The general format is:

 B
 T F

 T • •
 A

 F • •
Some examples:

A & B A v B A = B A->B A ~A T

 1 0 1 1 1 0 1 0 1 1 0 0 1 1
 0 0 1 0 0 1 1 1 0 0 1 1 1 1

Each Boolean matrix is an operator. That is, in this formulation, there are no objects. When

using binary operations, matrix addition is xor; matrix multiplication is and.

a + b = c a * b = c

0 + 0 = 0 0 * 0 = 0
0 + 1 = 1 0 * 1 = 0
1 + 0 = 1 1 * 0 = 0
1 + 1 = 0 1 * 1 = 1

 xor and

Note that these relations are the same ones that apply to computational addition.

As well, some matrix combinations result in matrices which are not Boolean functions. This

then extends Boolean operations into generally unexplored territory, imaginary Boolean
operations. Some examples of translating between operators:

a + ~a = T 1 1 + 0 0 = 1 1
0 0 1 1 1 1

a * ~a = a 1 1 * 0 0 = 1 1
0 0 1 1 0 0

xor + and = or 0 1 + 1 0 = 1 1
1 0 0 0 1 0

nor^2 = nor 0 0 * 0 0 = 0 0
0 1 0 1 0 1

xor^2 = equal 0 1 * 0 1 = 1 0
 (square-root of equal) 1 0 1 0 0 1

and + or = ? 1 0 + 1 1 = 2 1
0 0 1 0 1 0

 Mathematical Foundations

7

Boolean Cubes

A Boolean function can be expressed in terms of a collection of vertices of a hypercube (this is
not the same use as the lattice hypercube). The set of all Boolean functions of N variables is

defined by all the possible collections (the power set) of vertices (called ccubes).

Each cube is the conjunction of unique literals, one from each variable. The whole is formed by

the disjunction of all cubes.

Examples:
a ~a

1 variable •---•

All possible combinations:

void = F no cubes

 a single cube

 ~a single cube

a v ~a = T both cubes

 a&b a&~b
2 variables •---•

 | |
 •---•
 ~a&b ~a&~b

All possible combinations:

 void = F no cubes

a&b = and single cubes
a&~b = nif
~a&b = nfi
~a&~b = nor

a&b v a&~b = a two cubes
a&b v ~a&b = b
a&b v ~a&~b = equal
a&~b v ~a&b = xor
a&~b v ~a&~b = ~b
~a&b v ~a&~b = ~a

a&b v a&~b v ~a&b = or three cubes
a&b v a&~b v ~a&~b = fi
a&b v ~a&b v ~a&~b = if
a&~b v ~a&b v ~a&~b = nand

a&b v a&~b v ~a&b v ~a&~b = T all cubes

 Mathematical Foundations

8

Boolean Cube Operations

Cubes can be used for computation, either symbolically or physically.

function = set of cubes

not function = set of cubes not in function

f or g = overlay the cubes of f and the cubes of g

f and g = intersect the cubes of f and the cubes of g

Perspective as an Operator

By removing the orientation of a Boolean cube (or a Boolean lattice), varieties of Boolean

function collapse into the same form. For example, all single cube functions are the same (i.e.

composed of one cube) with orientation is ignored. Another example, expressed in matrix

notation:

1 1 = 0 1 = 0 0 = 1 0
0 0 0 1 1 1 1 0

 a ~b ~a b

These four functions are the same when the matrix is free to rotate.

Mathematical Foundations

1

Boundary Logic

Advances in knowledge must necessarily appear to be unintelligible before their discovery and

simple or obvious after their discovery.

-- Arthur Fischell

Chal lenge

Computation and logic (Boolean algebra) are universally built on binary representations.

0 1 True False Yes No

Is there a simpler approach? Can logic be expressed in a unary notation?

Boundary Mathematics

The use of delimiting tokens, or containers, as both constants and functions.

Pure math example: Common boundaries cancel.

 = <void>

 =

Concepts

Boundary token an enclosure

Representational Space the bounded space

The Simplest Virtual World

<this space is intentionally left blank>

<the above contradicts itself>

Two Voids

Absolute void: that which cannot be referred to without contradiction

Relative void: emptiness enclosed within a boundary

Mathematical Foundations

2

Constructing a Distinction

A UUniversal Distinction is first boundary we agree upon. In forming a universal

distinction, we construct three things simultaneously:

a formal space (inside)

an interpretative context (outside)

a token representing the distinction (boundary)

 <------ token for the
 universal distinction

 interpretative context
 of the token

Ca l l i n g

Focus your attention on the outside,

where you see the mark (the usual viewing point).

Call the boundary that you see a “symbol”.

To call is to maintain perspective.

==>

Calling is the rule of iinvariance. It is also is the rule of nnaming. Thus the relationship

between an object and its name is invariant.

Cross ing

Focus your attention on the inside,

where you cannot see a mark (there is no mark inside).

Cross the boundary to the outside. Now you can see a mark.

To cross is to change perspective.

 <void> ==>

Crossing is the rule of vvariance. It is also a process of changing.

 newly
 created
 formal
 space

Mathematical Foundations

3

The Arithmetic of Boundaries

CALLING () () = ()

CROSSING (()) =

Moving to Algebra

The ground, or carrier set, of boundary logic is one token { () } and one absence of a token.

If an equation holds for all ground values, it holds in general. Using this, we can construct

algebraic truths from the cases of the arithmetic:

DOMINION INVOLUTION PERVASION

() () = () ((())) = () (()) () = ()
() = () (()) = () = ()

thus
() A = () ((A)) = A (A) A = ()

Boundary Logic Algebraic Axioms

The transformation axioms of boundary logic:

Dominion (the halting condition, when to stop)

() A = () REIFY <==> ABSORB

Involution (double negation, how to remove excess boundaries)

((A)) = A ENFOLD <==> CLARIFY

Pervasion (how to remove excess variable mentions)

A (A B) = A (B) INSERT <==> EXTRACT

Each axiom suggests a definite reduction strategy:

erase irrelevant structure

to convert the left side of the equation to the right side.

Algebra provides the useful tool of ssubstitution independence. Any transform can be

applied at any time and at any place in the expression without changing the value of the

expression. Thus, all transformation paths do not change the value of an expression. It doesn’t

matter how you get to a simpler expression (an answer). Some paths may be longer and less

efficient, but all lead to equivalent results.

Mathematical Foundations

4

Boundary Logic

Boundary logic uses a sspatial representation of the logical connectives. Since CALLING

provides an object-centered interpretation, and CROSSING provides a process-centered

interpretation of the same mark, boundary forms can be evaluated using either an algebraic

(match and substitute) process or a functional (input converted to output) process.

Representation of logic and proof in spatial boundaries is new, and quite unfamiliar. Boundary

logic is not based on language or on typographical strings, nor is it based on sequential steps.

Boundary techniques are inherently pparallel and positional. The meaning, or

interpretation, of a boundary form depends on where the observer is situated. From the

outside, boundaries are objects. From the inside, you cross a boundary to get to the outside;

boundaries then are processes. This dramatically different approach (that is, permitting the

observer to be an operator in the system) does not change the logical consequences or the

deductive validity of a logical process.

Spatial representations have built-in associativity and commutativity. The base case is no

representation at all, that is, tthe void has meaning in boundary logic. Simplification of

logical expressions occurs by erasure of irrelevancies rather than by accumulation of

facts.

Boundary Logic Representation

log i c boundary comments

False <void> no representation. Note: (()) = <void>

True () the empty boundary

A A objects are labeled by tokens

not A (A)

A or B A B Disjunction is sharing the same space

A and B ((A)(B))

if A then B (A) B Implication is separation by a boundary

A iff B (A B)((A)(B))

In the above map from conventional logic to boundaries, the many textual forms of logical

connectives condense into one boundary form. Note that the parens, (), is a linear, or one-

dimensional, representation of a boundary. Circles and spheres are expressions of boundaries

in higher dimensional representations.

Mathematical Foundations

5

Multiple Readings of the Same Form

A single expression in the simpler notation of boundary logic can express (infinitely) many

different forms in a more complex notation.

For example:

((A) (B)) A and B

(not ((not A) or (not B)))

(not (A implies (not B)))

((not A) or (not B)) implies False

Comparative Axiomatic Basis

An aaxiomatic basis is a minimal set of transformations from which all other transforms can

be derived. The basis of conventional logic:

P -> (Q -> P) isTrue

((P -> False) -> False) -> P isTrue

(P -> (Q -> R)) -> ((P -> Q) -> (P -> R)) isTrue

Transcribing the conventional basis of logic to boundary logic:

(P) (Q) P = ()
(((P))) P = ()
((P) (Q) R) ((P) Q) (P) R = ()

The basis of boundary logic is (mathematically) beautiful:

() A = ()
((A)) = A
A (A B) = A (B)

Boundary Logic Examples of Proof

To Prove: T r ansc r i be Steps

A implies A (A) A () A
()

not not A = A ((A)) = A A = A

A or A = A A A = A A ((A)) = A
A (()) = A
A = A

A and B = ((A)(B)) = identity
not (not A or not B)) ((A)(B))

Mathematical Foundations

6

(and (A implies B) A) implies B (((A) ((A) B))) B

(((A) ((A) B))) B
 (A) ((A) B) B involution
 (A) ((A)) B pervasion of B
 (A) () B pervasion of (A)
 () dominion

A Constructive Proof

SUBSUME A and (A or B) = A

((A) (A B)) = A transcribe
((A) ((A) A B)) = A insert (A)
((A) (() A B)) = A extract A
((A) (())) = A absorb A B
((A)) = A clarify
 A = A identity, qed.

Truth Table Example in Boundary Logic

Example: if (P and Q) then (R iff (not S))

Transcribe into boundaries:

(P and Q) ((P) (Q))
(R iff (not S)) (R (S)) ((R)((S))) = (R (S)) ((R) S)
if... then... (((P) (Q))) (R (S)) ((R) S) = (P) (Q) (R (S)) ((R) S)

The expression is True whenever Dominion applies. Erasing variables sets them to False:

When P is False, it is erased: () (Q) (R (S)) ((R) S) = () dominion

When Q is False: (P) () (R (S)) ((R) S) = () dominion

Note that the form (X (Y)) (Y (X)) is True when X is not the same as Y. Substituting:

(P) (Q) ((())) (() ()) = (P) (Q) () = ()

and when R is True and S is False

(P) (Q) (() ()) ((())) = (P) (Q) () = ()

These four cases identify all the True forms of the expression.

Conversely, the expression is False only when everything vanishes, that is, when

(P is True) and (Q is True) and ((R is True, S is free) or (S is True, R is free))

 (()) (()) (() (())) ((()) ()) (()) (())

Mathematical Foundations

7

Natural Deduction Example in Boundary Logic

Premise 1: If A then (if (not P) C) the Fruit problem

Premise 2: If C then (if (O or not K) then P)

Premise 3: Not (if B then P)

Conclusion: Not (A and O)

Encode the logical connectives as boundaries, and simplify:

P1: (A) ((P)) C = (A) P C involution

P2: (C) (O (K)) P
P3: ((B) P)
C: (((A) (O))) = (A) (O) involution

Join all premises and conclusions into one form, using the logical structure:

(P1 and P2 and P3) -> C

The proof structure of "conjunction of premises imply the conclusion" as boundaries:

(((P1) (P2) (P3))) C => (P1) (P2) (P3) C involution

Substituting the forms of the premises and conclusion, and reducing:

 ((A) P C) ((C) (O (K)) P) (((B) P)) (A) (O)
 ((A) P C) ((C) (O (K)) P) (B) P (A) (O) involution

 ((A) C) ((C) (O (K))) (B) P (A) (O) pervasion of P

 (C) ((C) (O (K))) (B) P (A) (O) pervasion of (A)

 (C) ((O (K))) (B) P (A) (O) pervasion of (C)

 (C) O (K) (B) P (A) (O) involution

 (C) O (K) (B) P (A) () pervasion of O

 () dominion

Interpret the final form: () = True

Boundary Quantification

All x. P(x) (x) Px x -> Px isTrue

Exists x. P(x) ((x) (Px)) x and Px isTrue

Quantifier relations:

 All x. P(x) iff (not (Exists x. (not P(x)))) (x) Px = (((x) ((Px))))

 All x. (not P(x)) iff (not (Exists x. P(x))) (x)(Px) = (((x) (Px)))

 (not (All x. P(x))) iff Exists x. (not P(x)) ((x) Px) = ((x) ((Px)))

 (not (All x. (not P(x)))) iff Exists x. P(x) ((x)(Px)) = ((x) (Px))

Mathematical Foundations

1

Predicate Calculus and Sets

Predicate Calculus

A ggeneral purpose language for describing objects, facts, and transformations for particular

domains. Also called FFirst Order Logic. It consists of

connective logic {and, or, if, not, iff} inference, proof

object domains {<unique atoms>}

quantification {all.x, exists.x}

predicates classes and properties

relations True associations between objects

functions indirect names, maps from one object to another

Predicate logic differs from propositional logic in two ways:

• Ground objects are more complex. Instead of being concepts which

are either True of False, objects can consist of discrete elements from

infinite sets. Functions are indirect names for particular objects.

Relations are propositions about these complex objects.

• Quantification permits direct reference to sets of objects.

Compound Objects

propos it ions (Boolean variables)

The simplest objects. Has values in the carrier set {0,1}.

propert ies/domains (set variables)

Simple collections of objects.

Can have finite sets (computer science) or infinite sets (mathematics).

r e l a t i ons (pairs of objects)

Propositions between objects, relating one object to another.

Compound objects.

funct ions/procedures (structured pairs of objects)

Alternative names for objects (“2+3” is another name for 5).

Ways to move from one object to another.

Mathematical Foundations

2

Sets

Sets are unordered collections of unique objects.

S = {x | <statement about x> } intensional, set defined by a common property

S = {a,b,c,...} extensional, set defined by naming the members

characteristic function[x, S]:
A function which takes the value 1 exactly when x is in S.

membership: x inS =def= x=s1 or x=s2 or x=s3 or ...

empty set: x not inS

subset: if x inS1, then x inS2

union: x inS1 or x inS2

intersection: x inS1 and x inS2

difference: x inS1 and not x inS2

power set: the set of all subsets of S

recursive set membership:

x inS =def= not[x = empty-set] and
x = first[S] or x in rest[S]

Set Axioms

Extent: A = B iff x inA <--> x inB

Specification: Exists A. x inA iff x inB and P(x)

Empty Set: The empty set is a member of all sets.

Specification means that a subset A of a set A can always be identified by specifying a property

that uniquely identifies members of A.

Set Equivalence

Two finite sets are equal when they both contain exactly the same members.

S1 = S2 iff x inS1 -> x inS2 and x inS2 -> x inS1

Mathematical Foundations

3

Logic Plus Sets

Sets identify collections of objects.

