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Exotic Number Systems

History of Integers

Number systems evolve in abstraction and expressibility.

Assyrian tokens IIIIII  +  IIIIIIIIIII  =  IIIIIIIIIIIIIIIII

very easy to add, hard to multiply, very hard to read

Roman numerals VI  +  XI  =  XVII

easy to add, hard to multiply, moderate to read

Arabic decimal numbers 6  +  11  =  17

hard to add and to multiply,  easy to read

Binary numbers 110  +  1011  =  10001

easy to add and to multiply, moderate to read

Boundary numbers ((*)*)  +  (((*))*)*  =  ((*)*)(((*))*)*

very easy to add and to multiply, hard to read

Types of numbers

existential (indicative) exists or not

categorical (nominal) share some property +  attribute

ranking (ordinal) put in order +  less than

discrete (interval) relate to integers +  equal steps

comparative (ratio) relate to fractions +  parts and zero

continuous (real) relate to infinite +  compactness

complex (imaginary) relate to model +  i, other unit bases

The Numerical/Measurement Hierarchy

i Imaginary (real1, real2) relation of reals

delta Real dense packing between rationals relation of rationals

divide Rational integer1 / integer2 relation of integers

equal Interval ordinal1 - ordinal2 = constant relation of ordinals

less-than Ordinal nominal1 less-than nominal2 relation of nominals

member-of Nominal indicative1 member-of indicative2 relation of indicatives

<void> Indicative (  ) relation of existence
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Integers as Sets

1 2 3 4 5
Cardinality: {} {}{} {}{}{} {}{}{}{} {}{}{}{}{}

Ordinality: {} {{}} {{{}}} {{{{}}}} {{{{{}}}}}

Uniqueness: {} {{}} {{},{{}}} {{},{{}},{{},{{}}}}

Some Varieties of Numbers

Conway numbers (surreals) provide a single coherent framework for defining all types of

numbers, and provide ways to manipulate infinite forms.

Spencer-Brown arithmetic is a boundary representation in which each form is both a

numerical object and an operator.

Kauffman arithmetic uses a boundary form of place notation to provide a more efficient

computational representation while maintaining operations which are both parallel and

insensitive to the magnitude of the number.

The James Calculus uses three boundaries to shift the representation of numbers between

exponential and logarithmic forms.  This mechanism generalizes the ideas of cardinality and

inverse operations, and constructs a new imaginary which imparts phase structure on numbers.
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Conway Numbers (Surreal Numbers)

A number is a partitioned set of prior numbers, {L|G},

such that no member of L is greater than or equal to any member of G.

The set L contains lesser numbers, while the set G contains greater numbers.

Let xL be an arbitrary member of L, and xG be an arbitrary member of G.

x = {xL|xG} such that no xL >= any xG

i.e. every xL < every xG

Two Conway numbers are ordered

x >= y when no xG <= y and no yL >= x

i.e. every xG > y and every yL < x

Two Conway numbers are strictly ordered

x > y when x >= y and not y >= x

i.e.  all xG > y, all yL < x, some xL < y, some yG > x

Two Conway numbers are equal

x = y when x >= y and y >= x

i.e.  all xG > y, all xL < y, all yL < x, all yG > x

Integers from Ordinals

"Before we have any numbers, we have a certain set of numbers, namely the empty set, {}."

-- John H. Conway

Base: { | } empty partitions of the empty set

Generator: every partition of the set of prior numbers

The base of this system is the act of partitioning, not the empty set.  Partitioning creates the

first distinction, which serves as sufficient structure to build all numerical computation.

The conventional names of numbers can be assigned to Conway numbers:

Is { | } a number? { | } = 0

every xL < every xG? yes since there are no xL
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Is { | } >= { | } is 0 >= 0?

every xG > 0 and every yL < 0?     yes since there are no xG or yL

By symmetry y >= x, thus 0 = 0

Building from Zero

0 is a Conway number, making the set of numbers currently known = {0}.  This generates three

new number partitions:

{0| } { |0} {0|0}

{0|0} is not a number, since there is an xL >= xG, namely xL = 0

{0| } is a number, call it 1

{ |0} is a number, call it -1

What is the ordering of these new numbers?  For illustration, we'll test 0 against -1:

Ordered:

Is { | } >= { |0}? i.e. is 0 >= -1? x=0,  y=-1

every xG > -1 and every yL < 0? yes since there are no xG or yL

Thus 0 >= -1.

Strictly ordered:

Is { | } > { |0}? i.e.  not-1 >= 0?

every -1G > 0 and every -1L < 0? no, since -1G = 0

Thus 0 > -1.  Similarly (tests omitted) 1 > 0.

Building from One

Now, the current set of prior numbers = {-1,0,1}, with a strict ordering, 1 > 0 > -1.

Three prior numbers generate 8 (2^3, the powerset) possible sets to partition.  The definition

of a number constrains the forms generated from these sets to 21 new number forms:

{-1|0}  {-1|0,1}  {-1|1}  {0|1}  {-1,0|1}  { |R}  {L| }

where R and L stand for any of the eight sets in the powerset of prior numbers.
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Conway numbers have multiple representations (just like another representation of 7 is 3+4).

A closer analogy would be to have the number three written in different languages (three, trois,

drei,...).  For example:

0 = { | } = {-1| } = { |1} = {-1|1}

In general: the smallest xG defines G, the largest xL defines L.

This is easy to see since the tests for numbership and ordering compare small xGs and large xLs.

The new numbers are:

{1| } = 2 { |-1} = -2 {0|1} = 1/2 {-1|0} = -1/2

This gives a hint about how to think about Conway representations:  the new number is "in

between" the largest xL and the smallest xG.  When one side of the partition is void, a new

integer is formed.

Number Form Rules

A contribution of Conway numbers is that they incorporate all types of numbers in one

consistent system.  Given a number {a,b,c,...|d,e,f,...}, the interpretation of that form is

the simplest conventional number which is strictly greater than max[a,b,c,...] and strictly

less than min[d,e,f,...].  In general:

If there's any number that fits, then use the simplest number that fits.

x is an ordinal number when

x = {L| }

{n| } = n+1

x is a negative integer when

x = { |G}

{ |-n} = -(n+1)

x is a fraction when

{n|n+1} = n + 1/2

{0|1/2^(n-1)} = 1/2^n

{p/2^n | (p+1)/2^n} = (2p+1)/2^(n+1)
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x is a real number when

x = {x - 1/n|x + 1/n}   for n > 0

Infinities and Infinitessimals

Conway numbers allow computation with a diversity of infinities and infinitessimals.

Infinite numbers are generated when an infinity of ordinals is included in xL:

w = {0,1,2,...| } w is infinite

Unlike conventional numbers, operations on varieties of infinite numbers are defined:

w + 1   = {0,1,2,...,w| }

w - 1   = {0,1,2,...|w}

w/2     = {0,1,2,...|w,w-1,w-