Properties, or attributes, identify collections of objects.

The extrinsic description of a collection is an enumeration, or listing,

of the objects in the set.

The intrinsic description of a collection is the name of the property

which uniquely identifies the objects in a set.

S = {1,3,5,7,9} = OddDigit[x]

 extrinsic intrinsic

Monadic Predicate Calculus

Adding properties to propositional logic makes predicate calculus without relations.

Monadic refers to operators with one argument only. I.e. Unary functions.

Quine (c. 1950) showed that, for finite sets,

monadic predicate calculus = propositional logic

One method to demonstrate this:

For each x in S, make (x in S) a proposition (i.e. True or False)

S = {a,b,c} = (a in S) & (b in S) & (c in S)

Quant if icat ion

Quantifiers introduce sets into logic, and serve to define the scope of variables in a logical

expression.

Universal quantification: All x. P(x)

The statement All x. P(x) is True exactly when the predicate P (or the characteristic

function for the set P) is True for all objects in the set U for which x is an arbitrary member.

For finite domains U, All x. P(x) iff (x1 and x2 and...and xn)

Existential quantification: Exists x. P(x)

Mathematical Foundations

4

The statement Exists x. P(x) is True exactly when the predicate P is True for at least one

object in the set U for which x is an arbitrary member.

For finite domains U, Exists x. P(x) iff (x1 or x2 or...or xn)

Relationships between Quantifiers

All true = none false:

All x. P(x) iff (not (Exists x. (not P(x))))

All false = none true:

All x. (not P(x)) iff (not (Exists x. P(x)))

Not all true = at least one false:

(not (All x. P(x))) iff Exists x. (not P(x))

Not all false = at least one true:

(not (All x. (not P(x)))) iff Exists x. P(x)

Mathematical Foundations

1

Induction and Recursion

Induction is a mathematical proof technique. When this technique is used in programming, it

is called rrecursion. The difference is that induction applies to infinite sets and cannot be

implemented, while recursion applies to finite sets and can be implemented.

Induction/recursion is the fundamental mechanism for

• extending logical proof techniques into object domains and data structures,

• defining and building mathematical and programming objects,

• decomposing objects so that functions can be applied to the elementary units, and

• robust programming style and program verification.

Most practical computational problems are succinctly expressed in a recursive form (for

instance, tree and graph traversal, spatial decomposition, divide-and-conquer algorithms,

sorting, searching, and large classes of mathematical functions). As well, recursive function

theory defines what can and cannot be computed.

Optimizing compilers usually convert recursion into do-loops. This is because the overhead of

making multiple function calls during recursion is greater than a single do-loop. During the

1980s, programmers learned to write loops rather than recursions so that programs would run

faster. This type of optimization is irrelevant today. It is far more important to enhance code

readability, maintenance, and extendibility than to do an obsolete runtime optimization.

Recursive programming is mathematical programming. Once learned, almost all data

structures and algorithms become both simpler and more comprehendible using recursion. The

essential difficulty is that programmers need to be trained to think recursively.

Recursive Programming

Inductive definitions build up from the base case to any degree of complexity. Recursive

programs reduce any degree of complexity one step at a time until the base case is reached. A

recursion must be well-founded, that is, the steps must eventually terminate at the base. In

most cases, the step increment is monotonically decreasing.

Recursive programs can be expressed in two forms, mathematical and accumulating. The

mathematical form accumulates unevaluated operators on the outside and evaluates them after

the base is reached. The accumulating form evaluates operators as they accumulate; when the

base is reached, the result is returned. Accumulating functions have better performance than

mathematical recursions, and easily compile into do-loops.

 Mathematical:

if (base-case is true) then base-value else F[recursive-step]

 Accumulating:

if (base-case is true) then accum else F[recursive-step, (accum + step)]

Mathematical Foundations

2

Mathematical Induction

Induction depends on a order relation over a domain U. The idea is to demonstrate truth for the

base case (the simplest member of the ordered set), and then to demonstrate the truth for an

arbitrary member of the set, assuming the truth of the member next to it in the order relation.

If N is an ordered set and property P isTrue for
1) the minimal member of N, and
2) if P(x) then P(next(x))

then P isTrue for all members x of N.

Using the natural numbers, N = {1, 2,...}:

If P(1) isTrue, and
assuming P(x) we can show that P(x+1) isTrue, then

P(x) isTrue for all members of N.

Some Inductive Definitions

Base case: the value of the most elementary case

Examples:

zero the additive identity

one the multiplicative identity

Phi the empty set

nil the empty list, the empty tree

false the logical ground

Generating rule: the transform which defines the next case, given an arbitrary case

Examples:

successor[n] = current[n] + 1
power-of-2[n] = 2 * current[n]
summation[n] = n + current[n]
last[list] = rest[list] = nil
length[list] = length[rest[list]] + 1
member[x,S] = x=select[S] or member[x,rest[S]]
power-set[S] = current[S] * S
cardinality[S] = cardinality[rest[S]] + 1
node[btree] = left[btree] + right[btree]
logic-form[lf] = current[lf] implies next[lf]
parenthesis[pf] = "(" + current[pf] + ")" or

current[pf] + next[pf]

Mathematical Foundations

3

Recu rs i on

Recursion is a form of induction in which we demonstrate two truths via computation. For the

boolean property P,

1) P(minimal-member) isTrue

2) If P(arbitrary-member) isTrue
then P(arbitrary-member-one-step-closer-to-minimal-member) isTrue

Without algebraic processing, the second step requires an instance of the arbitrary member in

order to perform computation. For example, say you are trying to find the product of N integers

(the factorial function):

factorial[n] =def=

(if n=1 then 1 else (n * factorial[n-1]))

This code requires a value of N in order to compute a value for the factorial of N. However,

writing and proving the code itself requires mathematical induction. Above, the base case is

when N=1. The recursive invariant, which is true for all N>1, is:

factorial[n] = (n * factorial[n-1])

The recursive invariant is the general definition of the function. It states what remains the

same when the value of N changes. When a function is written as a do-loop, the recursive

invariant is called the loop invariant. Again, it defines what is always true each time through

the loop. By verifying that a loop or a recursion maintains its invariant, it is possible to prove

that code performs correctly.

The accumulating version of the factorial function is

factorial-acc[n, acc] =def=

(if n=1 then acc else factorial-acc[n-1, n*acc])

Recursive Function Exercises

Write recursive procedures (actual or pseudo-code) for the following functions. Where

possible, write both the mathematical and the accumulating versions. Example:

+[i,j] =def= (if j=0 then i else (+[i,j-1] + 1))

+[i,j] =def= +acc[j,i]

 +acc[j,acc] =def= (if j=0 then acc else +acc[j-1,acc+1])

Mathematical Foundations

4

Integer Domain: {i,j,k,n} are positive integers. Note that the definitions below use

mathematical induction; a recursive procedure must phrase the ordering relation in a

descending form.

i+j =def= i+0 = i
 i+next[j] = (i+j) + 1

i*j =def= i*0 = 0
 i*next[j] = (i*j) + i

i^j =def= i^0 = 1
 i^next[j] = (i^j) * i

sum[n] =def= sum[0] = 0
 sum[i+1] = sum[i] + (i+1)

fac[n] =def= fac[0] = 1
 fac[i+1] = fac[i] * (i+1)

fib[n] =def= fib[1] = fib[2] = 1
 fib[i+2] = fib[i+1] + fib[n]

Using mathematical induction, prove the following for integers:

(i*i) = (i^2)

(i*j) + (i*k) = i*(j+k)

(2*sum[n]) = n*(n+1)

(n^2) = (2*sum[n-1]) + n

(3*sum[n^2]) = (2*n + 1) * sum[n]

fib[n^2] = fib[n+1] * fib[n]

sum[n^3] = (sum[n]^2)

List Domain: {x,y} are elements, list is a list. Write these recursive functions:

last[list]

returns the last element of list.

length[list]

returns the length of list.

member[x,list]

Boolean, returns T iff x is a member of list.

Mathematical Foundations

5

copy[list]

returns a copy of list.

alternating-elements[list]

returns a new list of every other element of list.

reverse[list]

returns a new list with the elements of list in reverse order.

samelength[list1,list2]

Boolean, returns T iff both lists have the same length

(Do not use any integer arithmetic for this.)

intersection[list1,list2]

returns a new list which contains elements in both list1 and list2.

list-equal[list1,list2]

Boolean, returns T iff list1=list2 (elements in same order).

set-equal[list1,list2]

Boolean, returns T iff both list1 and list2 have the same elements,

not necessarily in order.

append[list1,list2]

returns a new list which is list1 appended to list2.

substitute[x,y,list]

returns a new list with x substituted for every occurrence of y in list.

Using mathematical induction, prove the following properties about list functions (harder):

length[append[list1,list2]] = length[list1] + length[list2]

last[list] = first[reverse[list]]

samelength[list, reverse[list]]

reverse[reverse[list]] = list

substitute[x,y,substitute[y,x,list]] =/= list

Mathematical Foundations

6

Tree Domain: tree is an arbitrary tree.

depth[tree]

returns the maximum depth of tree.

flatten[tree]

returns a list of all nodes of tree

fringe[tree]

returns a list of the leaf nodes of tree

Function Domain: f is a function; p is a Boolean function

andlist[list]

returns the Boolean AND of a list of Boolean elements

map[f,list]

returns a new list with the function f applied to each element of list

mapchoose[p,list]

returns a new list with every element from list which satisfies test p

Challenge: Implement the following recursive functions over integers and trace their

execution. What do you observe? (Try fm for i= {341,96,104,336,133}; try ackermann and

takeuchi for small integers only.)

fm[i] =def=

if i=1 then stop else
if even[i] then fm[i/2] else

fm[(3i+1)/2]

ackermann[i,j] =def=

if i=0 then j+1 else
if j=0 then ackermann[i-1,j] else

ackermann[i,j-1]

ackermann2[i,j] =def=

if i=0 then j+1 else
if j=0 then ackermann[i-1,1] else

 ackermann[i-1,ackermann[i,j-1]]

Mathematical Foundations

7

takeuchi[i,j,k] =def=

 if (i =< j) then k else
 takeuchi[takeuchi[i-1,j,k],takeuchi[j-1,k,i],takeuchi[k-1,i,j]]

Mathematical Foundations

1

Domain Theories

A domain is the collection of simple objects which are of (mathematical) interest. Generally

the labels of objects in a domain refer, or point, to concrete objects in reality. A ddomain

theory consists of a collection of objects, together with a particular set of functions and

relations which define and constrain the generic behavior of both simple and complex objects in

the domain.

Domain theories have a specific mathematical form which not only identifies how the objects in

that domain behave, but also provides all the information needed to write processing algorithms
for the domain objects. The prototypical components of a domain theory are

• a rrepresentation of the elementary unit or constants, the base of the structure

(also called the carrier set)

• rrecognizer predicates which identify the particular types of structure

• a cconstructor function which builds compound structures from simple units

• an aaccessor function which gets parts of a compound structure

• a collection of ffunctions which transfer between domain objects

• a collection of iinvariants, or equations, which define the structure's behavior

• an iinduction principle which specifies how to verify correct manipulations

In an algebraic theory, you usually also have vvariables, names which are generic, standing in

place of an arbitrary member of the domain base.

Propositional Calculus as an Example

Propositional calculus consists of a collection of simple objects, called ppropositions, and

logical connectives which join propositions into more complex forms. A proposition is an object

with a binary value from the set {True,False} and no internal structure. Propositional calculus

is the domain theory for propositions. It consists of

a collection of value labels {T,F}

a collection of object labels {a,b,c,...},

the logical connectives {and,or,not,if,...},

the rules of inference (deduction) {modus ponens,...}

Mathematical Foundations

2

Recognizer predicates differentiate these components:

isTrue[X] identifies the ground value True

proposition[X] identifies when X is a proposition

compound[X] identifies when X contains any logical connective.

Constructors tell us how to build compound objects. These are always defined inductively.

This definition is called a ggeneration axiom.

Ground values are objects.

Propositions are objects.

If X and Y are objects, then so is (X -> Y).

There are no other valid objects.

Since all other Boolean functions can be constructed from the basis {if,F}, they do not need to

be mentioned as part of the definition of compound objects. Rather they can be treated as

syntactic variants. For example, define

not X = X -> F

X or Y = (not X) -> Y

X and Y = (not ((not X) or (not Y)))

X iff Y = (X -> Y) and (Y -> X)

Accessors are constructors used in reverse, to decompose compound objects. More

importantly, accessors define how value is maintained across compound forms. Value is

asserted by the predicate isTrue. Accessors is expressed mathematically as a uuniqueness

axiom. Here, “uniqueness” means that a compound form can be uniquely decomposed while

maintaining its value. The uniqueness axiom for our only Boolean operator is:

(X -> Y) isTrue, when either X isnotTrue or Y isTrue.

We can substitute the syntactic variants to obtain the other decomposition rules. For example,

substitute the definition of not X into the uniqueness axiom for implication, giving:

not X = X -> F

(X -> F) isTrue when either X isnotTrue or F isTrue.

Since F is never True, this simplifies to:

(X -> F) isTrue when X isnotTrue.

(not X) isTrue when X isnotTrue.

Other semantic definitions are derived in a similar fashion:

Mathematical Foundations

3

(X or Y) isTrue when either X isTrue or Y isTrue.

(X and Y) isTrue when both X isTrue and Y isTrue.

(X iff Y) isTrue when the value of X and the value of Y are the same.

Notice that the expression of these relationships between value and structure in English appears

to sound rather obvious. This is because the logical connectives are so deeply built into the

language that we cannot define them without using them in the definition.

In propositional calculus, there are no functions which compute properties, since

propositions have no properties other than their value (they have no internal structure).

The invariants which describe and constrain the structure and behavior of compound

propositional forms are the aaxioms of deduction. The choice of an axiom set depends on the

goals of transformation. One single (algebraic) axiom from which all others can be derived is:

(A -> B) and (not A -> B) = B Single axiom basis

Another set of propositional axioms is that of Boolean algebra. These axioms use three Boolean

connectives and are therefore highly redundant:

X and (Y and Z) = (X and Y) and Z Associativity

X or (Y or Z) = (X or Y) or Z Associativity

X and Y = Y and X Commutativity

X or Y = Y or X Commutativity

X and (Y or Z) = (X and Y) or (X and Z) Distributivity

X or (Y and Z) = (X or Y) and (X or Z) Distributivity

X or F = X Zero element

X and T = X One element

X and (not X) = F Complement

X or (not X) = T Complement

Yet another set of axioms are the rules of natural deduction. Again these are highly redundant,

the usual list includes about 35 rules. This system is typified by the axiom of modus ponens:

(X and (X -> Y)) -> Y Modus Ponens

A fourth example of a possible axiomatic basis is the erasure axioms of boundary logic:

X or T = T Dominion

not (not X) = X Involution

(X or Y) -> X = Y -> X Pervasion

Mathematical Foundations

4

Finally, the iinduction principle for propositional calculus might be loosely stated as:

Base case: T isTrue

Inductive case: If an arbitrary form X is assumed to be true, X isTrue,

and if we can demonstrate that (X -> Y) isTrue,

then for any Y, Y isTrue.

This of course is just a restatement of modus ponens. This induction principle is rather

degenerate, since the logic of induction itself is expressed using the same logical connectives

that define the operations in propositional calculus. The well-founded ordering is not a

countable structure like the natural integers, rather it is the potential nesting of implications.

When a premise implies a conclusion, then the premise, in a very general sense, is less-than
the conclusion. This ordering is clearly demonstrated both in the Boolean lattice and in the deep

Pervasion rule of boundary logic.

Domains with Internal Structure

To add descriptive complexity, we add internal structure to propositions. There are two general

classes of structure: rrelations and ffunctions. Relations are connections, or structures,

holding together pairs of simple objects. Functions are a restricted type of relation, one that

permits functions to stand in place of object names. Functions are relations which name objects

in a domain by using other object names.

In computer science, we refer to complex objects as data structures, and the set of relational

constraints on these objects as abstract data types.

The important idea is that all data structures, all domains, have the same organizational

structure. All domains and data types consist of a collection of these axiomatic principles:

Labels
Recognizers
Constructors
Accessors
Functions
Invariants (relations)
Induction Principle

In object-oriented approaches, the abstract data type includes all algorithmic functionality.

That is, using oo-techniques, the above principles define the entirety of an object, and thus the

entirety of a program.

Three examples of domain theories follow. These examples are schematic outlines, intended to

suggest both mathematical approach and coding technique. Each domain has additional functions

and relations which are not included here.

Mathematical Foundations

5

The Domain Theory of Non-negative Integers

Base 0

Objects {positive integers}

Recognizer integer[n]

Constructor +1[n], inc[n]

Accessor -1[n], dec[n]

Decomposition axioms (integer[n] and not[n=0]) -> (+1[-1[n]] = n)
integer[n] -> (-1[+1[n]] = n)

Uniqueness axiom (+1[n1] = +1[n2]) iff n1=n2

Functions +: (associative, commutative, identity=0)
 n+0 = n
 n1 + +1[n2] = +1[n1+n2]
 (n1=n2) -> (n1+n3) = (n2+n3)

-:
 n-0 = n
 +1[n1] - +1[n2] = n1-n2

*: (associative, commutative, identity=1)
 n*0 = 0
 n1*(n2+1) = n1*n2 + n1

^:
 n^0 = 1
 n1^(n2+1) = (n1^n2)*n1

Some invariants integer[n] or not[integer[n]]
integer[+1[n]]
integer[0]
not[+1[n] = 0]
integer[n1+n2]
+1[0] = 1
n+1 = +1[n]
n^1 = n
if not[n=0] then 0^n = 0

Induction if (F[0] and (F[n] -> F[+1[n]])) then F[n]

Decomposition Induction if (F[0] and (F[-1[n]] -> F[n]) then F[n]

The Domain Theory of Lists

Note that nested lists are trees.

Mathematical Foundations

6

Base [] nil

Objects {x,y,z,...} lists
{u,v,...} atoms

Recognizers atom[x]
list[x]
atom-or-list[x]

Constructor x•y, insert x into list y

Accessors first[x], rest[x]
first[x•y] = x
rest[x•y] = y

Decomposition axiom (not[x=nil]) -> (x = (first[x] • rest[x]))

Uniqueness axiom ((x1•x2) = (y1•y2)) -> (x1=y1 and x2=y2)

Functions append: (associative, identity=nil)
 append[nil,x] = x
 append[u•x,y] = u • append[x,y]

member:
 not[member[x,nil]]
 member[u,v•x] iff u=v or member[u,x]

flat:
 flat[nil] = []
 flat[u•y] = u • flat[y]
 flat[x•y] = append[flat[x],flat[y]]

Some invariants not[x•y] = nil
not[atom[x•y]]
(atom[x] and list[x]) -> x=nil
list[append[x,y]]
member[u,append[x,y]] iff member[u,x] or member[u,y]
flat[append[x,y]] = append[flat[x],flat[y]]

Induction if (F[nil] and (F[x] -> F[u•x])
 and ((F[y] and F[x]) -> F[y•x]))
then F[x]

This Inductive Principle has three conditions: the base case, the atom case, and the list case.

The Induction Principle for lists can also be stated as a decomposition rule:

Decomposition Induction if (F[nil] and
 (when (not[x=nil] and atom[first[x]])
 F[rest[x]] -> F[x]) and
 (when (not[x=nil] and list[head[x]])
 (F[first[x]] and F[rest[x]]) -> F[x]))
 then F[x]

Mathematical Foundations

7

The Domain Theory of Sets

Set Base {} Phi (the empty set)

Element Base {a,b,c,...} from some domain

Objects {S1,S2,...} Universe = PowerSet[elements]

Recognizers atom[a] set[S]

Constructor a•S, insert atom a into set S

Accessor member[a,S]
member[choice[S],S]
not[member[choice[S],rest[S]]]

Decomposition axiom (not[S=Phi]) -> (S = (choice[S] • rest[S]))

Uniqueness axiom (member[a,b•S] iff (a=b) or member[a,S]

Functions
Equality:

 S1=S2 iff (choice[S1]=choice[S2] and
 member[choice[S1]] and member[choice[S2]])

Intersection: (associative, commutative, idempotent, identity=Universe)
 intersect[Phi,S] = Phi
 intersect[a•S1,S2] = if member[a,S2]

then (a•intersect[S1,S2]) else intersect[S1,S2]

Symmetric-difference: (associative, commutative, identity=Phi)
 sym-diff[S1,Phi] = Phi
 sym-diff[S1,S2] = if (member[a,S1] and not[member[a,S2]])

 or (member[a,S2] and not[member[a,S1]])
 then member[a,sym-diff[S1,S2]]

Cardinality, #:
 #[Phi] = 0
 if not[member[a,S]] then #[a•S] = #[S] + 1

Some invariants set[Phi]
set[a•S]
not[member[a,Phi]]
(intersect[{a},{b}] = Phi) -> (not[a=b])
intersect[S,Phi] = Phi
member[a,intersect[S1,S2]] iff
 member[a,S1] and member[a,S2]
S1 intersect (S2 sym-diff S3) =
 (S1 intersect S2) sym-diff (s1 intersect S3)

Induction if F[Phi] and if not[member[a,S]] then (F[a] -> F[a•S])
 then F[S]

Mathematical Foundations

1

Recursive Definitions

Almost all mathematical structures are defined by induction (recursion). The composition of

valid compound objects and the decomposition of compound objects into elementary components

is a recursive process. The definitions of domain functions are recursive. Most proof systems
use induction for verification. Recursion is also necessary to write elegant programs.

An inductive definition consists of three components:

• a base case, the simplest possible application of the induction

• an inductive case which assumes an arbitrary member of the domain,

and constructs the adjacent member.

• an ordering principle which provides a structure for inferring that when one

member can be constructed from adjacent member, then all members can be

constructed.

Learning to Think Recursively

Recursive programming requires a different way of thinking about and writing computer

programs. Procedural thinking was necessary twenty years ago when the art of programming

was much closer to the construction of the OS and its hardware infrastructure. In this century,

the programmer must address the problem rather than the mechanism. John McCarthy, the

father of LISP and symbolic programming, says it nicely:

“In order to write recursive function definitions, one must think about

programming differently than is customary when writing programs in languages

like FORTRAN or ALGOL [or C] or in machine language. In these languages, one

has in mind the state of the computation as represented by the values of certain

variables or locations in the memory of the machine, and then one writes

statements or machine instructions in order to make the state change in an

appropriate way. When writing recursive function definitions one takes a

different approach. Namely, one thinks about the value of the function, asks for

what values of the arguments the value of the function is immediate [the base

case], and, given arbitrary values of the arguments, for what simpler arguments

must the function be known in order to give the value of the function for the given

arguments [the inductive case].”

-- John McCarthy, LISP Programming and Proving

Induction Principles

When the three components of an inductive definition are combined, they produce an Induction
Principle for the particular domain. Inductive principles are second order functions, or
functionals. We are most familiar with first-order functions, which vary over domain objects

(ie variables). Second-order functions vary over other functions; the domain is a set of

functions rather than a set of objects. Sometimes second-order functions are called functional

Mathematical Foundations

2

schema, they are patterns, or schema, which specify relations between objects which hold for a

set of functions. Each schema can be instantiated to many (often infinite) specific induction

rules for specific functions.

Different object domains have different induction principles. However, across most domains,

the form of the inductive principles is quite similar. Thus we can even consider abstraction of

inductive schema over domains. For example,

Domain Decomposition Base Inductive Step

 integers -1 0 f[n+1] -> f[n]

 sets choose, rest { } f[choose•rest] -> f[rest]

 logic antecedent, F (p->q) -> q
consequent

 pairs first,second <nil,nil> f[first] -> f[second]

 lists first, rest () f[first•rest] -> f[rest]

 strings prefix, rest Empty char f[prefix•rest] -> f[rest]

 binary trees left,right root f[left•right]->f[left]&f[right]

 trees left, butleft root f[left•butleft]->f[left]&f[butleft]

Generic Induction Schema

Primitive recursive schema without parameters for the integer domain:

f[n] =def=
if n=0 then k else h[n-1,f[n-1]]

A function acting on an integer argument n can be generically thought of as follows:

If n is 0, return some constant k,
otherwise apply function h with the arguments one step closer to 0

[that is, with arguments (n-1) and f applied to (n-1)].

Example: the factorial function

f = fac k = 1 h = * h[p,q] = (p+1)*q

fac[n] =def=
if n=0 then 1 else n*fac[n-1]

Mathematical Foundations

3

Primitive recursive schema with parameters for the integer domain
(for simplicity, only one parameter is shown here):

f[n,m] =def=
if n=k then g[m] else h[n-1,m,f[n-1,m]]

Example: the times function

f = * k = 1 g[m] = m h = + h[p,q,r] = q*(r+1)

*[n,m] =def=
if n=1 then m else +[m,*[n-1,m]]

Primitive recursive schema without parameters for the list domain:

f[x] =def=
if null[x] then k else h[first[x],rest[x],f[rest[x]]]

If the list is empty, return constant k,
otherwise apply h with arguments one step closer to the empty list.

Example: the last function

f = last k = first[x] h = identity h[p,q,r] = r

last[x] =def=
if null[rest[x]] then first[x] else last[rest[x]]

Example: the length function

f = len k = 0 h = +1 h[p,q,r] = r

len[x] =def=
if null[x] then 0 else +1[len[rest[x]]]

Example: the reverse function (* is the append function)

f = reverse k =() h = append h[p,q,r] = r*(p)

reverse[x] =def=
 if null[x] then () else (reverse[rest[x]] * list[first[x]])

Primitive recursive schema with parameters for the list domain:

Here, the parameter y used in the definition, but not decomposed by the induction.

 f[x,y] =def=
if null[x] then g[y] else h[first[x],rest[x],y,f[rest[x],y]]

Mathematical Foundations

4

If the list is empty, return g applied to parameter y
otherwise apply h to the decomposed list, to the parameter,

and to f applied to the rest of the list.

Example: the member function (u is the parameter)

f = member g = False h = or h[p,q,r,s] = r=p or s

member[u,x] =def=
if empty[x] then False

else (u=first[x] or member[u,rest[x]])

Primitive recursive schema without parameters for the tree domain:

 f[x] =def=
 if leaf[x] then g[x] else h[first[x],rest[x],f[first[x]],f[rest[x]]]

If the tree is an leaf, return g[x]
else apply h to the decomposed tree and to f applied to the decomposed tree.

Example: the size function (number of nodes in the tree, including leaves)

f = size g[x] = 1 h = + h[p,q,r,s] = r + s

size[x] =def=
if leaf[x] then 1

else (size[first[x]] + size[rest[x]])

Primitive recursive schema with parameters for the tree domain:

 f[x,y] =def=
if leaf[x] then g[x,y] else

h[first[x],rest[x],y,f[first[x],f[first[x],first[y]]],
 f[rest[x],f[rest[x],rest[y]]]]

If the tree is a leaf, return g[x,y]
 otherwise apply h with arguments of the decomposed tree,

 (f applied to the first of the tree and to f applied to the first of each argument x,y),

 and (f applied to the rest of the tree and to f applied to the rest of each argument x,y)

Example: the tree-equal function

f = tree-equal g = = h[p,q,r,s,t] =

tree-equal[x,y] =def=
x=y or (not[leaf[x]] and not[leaf[y]]

and tree-equal[first[x],first[y]]
and tree-equal[rest[x],rest[y]])

Mathematical Foundations

5

Recursive Mathematical Structures

Below isa partial listing of the recursive definitions of some common mathematical structures

and their functions. In the following, I have used the token “•” to stand for a generic

constructor.

Propositional Logic

Notation: truth symbols = {T,F}
propositional symbols = {a,b,...}
sentence symbols = {A,B,...}

Sentences: Truth symbols are sentences.

Propositional symbols are sentences.

If A and B are sentences, so is A->B.

Truth-values:

The truth-values of T and F are respectively True and False.

The truth-value of a is the value assigned to it by the semantics.

The truth-value of A->B is True when either A is False

or when both A and B are True.

Predicate Logic

Notation: truth symbols = {T,F}
constant symbols = {a,b,...}
variable symbols = {x,y,...}
function sysmbols = {f,g,...}
relation symbols = {p,q,...}

Terms: Constants and variables are terms.

If {t1,t2,...} are terms, and f has arity n, then f[t1,...,tn] is a term.

Relations: Truth symbols are relations.

If {t1,t2,...} are terms, and p has arity n, then p[t1,...,tn] is a relation.

Sentences: Terms are sentences.

Relations are sentences.

If S1 and S2 are sentences, then so is S1->S2.

If S is a sentence, then so is (all x.S)

Well-formed Parentheses (WFP)

() is a WFP

If x and y are WFP, so is (x) and xy

Mathematical Foundations

6

P a i r s

If x and y are both atoms, then <x,y> is a pair.

S t r i ngs

E is a string. (E is the empty character)

u is a string. (u is a character)

If x is a string, then so is u•x

Binary Strings

E, 0, 1 are each binary strings.

If x is a binary string, so is x•0 and x•1.

L i s t s

() is a list.

If x is a list, so is u•x (u is an atom)

last[()] = ()
last[(u)] = u
last[u•x] = last[x]

length[()] = 0
length [u•x] = length[x] + 1

member[u,()] = F
member[u,v•x] = u=v or member[u,x]

copy[()] = ()
copy[u•x] = u•copy[x]

insert[u,()] = (u)
insert[u,v•x] = if u =< v then u•(v•x) else v•insert[u,x]

alternating-elements[()] = ()
alternating-elements[(u)] = (u)
alternating-elements[u•v•x] = u•alternating-elements[x]

reverse[()] = ()
reverse[u•x] = reverse[x]*(u) (* is append)

same-length[(),()] = T
same-length[(),v•y] = F
same-length[u•x,()] = F
same-length[u•x,v•y] = same-length[x,y]

Mathematical Foundations

7

lintersection[(),()] = ()
lintersection[(),v•y] = ()
lintersection[u•x,()] = ()
lintersection[u•x,v•y] =

if u=v then u•lintersection[x,y] else
(lintersection[x,v•y] or lintersection[u•x,y]

lequal[(),()] = T
lequal[u•x,()] = F
lequal[(),v•y] = F
lequal[u•x,v•y] = u=v and lequal[x,y]

append[(),y] = y
append[v•x,y] = v•[append[x,y]

substitute[u,v,()] = ()
substitute[u,v,w•x] = if v=w then u•[substitute[u,v,x]]

else [substitute[u,v,x]

I ntegers

Notation: Successor[n] = n’

integer[1]
if integer[x] and integer[y] then integer[x+y]

Counting: not[x’=0]
1 = 0’
n + 1 = n’

Addition: m + 0 = m
m + n’ = (m + n)’

Multiplication: m * 0 = 0
m * n’ = (m * n) + n

Exponentiation: m ^ 0 = 1
m ^ n’ = (m ^ n) * n

sum[0] = 0
sum[i’] = sum[i] + i’

fac[0] = 1
fac[i’] = fac[i] * i’

sumfac[0] = 1
sumfac[i’] = fac[i’] + sumfac[i]

fib[1] = fib[2] = 1
fib[i’’] = fib[i’] + fib[i]

Mathematical Foundations

8

power-of-2[0] = 1
power-of-2[n’] = 2*power-of-2[n]

0 = 0
m’ = n’ iff m = n

Trees

Leaves are trees.

If x and y are trees, then so is x•y

depth[()] = 0
depth[u•x] = depth[x]
depth[(x)] = 1 + depth[x]

flatten[()] = ()
flatten[u] = (u)
flatten[x•y] = flatten[x]*flatten[y]

fringe[()] = ()
fringe[u] = u
fringe[u•y] = u•fringe[x]
fringe[x•y] = fringe[x]*fringe[y]

tsubstitute[x,y,()] = ()
tsubstitute[x,y,u] = if u=y then x else u
tsubstitute[x,y,z] =
tsubstitute[x,y,first[z]]*tsubstitute[x,y,rest[z]]

treverse[()] = ()
treverse[u•y] = treverse[y]*(u)
treverse[x•y] = treverse[y]*treverse[(x)]

Sets

{} is a set.

If S is a set, then so is u•S

powerset[{}] = {{}}
powerset[S+{e}] = powerset[S]*(S+e)

member[u,{}] = F
member[u,v•S] iff u=v or member[u,S]

add-to-set[u,{}] = {u}
add-to-set[u,v•S] = if u=v then S else add-to-set[u,S]

{} = {}
u•S1 = v•S2 iff u=v and S1=S2

Mathematical Foundations

9

union[{},S] = S
union[u•S1,S2] = if member[u,S2] then union[S1,S2]

else u•union[S1,S2]

intersection[{},S] = {}
intersection[S,{}] = {}
intersection[u•S1,S2] = if member[u,S2] then u•intersection[S1,S2]

else intersection[S1,S2]

subset[{},S2] = T
subset[S1,{}] = F
subset[u•S1,S2] = member[u,S2] and subset[S1,S2]

proper-subset[S1,S2] iff subset[S1,S2] and not[S1=S2]

cardinality[{}] = 0
cardinality[u•S] = if [member[u,S]] then cardinality[S] + 1

else cardinality[S]

Funct ions

andlist[()] = ()
andlist[u•x] = u and andlist[x]

map[f,()] = f[()]
map[f,u•x] = f[u]•map[f,x]

mapfilter[p,()] = ()
mapfilter[p,u•x] = if p[u] then u•mapfilter[p,x] else mapfilter[p,x]

every[p,()] = F
every[p,u•x] = p[u] and every[p,x]

apply[f,()] = f[()]
apply[f,u•x] =

count-if[p,()] = 0
count-if[p,u] = if p[u] then 1 else 0
count-if[p,u•x] = if p[u] then count-if[p,x] + 1 else count-if[p,x]

delete-if[p,()] = ()
delete-if[p,u•x] = if p[u] then delete-if[p,x] else u•delete-if[p,x]

ordered-by[p,()] = T
ordered-by[p,(u) = T
ordered-by[p,(u v)] = p[u,v]
ordered-by[p,u•v•x] = p[u,v] and ordered-by[p,v•x]

map-if[f,p,()] = if p[] then f[] else ()
map-if[f,p,u•x] = if p[u] then f[u]•map-if[f,p,x] else map-if[f,p,x]

Mathematical Foundations

10

Primitive Recursive Functions (PRF)

The successor function is a PRF. s[i] = next[i]
The zero function is a PRF. z[i] = k
The selector functions are PRFs. first[i], rest[i]
If f and g are PRF, then so is (f o g). function composition
If f and h are PRF, then so is any function which fits a primitive recursion schema,

EG: (if n=0 then z[n] else h[n-1,f[n-1]])

Miscellaneous Applications

marking a ruler:

rule[left,right,0] = no-op
rule[left,right,height] = let m= (left+right)/2

mark[m,height];
rule[left,m,height-left]
rule[m,right,height-left

binary tree traversal

traverse[()] = no-op
traverse[leaf[node]] = no-op
traverse[node] = traverse[left[node]];

visit[node];
traverse[right[node]]

depth-first binary tree search

depthsearch[u,()] = F
depthsearch[u,v] = u=v
depthsearch[u,v•y] = if u=v then T else depthsearch[u,y]
depthsearch[u,x•y] = depthsearch[u,x] or depthsearch[u,y]

insertion sort

insertion-sort[()] = ()
insertion-sort[u•x] = insert[u, sort[x]]

symbolic differentiation (all in reference to dx)

dc = 0
dx = 1
d(-U) = -dU
d(U+V) = dU + dV
d(c*U) = c* dU
d(U*V) = u*dV + V*dU
d(U/V) = d(U*(V^-1))
d[U^c] = c*(U^(c-1))*dU
d(ln U) = (U^-1)*dU

Mathematical Foundations

1

Final Project

HAND IN AT THE BEGINNING OF CLASS.

Make of a map of the territory of discrete mathematics.

• Include each of the topics we have covered in class, and each topic in the text.

• Include the defining characteristics of each separate topic: the domain, the axioms,

the essential idea.

• Pay particular attention to the relationships between topics.

• Order your map so that it clearly displays which topics are subsumed by (or are

subsets of, or "inherit the characteristics of") other topics.

• Distinguish between old and new topics, between topics that are well understood by the

mathematical community and those that are still evolving rapidly.

• Next, assign to each topic and to each collection of defining characteristics, three

rating values:

1. your understanding of the topic or characteristic

(0= no understanding at all, 10 = total and complete understanding)

2. your confidence in the above understanding rating

(0 = no confidence, 10 = complete confidence)

3. the importance of the topic to you

(0 = completely irrelevant, 10 = completely relevant and important)

• You may want to extend your map with topics that you consider to be part of discrete

math, but were not covered in class.

• ONE PAGE only please.

Mathematical Foundations

1

Re lat ions

Re lat ions

A relation is an ordered set of tuples. A binary relation is a set of ordered pairs.

Domain: the set of first elements in the ordered pair

Range: the set of second elements in the ordered pair

Cartesian Product: the set of all possible ordered pairs (domain X range)

Empty Relation: the set of no ordered pairs

Inverse: the relation formed by exchanging the range and the domain

Relation on a Set: the domain and the range are the same set

Identity Relation: (x,x) | x inR
Equivalence of ordered pairs: (a,b) = (c,d) iff a = c and b = d

Relations as Graphs

Relations are a way of pointing from one set to another. Relations establish directional pointers

between elements of the domain and elements of the range. Thus, every relation is isomorphic to

a directed graph with elements as nodes and concrete relations as arcs.

Types of Existence

Some elements in the domain do not map onto a element in the range.

Some elements in the range do not correspond to an element in the domain.

Types of Connectivity

Relations support any type of connectivity

between elements in the domain and those in the range.

 GRAPH NAME Examp le

one-to-one {(a,1),(b,2),(c,3)}

one-to-many {(a,1),(a,2),(b,3)}

many-to-one {(a,1),(b,1),(c,2)}

many-to-many {(a,1),(a,2),(b,1),(c,2)}

A

B

C
•

A B•

A

B

C

•

•

A

B

C

D•

•

Mathematical Foundations

2

Types of Relational Structure

Relations on a Set

reflexive all x | (x,x) inR

symmetric if (x,y) inR, then (y,x) inR

transitive if (x,y) inR and (y,z) inR, then (x,z) inR

antisymmetric if (x,y) inR and (y,x) inR, then x=y

trichotomy (x,y) inR xor (y,x) inR xor x=y

irreflexive not reflexive

asymmetric not symmetric

Funct ions

identity Id op A = A op Id = A

inverse A op iA = iA op A = Id

associative (A op B) op C = A op (B op C)

commutative A op B = B op A

distributive A op1 (B op2 C) = (A op1 B) op2 (A op1 C)

idempotent A op A = A

Equiva lences

An equivalence set is a relation which is

reflexive xRx
symmetric xRy -> yRx
transitive xRy and yRz -> xRz

Pa r t i t i o n s

A partition of a set (or a relation) is a collection of disjoint subsets of the set. The union of

partitions is the entire set.

The equivalence relation determines a partition, and each partition of a set defines an

equivalence relation.

Mathematical Foundations

3

Order ings

A partial order is a relation which is

reflexive xRx
antisymmetric xRy and yRx -> x=y
transitive xRy and yRz -> xRz

A total order is a relation which is

trichotomous xRy xor x=y xor yRx
transitive xRy and yRz -> xRz

Cartesian Product

A relation is between two sets. The Cartesian Product of two sets is the set of ordered pairs

consisting of all possible combinations of elements from each set. Example:

S1 = {1,2,3} S2 = {a,b}

S1xS2 = {(1,a),(2,a),(3,a),(1,b),(2,b),(3,b)}

The set of all possible relations between S1 and S2 is defined by all the possible combinations of

the product elements. In the example above, there are six product pairs, so the total number of

possible relations is

6 things taken 0 at a time = 1

“ 1 “ = 6

“ 2 “ = 15

“ 3 “ = 20

“ 4 “ = 15

“ 5 “ = 6

“ 6 “ = 1

Total number of relations = 64 = 2^6

There are two ways of analyzing the structure of relations illustrated above.

1. Using the coefficients of the binomial expansion

sum[i choose n] for i=0..n

2. Using the power set of the relational pairs

2^n

Mathematical Foundations

4

Ways to View Relations

I. A set of ordered pairs: {(a,b),(a,c),(b,d)…}

I I . A set of points matching elements in the Domain set with elements in the Range set.

|
| *

Range | *
| *
|___________
 Domain

I I I . A lookup table between two sets

__R_|__a__b__c__
 |
 a | x x
 |
 b | x
 |
 c | x

IV. A matrix:

 - -
| 1 0 1 |
| 0 1 0 |
| 0 0 1 |

 - -

V. A connection graph:

c
•

•

•
•

b

a

VI. A relational database:

R a a
R a c
R b b
R c c

Mathematical Foundations

5

VII. A link table (a possibility database):

A B C n

0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 0
1 1 1 0

Relations on a Set

When both the Domain and the Range of a relation are the same Set, the relation is on a set.

The lookup table and matrix representations can contain common patterns, which define the

concepts associated with relations.

R|_a_b_c_
REFLEXIVE a | x
 b | x
 c | x

R|_a_b_c_
SYMMETRIC a | x
 b | x
 c | x

R|_a_b_c_
TRANSITIVE a | x
 b | x
 c | x

R|_a_b_c_
ANTISYMMETRIC a | x
 b | x iff a = b
 c |

Composition of Relations

Relational composition is very similar to functional composition.

(R o S) =def= all pairs (x,z) exists y | (x,y) inS and (y,z) inR

Note that the range of S is a subset of the domain of R

Mathematical Foundations

6

(R o S)(A) = R(S(A))

associative: (R o S) o T = R o (S o T)

not commutative: R o S =/= S o R

inverse of a composition: (R o S)^-1 = S^-1 o R^-1

Transitive Closure

A relation is transitive when it is possible to follow relations for one pair to another in a cycle.

The transitive closure is computed by multiplying the matrix of a relation by itself N times. A

matrix will return to its original configuration after N multiplies if there is transitive path of

N steps between the elements.

Example: non-transitive, no path between b and c

 a b c
a 0 1 1 0 1 1 0 0 0
b 0 0 0 * 0 0 0 = 0 0 0 no paths
c 0 0 0 0 0 0 0 0 0

Example: non-transitive, no path to a

 A^1 A^2 A^3
 a b c
a 0 1 1 0 1 1 0 0 1 0 1 1 0 0 0
b 0 0 1 * 0 0 1 = 0 0 0 * 0 0 1 = 0 0 0
c 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Example: transitive with cycle length 3

 A^1 A^2 A^3 A^4
 a b c
a 0 1 0 0 1 0 0 0 1 0 1 0 1 0 0 0 1 0 0 1 0
b 0 0 1 * 0 0 1 = 1 0 0 * 0 0 1 = 0 1 0 * 0 0 1 = 0 0 1
c 1 0 0 1 0 0 0 1 0 1 0 0 0 0 1 1 0 0 1 0 0

Example: identity, degenerate transitive with cycle length 1

 A^1 A^2
 a b c
a 1 0 0 1 0 0 1 0 0
b 0 1 0 * 0 1 0 = 0 1 0
c 0 0 1 0 0 1 0 0 1

•

b c

a•

•

•

b
c

a•

•
•b
c

a•

b
c

a

•
•

•

Mathematical Foundations

7

Relations or Functions?

Functions are a subset of relations. Using functions provides the advantages that functions place

on relational structures: existence and uniqueness. However, since functions are less general,

these same constraints make generalization impossible. Thus functional encoding is often

brittle and difficult to modify. For example:

Domain D = students {s1,s2,s3}

Range R = chairs {c1,c2,c3,c4,c5}

When every student sits in a chair, the uniqueness (no student sits in two chairs) and existence

(a chair for every student) constraints on a function are met.

F[students] = {(s1,c1),(s2,c2),(s3,c5)}

Note that it is still permitted for two students to sit in one chair.

If the situation changes, the functional constraints may be violated. For example, if one student

lounges across two chairs, uniqueness is violated. If some student stands rather than sits in a

chair, then existence is violated.

Most generally, whenever a specification may change (almost always the case), more general

data structures achieve better code modularity, portability, and maintenance.

Many concepts do not permit a functional approach. For example, consider:

Proof-of[theorem] = <proof-sequence>

Domain = logical formulas as theorems

Range = proof-sequences

The above assertion has relational semantics. There is no assurance that a proof does exist for

any formula (existence violated), and certainly there are many different proof sequences for

any formula (uniqueness violated). In contrast:

Theorem-of[proof-sequence] = <theorem>

Domain = proof-sequences

Range = theorems as formulas

This assertion is (or can be) functional, since any proof leads to a unique theorem, and every

proof-sequence leads to some theorem. The assertion, of course, can also be seen as relational.

Mathematical Foundations

1

Relational Examples and Exercises

Patterns

A relation is a pattern. Naturally, we have a free choice for the syntax of the relation, given a
consistent notation. Some structural alternatives include:

aRb
R[a,b]
(R a b)
(a R b)

The advantage of seeing relations as patterns is that we can then use a pattern-matching engine
for abstract manipulation of patterns, that is, for computation. Pattern-matching is algebraic,
permitting us to compute with unbound variables, i.e. with abstractions.

Let the ? operator identify unbound variables, such that ?x represents an arbitrary member of
a domain (or range). Now we can express relational patterns directly in the pattern language:

reflexive (?x R ?x)

symmetric (?x R ?y) -> (?y R ?x)

transitive (?x R ?y) & (?y R ?z) -> (?x R ?z)

antisymmetric (?x R ?y) & (?y R ?x) -> x=y

trichotomy (?x R ?y) xor (?y R ?x) xor x=y

irreflexive not (?x R ?x)

asymmetric not ((?x R ?y) -> (?y R ?x))

Binary Arithmetic Example

Relations without variables are called facts. The facts of binary arithmetic are:

(0 + 0 = 0)
(0 + 1 = 1)
(1 + 0 = 1)
(1 + 1 = 0)

(0 * 0 = 0)
(0 * 1 = 0)
(1 * 0 = 0)
(1 * 1 = 1)

Mathematical Foundations

2

{+,*} are functions which map pairs onto singles. This relational database has one relation,
{=}. Facts are simply those relations which we assert to match our model (i.e. we consider
them to be True). They define the semantics of the relation =. Specifically, the following
assertions are not in the database, each is not True:

(0 + 0 = 1)
(0 + 1 = 0)
(1 + 0 = 0)
(1 + 1 = 1)

(0 * 0 = 1)
(0 * 1 = 1)
(1 * 0 = 1)
(1 * 1 = 0)

For each operator in {+,*}, the Cartesian product has eight members, four of which we
distinguish as valid. The eight possible relations come from two possible values in each of three
different places:

(A + B = C) A,B,C = {0,1}

More generally,

(A op B R C) op = {+,*} R = {=}

A closed world is one in which we know that if a fact is asserted, then its negation is also
asserted to be False. Binary arithmetic is a closed world. An open world is one in which if we
know a fact, we do not necessarily know its negation. For example, if we know (Mary isa-
student) and (John isa-student), we cannot also assert (No-one-else isa-student).

Pattern Generators for Binary Arithmetic

The transformational rules which define arithmetic functions can be expressed as relational
patterns:

(?x + ?y = ?z) -> (?y + ?x = ?z)

(?x + ?y = ?z) & (?x = ?y) -> (?z = 0)

(?x + ?y = ?z) & not(?x = ?y) -> (?z = 1)

Pattern abstraction is available for operators as well:

(?x ?op ?y = ?z) -> (?y ?op ?x = ?z)

The above pattern generator defines a symmetry structure for both operators in our world of
simple arithmetic. The operators (i.e. functions) differ by their pattern definition. Compare
the constraints for + above with those for * below:

Mathematical Foundations

3

(?x * ?y = ?z) & (?x = 1) & (?y = 1) -> (?z = 1)

(?x * ?y = ?z) & not(?x = 1) & not(?y = 1) -> (?z = 0)

Pattern generators provide an alternative way to record facts into a relational database.

Option 1: explicit listing

(1 + 0 = 1)
(0 + 1 = 1)

Option 2: generator

(1 + 0 = 1)
(?x + ?y = ?z) -> (?y + ?x = ?z)

For large databases, pattern generators exchange time for space. For example, if the arithmetic
example were expressed in decimal notation, we would need to assert 100 facts for each
operator, out of a Cartesian product of 1000 possible facts. A symmetry rule would reduce the
number of facts by half (50 here), at the cost of generating them dynamically when needed.

Using Pattern Generators for Computation

The following pattern-matching computational regime is how logic engines and theorem provers
(e.g. Prolog) manage computation:

(0 + 0 = ?x)
matches

(0 + 0 = 0) by binding ?x=0.

Thus we have computed this Boolean sum.

Since relational structures are non-directional, we can compute inverses as well as answer
more exotic queries:

(1 * ?x = 0)
matches

(1 * 0 = 0) by binding ?x=0.

(1 ?op 1 = 1)
matches

(1 * 1 = 1) by binding ?op=*

(1 ?op 1 = ?x)
matches

(1 * 1 = 1) by binding ?op=* and ?x=1
(1 + 1 = 0) by binding ?op=+ and ?x=0

Mathematical Foundations

4

Algorithm Calling Example

Let S = {a,b,...n} be a set of algorithms. Define the relation R on S as

(a R b) iff (a CALLS b)

Suppose we have the following code structure:

(a R b)
(a R c)
(b R c)
(c R e)
(d R c)
(e R b)

The transitive closure of R identifies all algorithms which may eventually call another
algorithm. Make a listing of this transitive closure. Express the closure as a pattern rule
rather than an exhaustive list.

An algorithm is recursive if it calls itself, that is, if (a R a) is asserted. Are any of the above
five algorithms {a,b,c,d,e} recursive?

Graph Example

Here is an airline database of costs for flying between cities

(San Diego to LA $100)
(San Diego to SF $150)
(San Diego to Portland $200)
(San Diego to Seattle $300)
(LA to SF $100)
(LA to Portland $150)
(LA to Seattle $300)
(SF to Seattle $200)
(Portland to Seattle $150)

Assume this relation is symmetric for all flights within California.
Is it reflexive?
Is it transitive?
Are all combinations of flights for less than $260 transitive?
What is the type of connectivity (1-to-1, 1-to-many, many-to-1, many-to-many)

within each State?
If the relation were antisymmetric instead of symmetric, where could you travel to?
Which flights (could be more than one stop) are in the same cost equivalence class?
What is the ordering of flights by cost?
What is the transitive closure of flights?

Define a new relation S over the above airports to mean in-the-same-state. Show that S is an
equivalence relation.

Mathematical Foundations

5

Text Example

Consider the relations left-prefix and alphabetical-order, for the set of alphabetic
characters {blank,a,b,...,z}.

Build separate relational databases for each of these words:

dot
level
pepper
bookkeeper

Characterize the relational structure of each database.

Relational Database Example

Here is a relational database of students:

ID Name Age Enrolled-in

29 Bob 32 512
48 John 29 514
89 Sally 28 512
59 Ignatz 34 512
30 Joan 27 510
58 Tom 24 510
45 Jane 24 514
22 Keri 28 510
97 Sam 27 512

The SELECT operation chooses row entries based on a pattern.

The PROJECT operation chooses column entries based on a pattern.

The JOIN operation creates a new entry by combining two or more relations.

Construct queries which gather the following information:

All students taking 512.
The ages of all students.
All classes with more than two students.
All students older than Joan.
Id numbers of students in each class.
Id numbers of twenty-something students in 512.

Mathematical Foundations

1

Relational Algebra

A relation is a set of tuples. In CS, this is called a database or file. The items of the relation can

be seen as aattribute value pairs, with the values being atomic ground forms (ie not

composite terms and not pointers). Other terms:

Domain: the set of possible values for a relation

Relation: a subset of the cartesian product of domains

Attribute: column of a relation

Item: row of a relation, a tuple

Key: a minimal set of attributes which identify a unique tuple

Since a relational database contains the same information as a relation table, the database must:

1. have no duplicates

2. have values from the same domain

3. have simple attribute structures (not composite)

4. an attribute must be accessed by a single key

It is always possible to express multiple argument relations using only binary relations. E.g.:

PERSON[name, age, sex] = PERSON[name, age] and PERSON[name, sex]

Operators in a Relational Algebra:

Selection: Reduce the number of rows in a table (horizontal cut)

Projection: Reduce the number of columns (vertical cut), and remove duplicates.

Restriction: Make a relation consisting of all rows which meet a functional test

Union: Combine rows of two tables (same attributes). Same as file-merge.

aka: Or, Append

Difference: The rows of relation 1 with duplicates in relation2 removed

aka: -, remove, minus

Join: Make a table with the items common to both relations.

aka: intersection

Generalized Join: For relations with unequal number of attributes, carry along the

extra attributes in the new table. If the relations have no common

attributes, form the cartesian product.

Hierarchy is formed in two ways:

1. generalization of subtypes (standard oo inheritance)

2. aggregation of components, making new relations of existing fields

Mathematical Foundations

2

Relational Knowledge-base Example

Vocabulary:

(father X Y)
(mother X Y)
(male Y)
(female Y)
(parent X Y)
(sibling X Y)
(brother X Y)
(sister X Y)
(uncle X Y)
(aunt X Y)
(gfather X Y)
(gmother X Y)
(ancestor X Y)
(cousin X Y)

Knowledge Base:

(if (father A B) (parent A B))
(if (mother A B) (parent A B))
(if (and (parent A C) (parent A B) (not (= B C))) (sibling B C))
(if (and (sibling A B) (male A)) (brother A B))
(if (and (sibling A B) (female A)) (sister A B))
(if (and (parent B C) (brother A B)) (uncle A C))
(if (and (parent B C) (sister A B)) (aunt A C))
(if (and (parent B C) (father A B)) (gfather A C))
(if (and (parent B C) (mother A B)) (gmother A C))
(if (parent A B) (ancestor A B))
(if (and (parent A B) (ancestor B C)) (ancestor A C))
(if (and (parent A C) (parent B D) (sibling A B)) (cousin C D))
(if (father A B) (male A))
(if (mother A B) (female A))

Facts:

(father arthur bertram)
(father arthur bailey)
(father bertram cornish)
(father bertram carey)
(mother beatrice cornish)
(mother beatrice carey)
(father bailey carleton)
(father bailey cassandra)
(mother bessie carleton)
(mother bessie cassandra)
(male cornish) Example questions:
(male carey) (gfather arthur ?)
(male carleton) (cousin ? cassandra)
(female cassandra)

Mathematical Foundations

1

Funct ions

Ordered Pairs

We have seen elements, a, and sets of elements {a,b}. Adding an ordering relation creates a

lattice of ordered functions. Each function is specified by a collection of ordered pairs, (a,b).

Example:

The logical function (if a then b) is defined by a collection of three ordered pairs of

the form (a,b), where the values of a,b are in the set {0,1}:

if a then b =def= {(0,0),(0,1),(1,1)}

The sixteen different ways of collecting the four possible ordered pairs, N at a time,

N=0..4, define the sixteen different Boolean functions of two variables.

Functions and Relations

relation: xRy isTrue function: f(x)=y isTrue

The set of all first values of a set of ordered pairs is called the Domain.

The set of all second values of a set of ordered pairs is called the Range.

A relation is a collection of ordered pairs over two sets, the domain set and the range set.

A function is a relation (x,f(x)), such that

1. Every member of the domain is associated with a member of the range, and

2. No element in the domain is associated with more than one element in the range.

Perspectives on Functions

1. Formal constraints on a relation

existence: all x inDomain . exists y inRange

uniqueness: all pairs (x,f(x)) . if x1=x2 then f(x1)=f(x2)

2. Graph

Domain on x-axis, Range on y-axis

uniqueness permits the graph to cross any vertical line (i.e. x-value) only once.

Mathematical Foundations

2

3. Lookup table

x f(x)
1 1
2 4
3 9

4. Static relation between variables

x = y + 5 "=" is an equivalence relation

5. Dynamic relation between variables

f(x) = y x is the independent variable (controlled measurement)

y is the dependent variable (observed measurement)

6. Pure operation

(lambda (#) #^2 + # + 1)

is the formal parameter of the function which binds to any value

7. Sequence of combinators

fac = (Y) lf.ln.(((0)n)1) ((*)n) (f) (-1) n

A tree of substitution instructions

8. Rule of correspondence/algorithm

take a number x
double it 2*x
add 3 2*x + 3

9. Set transformation

Domain Range
 a -----------> b
 b -----------> c
 c -----------> d
 d -----------> d

10. Input-output machine

 x
\ /

 \ /
 | |
 | |

 f(x)

Mathematical Foundations

3

11. Way of finding and assigning names to unnamed objects

2^100 is the short name of a large number

12. Digraph

(1) ---> (3) ---> (5)

Types of Functions

Surjective, Onto, Epic all y inRange, exists x inDomain . f(x) = y

Injective, 1-to-1, Monic if f(x1) = f(x2) then x1 = x2

Bijective 1-to-1 and Onto

Bijective functions have an iinverse, since every element in both the Domain and the Range are

in correspondence:

two-way existence all x inD, exists y inR . f(x) = y
all y inR, exists x inD . f(x) = y

two-way uniqueness all (x,f(x)) . x1 = x2 iff f(x1) = f(x2)

inverse: Exists f-inverse iff f is onto and one-to-one

Special Functions

Identity f(x) = x

Characteristic f(x) = 1 if x inA
 = 0 if x not inA

Permutations (1,2,3) <--> (3,1,2) <--> (2,3,1)

Sequences 1 .. n <--> 1/1 .. 1/n

Mathematical Foundations

4

Mapp ings

===Re lat ion===

Some not mapped

Some not mapped

one-to-one

many-to-one

one-to-many

===Funct ion===

 EXISTENCE

 =def=

all mapped

 UNIQUENESS

 =def=

no one-to-many

===Surjective/Onto/Epic Function===

 ONTO

 =def=

all mapped

===Inject ive/1-to-1/Monic Funct ion===

 ONE-TO-ONE

 =def=

no many-to-one

===Bijective/1-to-1 and Onto Function===

 INVERSE

 =def=

maps both ways

ONE-To-ONE and ONTO

 =def=

no many-to-one and

all mapped in both

 Domain and Range

Mathematical Foundations

5

Function Composition

(f o g) = All pairs (x,z) Exists y such that (x,y) in g and (y,z) in f
Note that the Range of g is a subset of the Domain of f

(f o g)(x) = f(g(x))

Associative: (f o g) o h = f o (g o h)

Not commutative: f o g =/= g o f

Maintains the type of the function:

if f and g are functions, then (f o g) is a function

if f and g are onto, then (f o g) is onto

if f and g are one-to-one, then (f o g) is one-to-one

Composition of a function with its inverse:

f o f-inverse = identity I on Range of f
f-inverse o f = identity I on Domain of f

Inverse of a composition: (f o g)-inverse = g-inverse o f-inverse

Binary Functions

Binary functions are a mapping of ordered pairs onto elements: ((a,b) c)
 e.g.: a + b = c + = {((a,b),c) such that (a,b) in S X S and c inS}

The domain consists of ordered pairs rather than single elements.

If a,b, and c are in the Domain,

then the Domain is closed with regard to the function:

All x1,x2 inD such that f(x1,x2) inD

Mathematical Foundations

1

Algebraic Systems

Formal Modeling (refrain)

Formal = Atoms + Formations + Transformations + Axioms

A formal system (a mathematical system) consists of

1. several sets of labels (for objects, functions, relations) called constants,

2. rules for building compound sentences (or equations or expressions), and

3. rules for evaluating and simplifying compound expressions.

4. some axioms or assumptions which assert equivalence sets

A calculus is a formal transformation system with variables.

Mathematical Data Structures

truth values 0,1 arithmetic of logic

propositions a,b,c algebra of logic

sets {},{a},{a,b} set theory

ordered pairs (a,b),(a,c) functions, relations

nested pairs ((a,b),c),((a,c),d) binary functions and relations

nested pairs (a,(a,b)),(b,(b,c)) graphs

Morphism Functions

A ffunction is a constrained relation between two sets, the Domain and the Range.

An algebraic system is a Set (the Domain of a function) and at least one binary

function on that Set: (S,f) where S is the Domain, and f is a binary function.

A homomorphism is a special type of function which maps one algebraic system onto

another. Given a system (S,f) and a system (T,g), the homomorphic function h is:

All s1, s2 inS . h(f(s1,s2)) = g(h(s1),h(s2))

The morphism function hh preserves the structure of the two systems. When it exists,

we know that the two systems are in some way functionally identical. Isomorphic

systems are algebraically indistinguishable.

Other types of morphism functions preserve other types of functional structure.

Epimorphic: h preserves the onto characteristic.

Monomorphic: h preserves the one-to-one characteristic

Isomorphic: h preserves one-to-one correspondence

Mathematical Foundations

2

Morphism Diagram

Examples of Morphic Systems

h[a*b] = h[a] • h[b]

Aff ine
System 1: (integers,+)
System 2: (integers,+)

Morphism h[x] = 2x

Proof: h[a+b] = 2(a+b) = 2a + 2b = h[a] + h[b]

Logar i thm
System 1: (integers,+)
System 2: (reals,*)

Morphism h[x] = e^x

Proof: h[a+b] = e^(a+b) = e^a * e^b = h[a] * h[b]

Signs in Multiplication
System 1: (integers,+)
System 2: ({1,-1},*)

Morphism h[x] = 1 if x is even
 = -1 if x is odd

Proof:
 case a,b even: h[a+b] = 1 h[a]*h[b] = even*even = 1
 case a,b odd: h[a+b] = 1 h[a]*h[b] = odd*odd = even = 1
 case a,b differ: h[a+b] = -1 h[a]*h[b] = odd*even = odd = -1

•

••

*

•

•
•

o

h

Are these the same?

h

h

b
a

Mathematical Foundations

3

Group Theory

Algebraic systems ((S,f), where S is a set and f is a binary function on that set) can be

classified into groups having similar structural characteristics. This additional level of

abstraction is called ggroup theory, or modern algebra.

The essential distinguishing characteristics of algebraic systems (S,f):

Let a,b,c inS and e, the identity element, inS

Closed binary operation: f(a,b) = c

Associativity: f(f(a,b),c) = f(a,f(b,c))

Identity element: Exists e inS. f(e,a) = f(a,e) = a

Inverse element: Exists y inS. f(a,y) = f(y,a) = e

Commutativity: f(a,b) = f(b,a)

Types of Algebraic Systems

Groupoid: (S,f) such that S =/= { }

Loop: Groupoid and
All a,b,c in S. if f(a,b) = f(a,c) then b=c

 if f(a,c) = f(b,c) then a=b

Semigroup: Groupoid and

S is closed under f
f is associative on S

Monoid: Semigroup and

(S,f) has an identity element

Group: Monoid and

every element in S has an inverse.

Each type can be combined with the commutative property, to give

commutative loop

commutative groupoid

commutative semigroup

commutative monoid

commutative group (boolean algebra is an example in this category)

Mathematical Foundations

4

Boolean Algebra

Boolean algebra is an algebraic system, {K,A,V,’} consisting of

K a set of elements

A the meet operation

V the join operation

‘ the complement operation

Boolean Algebra Axioms

Let • be either AND or OR:

associative a•(b•c) = (a•b)•c

commutative a•b = b•a

distributive a•(b*c) = (a•b)*(a•c)

zero element a V 0 = a

one element a A 1 = a

complement a V a’ = 0 a A a’ = 1

Boolean Algebra Morphisms

 Domain meet j o i n complement zero one less-than

Boolean algebra meet join complement 0 1 <

algebra of sets union intersection complement Ph i Universe subset

switching circuits series parallel opposite open closed if-then

propositional logic and or not false true if-then

integer divisors gcd lcm largest/x 1 largest divides

Mathematical Foundations

1

Exotic Number Systems

History of Integers

Number systems evolve in abstraction and expressibility.

Assyrian tokens IIIIII + IIIIIIIIIII = IIIIIIIIIIIIIIIII

very easy to add, hard to multiply, very hard to read

Roman numerals VI + XI = XVII

easy to add, hard to multiply, moderate to read

Arabic decimal numbers 6 + 11 = 17

hard to add and to multiply, easy to read

Binary numbers 110 + 1011 = 10001

easy to add and to multiply, moderate to read

Boundary numbers ((*)*) + (((*))*)* = ((*)*)(((*))*)*

very easy to add and to multiply, hard to read

Types of numbers

existential (indicative) exists or not

categorical (nominal) share some property + attribute

ranking (ordinal) put in order + less than

discrete (interval) relate to integers + equal steps

comparative (ratio) relate to fractions + parts and zero

continuous (real) relate to infinite + compactness

complex (imaginary) relate to model + i, other unit bases

The Numerical/Measurement Hierarchy

i Imaginary (real1, real2) relation of reals

delta Real dense packing between rationals relation of rationals

divide Rational integer1 / integer2 relation of integers

equal Interval ordinal1 - ordinal2 = constant relation of ordinals

less-than Ordinal nominal1 less-than nominal2 relation of nominals

member-of Nominal indicative1 member-of indicative2 relation of indicatives

<void> Indicative () relation of existence

Mathematical Foundations

2

Integers as Sets

1 2 3 4 5
Cardinality: {} {}{} {}{}{} {}{}{}{} {}{}{}{}{}

Ordinality: {} {{}} {{{}}} {{{{}}}} {{{{{}}}}}

Uniqueness: {} {{}} {{},{{}}} {{},{{}},{{},{{}}}}

Some Varieties of Numbers

Conway numbers (surreals) provide a single coherent framework for defining all types of

numbers, and provide ways to manipulate infinite forms.

Spencer-Brown arithmetic is a boundary representation in which each form is both a

numerical object and an operator.

Kauffman arithmetic uses a boundary form of place notation to provide a more efficient

computational representation while maintaining operations which are both parallel and

insensitive to the magnitude of the number.

The James Calculus uses three boundaries to shift the representation of numbers between

exponential and logarithmic forms. This mechanism generalizes the ideas of cardinality and

inverse operations, and constructs a new imaginary which imparts phase structure on numbers.

Mathematical Foundations

3

Conway Numbers (Surreal Numbers)

A number is a partitioned set of prior numbers, {L|G},

such that no member of L is greater than or equal to any member of G.

The set L contains lesser numbers, while the set G contains greater numbers.

Let xL be an arbitrary member of L, and xG be an arbitrary member of G.

x = {xL|xG} such that no xL >= any xG

i.e. every xL < every xG

Two Conway numbers are ordered

x >= y when no xG <= y and no yL >= x

i.e. every xG > y and every yL < x

Two Conway numbers are strictly ordered

x > y when x >= y and not y >= x

i.e. all xG > y, all yL < x, some xL < y, some yG > x

Two Conway numbers are equal

x = y when x >= y and y >= x

i.e. all xG > y, all xL < y, all yL < x, all yG > x

Integers from Ordinals

"Before we have any numbers, we have a certain set of numbers, namely the empty set, {}."

-- John H. Conway

Base: { | } empty partitions of the empty set

Generator: every partition of the set of prior numbers

The base of this system is the act of partitioning, not the empty set. Partitioning creates the

first distinction, which serves as sufficient structure to build all numerical computation.

The conventional names of numbers can be assigned to Conway numbers:

Is { | } a number? { | } = 0

every xL < every xG? yes since there are no xL

Mathematical Foundations

4

Is { | } >= { | } is 0 >= 0?

every xG > 0 and every yL < 0? yes since there are no xG or yL

By symmetry y >= x, thus 0 = 0

Building from Zero

0 is a Conway number, making the set of numbers currently known = {0}. This generates three

new number partitions:

{0| } { |0} {0|0}

{0|0} is not a number, since there is an xL >= xG, namely xL = 0

{0| } is a number, call it 1

{ |0} is a number, call it -1

What is the ordering of these new numbers? For illustration, we'll test 0 against -1:

Ordered:

Is { | } >= { |0}? i.e. is 0 >= -1? x=0, y=-1

every xG > -1 and every yL < 0? yes since there are no xG or yL

Thus 0 >= -1.

Strictly ordered:

Is { | } > { |0}? i.e. not-1 >= 0?

every -1G > 0 and every -1L < 0? no, since -1G = 0

Thus 0 > -1. Similarly (tests omitted) 1 > 0.

Building from One

Now, the current set of prior numbers = {-1,0,1}, with a strict ordering, 1 > 0 > -1.

Three prior numbers generate 8 (2^3, the powerset) possible sets to partition. The definition

of a number constrains the forms generated from these sets to 21 new number forms:

{-1|0} {-1|0,1} {-1|1} {0|1} {-1,0|1} { |R} {L| }

where R and L stand for any of the eight sets in the powerset of prior numbers.

Mathematical Foundations

5

Conway numbers have multiple representations (just like another representation of 7 is 3+4).

A closer analogy would be to have the number three written in different languages (three, trois,

drei,...). For example:

0 = { | } = {-1| } = { |1} = {-1|1}

In general: the smallest xG defines G, the largest xL defines L.

This is easy to see since the tests for numbership and ordering compare small xGs and large xLs.

The new numbers are:

{1| } = 2 { |-1} = -2 {0|1} = 1/2 {-1|0} = -1/2

This gives a hint about how to think about Conway representations: the new number is "in

between" the largest xL and the smallest xG. When one side of the partition is void, a new

integer is formed.

Number Form Rules

A contribution of Conway numbers is that they incorporate all types of numbers in one

consistent system. Given a number {a,b,c,...|d,e,f,...}, the interpretation of that form is

the simplest conventional number which is strictly greater than max[a,b,c,...] and strictly

less than min[d,e,f,...]. In general:

If there's any number that fits, then use the simplest number that fits.

x is an ordinal number when

x = {L| }

{n| } = n+1

x is a negative integer when

x = { |G}

{ |-n} = -(n+1)

x is a fraction when

{n|n+1} = n + 1/2

{0|1/2^(n-1)} = 1/2^n

{p/2^n | (p+1)/2^n} = (2p+1)/2^(n+1)

Mathematical Foundations

6

x is a real number when

x = {x - 1/n|x + 1/n} for n > 0

Infinities and Infinitessimals

Conway numbers allow computation with a diversity of infinities and infinitessimals.

Infinite numbers are generated when an infinity of ordinals is included in xL:

w = {0,1,2,...| } w is infinite

Unlike conventional numbers, operations on varieties of infinite numbers are defined:

w + 1 = {0,1,2,...,w| }

w - 1 = {0,1,2,...|w}

w/2 = {0,1,2,...|w,w-1,w-2,...}

w^(1/2) = {0,1,2,...|w,w/2,w/4,w/8,...}

Conway Operators

For a representation to be useful, it must be accompanied with a set of transformation rules.

Here is how the standard numerical operations are defined recursively for Conway numbers:

Addition

Base: 0 + 0 = { | }
Generator: x + y = {xL+y, x+yL | xG+y, x+yG}

Example: 2 + (-1) = {1| } + { |0}

xL+y = 1 + (-1) = 0 this sum is computed recursively
x+yL = 2 + void = void
xG+y = void + (-1) = void
x+yG = 2 + 0 = 2 this sum is computed recursively

x + y = {0|2} = 1

To show that {0|2} is a representation of {0| } = 1, show equality:

x={0|2} =?= y={0| }

every xG > y 2>1 true
every xL < y 0<1 true
every yL < x 0<1 true
every yG > x none true

Mathematical Foundations

7

Negation

Base: -0 = { | }
Generator: -x = {-xG|-xL}

Mu l t i p l i c a t i o n

Base: 0*0 = { | }
Generator: x*y = {xL*y+x*yL-xL*yL, xG*y+x*yG-xG*yG |

 xL*y+x*yG-xL*yG, xG*y+x*yL-xG*yL}

Multiplication recurs on each partition of each variable.

D i v i s i o n

y is a number and x*y = 1

Base: y = {0| }
Generator: y = {0, (1 + (xG-x)*yL/xG, (1 + (xL-x)*yG/xL |

 (1 + (xL-x)*yL/xL, (1 + (xG-x)*yG/xG}

Conway Star

The form {0|0} is not a number. However, it can be treated as an imaginary number, *, such

that

* + * = 0 * =/= 0

Star is its own inverse. Generally,

n + * = {n|n} for any n

n + * = {0+*,1+*,...(n-1)+*|0+*,1+*,...(n-1)+*}

Consider {0|*}, which is less than or equal to {0|1}, {0|1/2},{0|1/4},...

{0|*} is a positive number which is smaller than all other positive numbers, call it d+.

{*|0} is a negative number which is larger than all other negative numbers, call it d-.

{d+|d-} = {d+|0} = {0|d-} = {0|0} = *

d+ + * = {0,*|0}

d- + * = {0|0,*}

{0|d+} = d+ + d+ + *

Mathematical Foundations

8

Spencer-Brown Numbers

Spencer-Brown Arithmetic (Parenthesis Version)

In Spencer-Brown arithmetic, each number is both an object and an operator.

Integers: (Stroke arithmetic in a container)

0 ()
1 (())
2 (()())
3 (()()())

Operations:

a+b ((a)(b))
a*b a b
a^b ((a) b)

Reduction Rules (implicit commutativity and associativity):

((a)) = a Involution

(()()) a = ((a)(a)) Distribution

Examples: (Brackets are for highlighting, they are identical to parentheses.)

2+3 = 5 (()()) + (()()()) =?= (()()()()())

[[(()())][(()()())]] sum

[()() ()()()] involution

5 interpret

2*3 = 6 (()()) * (()()()) =?= (()()()()()())

[[][]] (()()()) product

[[(()()())][(()()())]] distribute 3 into 2

[()()() ()()()] involution

2^3 = 8 (()()) ^ (()()()) =?= (()()()()()()()())

[[(()())] (()()())] power

[()() (()()())] involution

[((()()) (()()) (()()))] distribute 2 into 3

 (()()) (()()) [[][]] involution (2*2*2)

 (()()) [[(()())][(()())]] distribute 2 into 2

 (()()) [[][] [][]] involution

[[(()())] [(()())] [(()())] [(()())]] distribute 2 into 4

[()() ()() ()() ()()] involution

Mathematical Foundations

9

Kauffman Numbers

Kauffman Arithmetic (String Version)

Integers
1 *
2 ** --> (*)
3 *** --> (*)*
4 **** --> ((*))

Operations

+ juxtapose a + b is a b
x substitute for * a x b is a b

 _/

Canonical Transformations

Instance Conventional arithmetic A lgebra ic

* a = a * 1 + a = a + 1 a b = b a

** = (*) 1 + 1 = 2 x 1 a a = 2a = (a)

(a)(b) = (a b) 2a + 2b = 2(a + b) a)(b = a b

Example 2 x (4 + 3) --> 14

(*) ((*)) (*)* = (((*))(*)*) --> (((*)*)*)
 _____/____/_/

Kauffman Arithmetic (Molecular Version)

Addition is physical mixing. 4 + 3

 * * (*) (**) ((*))
 * * --> (*) * --> * --> *
 * * * (*) (*) (*)

Multiplication is chemical mixing. 2 x 7

 ((*)) (((*)))
 ___/ (((*)))
 / (*) --> ((*)) --> --> (((*)*)*)
 (*) * / (*) ((*)*)

 ____/___/

Mathematical Foundations

10

James Numbers

James calculus uses three types of containers/boundaries to represent all types of numbers.

Several unique numerical concepts arise from this approach. Generalized cardinality applies to

negative and fractional counts, as well as to integer counts. The generalized inverse unifies

subtraction, division, and roots into a single concept and operation. The James imaginary, JJ,

embeds inverse operations into numbers with phase as well as magnitude. J can be used for

numerical computation as an alternative to using numbers.

 JJames Form Interpretat ion

Boundary Operators (swapping between exponential and logarithmic spaces)

(a) e^a
[a] ln a
<a> inverse a (generalized)

Boundary Units (every boundary is both an object and an operator)

() e^0 = 1
[] ln 0 = negative infinity
< > negative 0 = 0

I ntegers (stroke arithmetic using containers)

void 0
() 1
() () 2 ...

Since stroke representation is rather clumsy. I will use decimal numbers to

abbreviate stroke numbers throughout this section.

Operat ions

 a b a+b (shared space)
 ([a] [b]) a*b
(([[a]][b])) a^b

Boundaries can be read as exponents and natural logs:

a*b = ([a][b]) = e^(ln a + ln b) = e^ln a * e^ln b = a*b

a^b = (([[a]][b])) = e^(e^(lnln a + ln b))
= = e^(e^lnln a * e^ln b)

 = e^(ln a * b) = (e^ln a)^b = a^b

Mathematical Foundations

11

Reduction Rules (Axiomatic basis)

Computation is achieved through application of three reduction rules:

([a]) = [(a)] = a I nvo l u t i on

(a [b]) (a [c]) = (a [b c]) D i s t r i bu t i on

a <a> = void I n v e r s i o n

The Form of Numbers

Type Standard form James form

zero 0 void

natural n ()()..n = ([n][()])

negative integer -n <()()..n> = ([n][<()>]) = <([n][()]>

rational m/n ([m]<[n]>)

irrational m^-n (([[m]]<[n]>))

complex i (([[<()>]]<[2]>))

transcendental e (())

The Form of Numerical Computation

In the container representation, the relationships between numerical operations becomes overt.

Essentially, any operation is applying the pair (...[...]...) to a particular part of the

existing form. Addition begins with no boundaries. Like stroke arithmetic, addition (and its

inverse subtraction) is putting things in the same space. Multiplication (and its inverse

division) involves converting to logs with [...] and then back to powers of e with (...).

Power (and its inverse root) is another application of the (...[...]...) form.

addition A B
multiplication ([A] [B])
power (([[A]] [B]))

subtraction A < B >
division ([A] < [B] >)
root (([[A]]< [B] >))

These forms are spread out to show how each operator is an (...[...]...) elaboration of the

previous form:

Mathematical Foundations

12

addition A B
multiplication ([] [])
power ([])

subtraction A < B >
division ([] [])
root ([])

The placement of containers reflects the properties of each operator. Both forms are free of

containment for commutative addition. Both forms are enclosed for commutative multiplication.

One form is enclosed for power, it is not commutative. Inversion is generic, the second form is

simply inverted in all cases, creating the non-commutative inverse operations.

Logar i thms

log base e ln n [n]
antilog base e antiln n (n)

log base b logb n ([[n]] <[[b]]>)

antilog base b antilogb n (([n] [[b]]))

Setting the logarithmic base to e results in the appropriate reduction:

ln n = ([[n]] <[[(())]]>)
 = ([[n]] <[()]>)
 = ([[n]] < >)
 = ([[n]])
 = [n]

Converting between bases:

ln n = log10 n * ln 10

[n] = (([[n]]<[[10]]>)) times [10] hybrid

 = ([([[n]]<[[10]]>)][[10]])
 = ([[n]]<[[10]]> [[10]])
 = ([[n]])
 = [n]

Using the spread out form, we can see the relationship between logs and the other operations:

subtraction A < B >
division ([] [])
logarithm base B [] []

addition A B
multiplication ([] [])
antilog base B ([])

Mathematical Foundations

13

Generalized Inverse

The generalized inverse treats subtraction, division, and roots as the same operation in

different contexts. Below, the spacing between characters is used for emphasis.

-1 < () >
-B < B >
A-B A < B >

1/2 (<[2]>)
1/B (<[B]>)
A/B ([A] <[B]>)

A^2 (([[A]] [2]))
A^B (([[A]] [B]))
A^-B (([[A]] []))
A^(1/B) (([[A]]<[B]>))

ln B [B]
logA B ([[A]]<[[B]]>)
antilogA B (([A] [[B]]))

Some James Calculus Theorems

Name F o r m Interpretat ion

Ca rd i na l i t y A..n..A = ([A][n]) A+..n..+A = A*n

Domin ion [] A = [] -inf + A = -inf
([] A) = void e^(A + -inf) = 0

Inverse Collection <A> = <A B> (-A)+(-B) = -(A+B)

Inverse Cancellation <<A>> = A --A = A

Inverse Promotion ([A][]) = <([A][B])> A*-B = -(A*B)

Some examples of proof:

--A = A <<A>>
<<A>><A>A inversion

 A inversion

-ln(e^A) = -A = ln(e^-A) <[(A)]>
< A > involution

[(<A>)] involution

A/A = 1 ([A] <[A]>)
() inversion

Mathematical Foundations

14

e^A * e^-A = 1 ([(A)][(<A>)])
(A <A>) involution

() inversion

Generalized Cardinality

Multiple reference can be explicit (a listing) or implicit (a counting). n references to A
can be abstracted to n times a single A, in both the additive and the multiplicative contexts. The

form of cardinality is:

([A][n])

Adding A to itself n times is the same as multiplying A by n:

 A ..n.. A = ([A] [n])

Multiplying A by itself n times is the same as raising A to the power n:

([A]..n..[A]) = (([[A]][n]))

Negative cardinality cancels or suppresses positive occurrences. The form of negative

cardinality is

([A][<n>])

Adding A to itself -n times is the same as multiplying A by -n, and is also the same as

adding -A to itself n times:

A..<n>..A = ([A][<n>]) = <([A][n])> = ([<A>][n]) = <A>..n..<A>

Adding ln A to itself n times and then raising e to that power is the same as

multiplying A by itself -n times.

(<[A]>..n..<[A]>) = (([<[A]>][n])) = (<([[A]][n])>)
= (([[A]][<n>])) = ([A]..<n>..[A])

Multiplying -A by itself n times is the same as raising -A to the nth power:

([<A>]..n..[<A>]) = (([[<A>]][n]))

Here is a proof that negative cardinality cancels positive cardinality:

([A][n]) ([A][<n>]) (n*A) + (-n*A) = 0

([A][n <n>]) distribution

([A][]) inversion

([]) dominion

void inversion

Mathematical Foundations

15

Fractional cardinality constructs fractions and roots. The form of fractional cardinality is:

([A]<[n]>)

Adding the fraction A/n to itself n times yields A. Here is a proof that fractional

cardinality accumulates into a single form:

([A]<[n]>)..n..([A]<[n]>) (A/n) +..n..+ (A/n) = A

([([A]<[n]>)][n]) cardinality

([A]<[n]> [n]) involution

([A]) inversion

 A involution

Multiplying the fraction n/A by itself 1/n times yields 1/A:

([n]<[A]>)..1/n..([n]<[A]>) (n/A)*(1/n)= 1/A

([([n]<[A]>)][(<[n]>)]) cardinality

([n]<[A]> <[n]>) involution

(<[A]>) inversion

James Calculus Unit Combinations

The two-unit combinations generate {0, e, inf}. The only three unit combination which does not

reduce has an imaginary interpretation.

Two unit combinations

(<>) = () = 1 e^-0
(()) = e e^1
([]) = void = 0 e^(ln 0) = e^(-inf)

[<>] = [] = -inf ln -0 = -inf
[()] = void = 0 ln e^0 = ln 1 = 0
[[]] = [] = J inf lnln 0 = ln -inf = ln -1 + ln inf

<<>> = <> = void --0 = 0
<()> = -1 -e^0
<[]> = inf --inf = inf

Three unit combinations

<([])> = <[()]> = ([<>]) = [(<>)] = 0

(<[]>) = <[]> e^--inf = e^inf = inf

[<()>] J, the James imaginary

J = [<()>] = ln -1

Mathematical Foundations

16

The James Imaginary

Independence

[<(A)>] = A [<()>] = A J

Interpretation:

ln(-e^A) = A + ln-1 = A + J

Proof:
[<(A)>] = [<(A)>][()] add 0

 = [([<(A)>][()])] involution

 = [<([(A)][()])>] promote

 = [([(A)][<()>])] promote

 = A [<()>] involution

Imaginary Cancellation

[<()>] [<()>] = JJ = void

Interpretation:

J + J = 0

Proof:
[<()>][<()>] = [([<()>][<()>])] involution

 = [<<([()][()])>>] promote

 = [<<()>>] involution

 = [()] cancel

 = void involution

Own Inverse (only 0 has this property in conventional number systems)

J = <J>

Interpretation:

J = -J and J =/= 0

Proof:
J = J <> add 0

 = J <JJ> J cancel

 = J <J><J> collect

 = <J> inversion

Mathematical Foundations

17

Phase

The phase of J is determined by its cardinality.

void = JJ = JJJJ = ... period 2

Rules of J

Here are some common patterns which involve J.

J = <J>
JJ = void

 J = [<()>]
(J) = <()>

 A = <(J [A])> A (J [A]) = void
 <A> = (J [A])

 (A) = <(J A)> (A) (J A) = void
<(A)> = (J A)

 [A] = <(J [[A]])> [A] (J [[A]]) = void
<[A]> = (J [[A]])

(A [J]) = <(A [J])>
([<A>][J]) = ([A][J])

void = () <()> = () (J)

Inverse Operations as J Operations

J is intimately connected with the act of inversion. Its definition contains -1; as well, it is

implicated in the definition of a reciprocal since 1/A = A^(-1). All occurrences of the

generalized inverse can be converted to J forms:

subtraction A-B A = A (J [B])

reciprocal 1/B (<[B]>) = ((J [[B]]))

division A/B ([A]<[B]>) = ([A](J [[B]]))

root A^(1/B) (([[A]]<[B]>)) = (([[A]] (J [[B]])))

negative power A^-B (([[A]][])) = (([[A]][(J [B])]))
 = ((J [B][[A]]))

log base A logA B ([[A]]<[[B]]>) = ([[A]] (J [[[B]]]))

Mathematical Foundations

18

J in Action

J provides an alternative technique for numerical computation. Consider the two versions of

this proof:

(-1)*(-1) = 1 ([<()>][<()>])
 <([()][<()>])> promote

<<([()][()])>> promote

 ([()][()]) cancel

 () involution

(-1)*(-1) = 1 ([<()>][<()>])
 (J J) J

 () J cancel

Finding and creating Js in a form usually offers a short cut for reduction.

(-1)/(-1) = 1 ([J] <[J]>) = () inversion

A^(-1) = 1/A (([[A]] [<()>])) =?= (<[A]>)

(([[A]] J))
(<[A]>)

(a+1)(a-1) = a^2 - 1

([a ()][a <()>]) = ([a ()][a (J)])
 = ([a ()][a]) ([a ()][(J)])
 = ([a][a]) ([()][a]) ([a] J) ([()] J)
 = ([a][a]) ([a]) ([a] J) (J)
 = ([a][a]) a ([a] J) (J)
 = ([a][a]) (J)

 = (([[a]][2])) (J) = a^2 - 1

Transcendentals and Complex Functions

(()) = e^(e^0) = e

Since no rules reduce (()) to any other form, e is incommensurable with other numbers.

i, the square root of -1

i = (-1)^(1/2) (([[-1]] [1/2])) hybrid

(([[<()>]] [(<[2]>)]))
(([J] <[2]>))
(([J](J [[2]])))

Mathematical Foundations

19

i = (([J](J [[2]])))

This leads to the interesting interpretation:

i = (([J]<[2]>)) = e^(J/2)

Squaring:

i^2 = e^J = -1

This can be derived directly:

i^2 = -1 (([[i]] [2])) = <()>
[(([[i]] [2]))] = [<()>]
 ([[i]] [2]) = J

This yields an interpretation which is consistent with the derivation from i:

J = 2 ln i

The J form of complex numbers is:

a+bi = a ([b][i]) = a ([b][(([J](J [[2]])))])
= a ([b] ([J](J [[2]])))

P i

Using Euler's formula we can find another interesting result:

e^(i*Pi) = -1
e^J = -1

J = i*Pi

Now we can express Pi in terms of J:

Pi = J/i = ([J]<[i]>) = ([J]<[(([J](J [[2]])))]>)
 = ([J]< ([J](J [[2]])) >)
 = ([J] ([J](J [[2]])))

Pi = ([J] ([J] (J [[2]])))

Interpreting:

Pi = ([J] ([J] (J [[2]])))
 = ([J] ([J] <[2]>))
 = ([J] J/2) hybrid
 = ([J] [(J/2)])
 = J * e^(J/2)

Pi = Je^(J/2)

Mathematical Foundations

20

Yet another relationship:

Pi = 2i ln i = J*i

2i ln i = ([2] [(([J]<[2]>))] [[(([J]<[2]>))]])
 = ([2] ([J]<[2]>) [J]<[2]>)
 = (([J]<[2]>) [J]) = Pi

Combining results from above, we get the straightforward result:

J*i = J/i

cos x = (e^ix + e^-ix)/2

Trigonometric functions can be expressed as imaginary powers of e:

cos x = ([(ix)(<ix>)]<[2]>) hybrid

where i = (([J] <[2]>))

ix = ([i][x]) = (([J]<[2]>)[x])

cos x = ([((([J]<[2]>)[x])) (<(([J]<[2]>)[x])>)] <[2]>)

= ([((([J]<[2]>)[x]))] <[2]>) ([(<(([J]<[2]>)[x])>)] <[2]>)
= ((([J]<[2]>)[x]) <[2]>) (<(([J]<[2]>)[x])> <[2]>)

let c = <[2]> = (J [[2]])

cos x = ((([J] c)[x]) c) (<(([J] c)[x])> c)

let d = [x] (c [J])

cos x = ((d) c) (<(d)> c)
 = ((d) c) ((J d) c)

 = (c (d)) (c (J d))
 = (c [((d))]) (c [((J d))])
 = (c [((d))((J d))])

J in Standard Notation

i is the additive imaginary. J is the multiplicative imaginary.

J + J = 0

J = ln -1

e^J = e^(ln -1) = -1

Mathematical Foundations

21

Bricken Star, *

When the value -1 is accessed by going through the imaginary J, call it *.

* = -1 *^2 = 1 * = -* * + * = 0

- A = A times * = Ae^J

1/A = A^* = A^e^J

n^(1/A) = n^A^* = n^A^e^J

i = *^(1/2) = *^2^*

Base - f r ee

In going through imaginary hyperbolic space and then returning, the base is arbitrary.

n^J = n(logn -1) = -1

Thus the base can be chosen to be the same as the inverse number, i.e.:

- A = A times * = AA^J = A^(J+1)

1/A = A^* = A^A^J

A^(1/A) = A^A^* = A^A^A^J

* algebra

a^* + b^* = (a+b) times (ab)^*

(([[a]][*])) (([[b]][*])) = ([a b] ([[a]][*]) ([[b]][*]))

I n f i n i t i e s

This calculus has a natural representation of infinity, <[]> which we can use computationally:

[] <[]> =/= void

<[]> = (J [[]])

<[]> X = <[]> inf + X = inf

[<[]>] = <[]> ln inf = inf

(<[]>) = <[]> e^inf = inf (<[]>) = 1/0

[[]] = J <[]> ln ln 0 = ln -inf = J inf

Mathematical Foundations

22

1^inf = (([[1]][inf])) hybrid
= (([[()]][<[]>]))
= (([][<[]>]))
= () = 1

Here we can see that 1 raised to any power will result in 1. However:

0^inf = (([[]][<[]>]))
= (([[]] <[]>))
= ((<[]>))
= <[]> = inf

0^0 = (([[]][])) = (([])) = () = 1

0/0 = ([]<[]>) = ([]) = void = 0

1/0 = ([()] <[]>) = (<[]>) = <[]> = inf

0^(1/0) = (([[]] [([()] <[]>)]))
 = (([[]] <[]>)) = <[]> = inf

Di f fe rent iat ion

The rules of differentiation in the James calculus follow. Let 'A' be dA/dx.

'c' = void dc = 0

'x' = () dx = 1

'(A)' = (['A'] A) de^A = e^A dA

'[A]' = (['A']<[A]>) dln A = 1/A dA

'<A>' = <'A'> d-A = -dA

'A B' = 'A' 'B' d(A+B) = dA + dB

Proof of the Chain Rule of Differential Calculus

d(a*b) = b da + a db

'([a][b])'

 ([a][b]['[a][b]'])

 ([a][b] [(<[a]>['a']) (<[b]>['b'])])

 ([a][b] [(<[a]>['a'])]) ([a][b] [(<[b]>['b'])])

 ([a][b] <[a]>['a']) ([a][b] <[b]> ['b'])

 ([b] ['a']) ([a] ['b'])

Mathematical Foundations

23

Using James differentiation:

y = e^(ax) dy = ae^(ax)

y = (([a][x]))

dy = '(([a][x]))'
 = (['([a] [x])'] ([a][x]))
 = ([(['[a] [x]'] [a][x])] ([a][x]))
 = (['[a] [x]'] [a][x] ([a][x]))
 = (['[a]''[x]'] [a][x] ([a][x]))
 = ([(['a']<[a]>)(['x']<[x]>)] [a][x] ([a][x]))
 = ([([]<[a]>)([()]<[x]>)] [a][x] ([a][x]))
 = ([(<[x]>)] [a][x] ([a][x]))
 = (<[x]> [a][x] ([a][x]))
 = ([a] ([a][x]))

Interpreting:

dy = ([a] ([a][x]))
dy = ([a][(([a][x]))]) = a*e^(a*x)

y = x^n dy = nx^(n-1)

y = (([[x]][n])) dy = ([n][(([[x]][n <()>]))])
dy = ([n] ([[x]][n <()>]))

 dy ='(([[x]][n]))'
= (['([[x]][n])'] ([[x]][n]))
= ([(['[[x]] [n]'] [[x]][n])] ([[x]][n]))
= (['[[x]] [n]'] [[x]][n] ([[x]][n]))
= (['[[x]]''[n]'] [[x]][n] ([[x]][n]))

= ([(['[x]']<[[x]]>) (['n']<[n]>)] [[x]][n] ([[x]][n]))
= ([([(['x']<[x]>)]<[[x]]>) (['n']<[n]>)] [[x]][n] ([[x]][n]))
= ([(['x']<[x]> <[[x]]>) (['n']<[n]>)] [[x]][n] ([[x]][n]))
= ([([()]<[x]> <[[x]]>) ([]<[n]>)] [[x]][n] ([[x]][n]))
= ([(<[x]> <[[x]]>)] [[x]][n] ([[x]][n]))
= (<[x]> <[[x]]> [[x]][n] ([[x]][n]))
= (<[x]> [n] ([[x]][n]))

= ([n] ([[x]][<()>]) ([[x]][n]))
= ([n] ([[x]][n <()>]))

Interpreting:

dy = ([n] ([[x]][n <()>]))
dy = ([n] [(([[x]][n <()>]))]) = n*x^(n-1)

Mathematical Foundations

24

The next derivation illustrates the use of J:

y = J = [<()>]

dy = '[<()>]'
 = (['<()>'] <[<()>]>)
 = ([<'()'>] <[<()>]>)
 = ([< >] <[<()>]>)
 = ([] <[<()>]>) = void

'<A>' = '(J [A])'
= (['J''[A]'] J [A])
= ([(['A'](J [[A]]))] J [A])
= (['A'] J)
= <'A'>

Mathematical Foundations

1

Graphs

Graphs and graph algorithms are pervasive in Computer Science. The graph is such a general

data structure that almost all computational problems can be formulated using one of the

primary graph processing algorithms. Lists and trees are subsets of graphs.

The major problems in hardware synthesis, operating system scheduling and sharing, compiler

optimization, software design and minimization, network communication and synchronization,

and requirements and specification modeling are graph problems. Variations of the fundamental

graph algorithms of traversal, covering, and coloring model most of the problems in these

application areas.

De f i n i t i on

A graph is a collection of vertices V (also called nodes) and edges E (also called arcs or links)

which connect the vertices. A single edge can be described by the two vertices which it connects:

e = (u,v)

Thus, a graph consists of two sets drawn from the carrier set of nodes, S. The first set is

simply the set of nodes; the second set is a set of unordered pairs of nodes, representing edges.

G = <S,(S,S)>

Note that the single set of unordered pairs is sufficient to characterize the graph, assuming that

edges meet at a “virtual node”. In the simplest from, graphs are unordered pairs.

A ggenerator (ie inductive definition) for fully connected graphs:

let Sn be the set of nodes of cardinality n,

Ni be the ith node

Ei be the edges that have Ni as an endpoint.

Base: N1
Generator: Si+1 = insert Ni+1 into Si

Ei+1 = insert one pair (Ni+1 Nk) into Ei
for each k ranging over all n nodes.

In a complete graph of n nodes, the number of edges is

 sum[n] = n(n+1)/2

Mathematical Foundations

2

Types of Graphs

undirected graph:

The edges can be traversed in either direction. Undirected graphs are either trees or

cyclic.

cyclic graph:
The graph contains loops than permit a node to be visited recurrently.

directed graph:

The edges are directional and support only one direction of traversal.

directed acyclic graph (DAG):
No paths permit visiting a node more than once.

weighted graph:

The edges have a numerical value which may represent the cost of traversing that edge.

Weights can be both positive and negative.

connected graph:

All of the vertices can be visited when starting from any vertex. The list of vertices

visited between a starting vertex and an ending vertex is called a path.

sparce graph:

There are many more vertices than edges, that is E << V^2.

dense graph:

The number of edges is about the same as the number of vertices squared; E =~= V^2

complete graph:

Every pair of vertices has an edge connecting them. The graph is thus maximally

connected.

cl ique:

A subgraph (that is a subset of nodes and edges in a graph) which is complete.

bipartite graph:

A graph with two sets of vertices, such that each edge connects vertices from different

sets. No edges connect vertices in the same set.

hypergraph:

A graph with edges that connect more than two vertices. All hypergraphs can be

converted into regular bipartite graphs.

graph complement:
The complement of a graph is a graph with the same vertices, but all edges exchanged (ie

if an edge is present, then delete it; if an edge is missing, then add it).

Mathematical Foundations

3

Representation of Graphs

The choice of graph data structures depends on the density of the graph connectivity. The

complexity of different algorithms depends both on the number of edges and on the number of

vertices. Unlike sets, graphs often have a direct representation in memory. When the data field

of a memory cell contains an address of another cell, the cell can be interpreted as a node and the

shared address can be interpreted as a link.

adjacency lists:

A collection of V lists (usually stored as an array and often hashed), each listing the

adjacent vertices of a particular vertex.

adjacency matrix:

A square matrix of VxV boolean entries, with a 1 recording adjacent vertices, and a 0
recording non-adjacent vertices.

indexed arrays:

For graphs which change during processing, two arrays are used. The first array

contains the V vertices, and provides an index for each vertex. This array is changed

only when the status of the vertex changes, the vertex index is never changed. The

second array contains the E edges, and provides an index for each edge. The data field of

the second array contains the indices of the two vertices connected by that edge. The

connectivity of the graph is changed by changing the edge array entries.

Parenthesis Structure

Graphs can be expressed in a linear parenthesis notation which is convenient for computation

and analysis.

Example

V = {1,2,3,4,5,a,b,c} E = {12,13,24,25,2b,35,4a,5b,5c}

G = ((b (a) (b c)) ((b c)))
 1 2 4 5 3 5

 ()
 () ()
 b () () ()
 a b c b c

 | |
 ----------------- ---------
 | | | |
 | --- ----- -----
 | | | | | |

 b a b c b c

Mathematical Foundations

4

Structure sharing in graphs is represented by multiple labels:

G = ((b (a) 5) (5))
5 = (b c)

Topological Sort

Sorting lists and trees makes them easier to process, since the vertices have a consistent

ordering. Directed acyclic graphs (DAGs) can also be sorted by the partial ordering implicit in

the graph connectivity. Cyclic and undirected graphs do not have a consistent sort.

A topological sort of a DAG is a consistent ordering of the vertices that serves as an ordering

for processing vertices. One convenient sorting is by length of shortest paths from the root

vertex to the leaf vertices.

Primary Graph Algorithms

search ing

The search algorithm traverses a graph, usually identifying the shortest (or longest) path

between two vertices. Spanning trees list paths that connect all vertices. A Hamiltonian
path is a path which visits each vertex while not traversing the same edge more than once. The

travelling saleman problem (ie, what is the shortest route available to visit a collection of

sites) is an example of computing a minimal spanning tree.

cover ing

A vertex cover is a subset of vertices of an undirected graph such that every edge has at least

one end in the subset. Minimization of boolean expressions (by Karnaugh maps or by algebraic

techniques) is an example of graph covering. Each product term in a sum-of-products (SOP)

representation is a subset of vertices of a boolean hypercube. The covering problem is to

include each vertex in the SOP using a minimum number of sub-cubes of the hypercube.

co lo r i ng

A vertex coloring is a labeling of the vertices of an undirected graph such that no edge has two

endpoints with the same label. An example of graph coloring is scheduling and resource

allocation using a resource conflict graph. Vertices in a resource conflict graph represent

operations to perform; edges represent pairs of operations which are in conflict because they

cannot use the same resource.

Mathematical Foundations

1

The Thirsty Archeologist

An archeologist was digging in a Paleozoic mudflat. She came across an imprint of a raindrop

that fell 400 million years ago. The sun was hot, and she took a drink from her canteen.

How many molecules of the original Paleozoic raindrop did she drink?

You have 15 minutes to answer this question. Write down your assumptions, choices, and

decisions. (No justifications are needed.)

	01-introduction.pdf
	02-ch0.pdf
	03-formal-systems.pdf
	04-ch0replies.pdf
	05-models-of-comp.pdf
	06-timeline.pdf
	07-prop-logic.pdf
	08-logic-hist.pdf
	09-computation.pdf
	10-deduction.pdf
	11-deduction-exercise.pdf
	12-tautologies.pdf
	13-algebraic-logic.pdf
	14-techniques.pdf
	15-boundary-logic.pdf
	16-predicate+sets.pdf
	17-recursion.pdf
	18-domains.pdf
	19-recursive-models.pdf
	20-final.pdf
	21-relations.pdf
	22-relational-examples.pdf
	23-relational-algebra.pdf
	24-functions.pdf
	25-systems.pdf
	26-numbers-complete.pdf
	27-graphs.pdf
	28-archeologist.pdf

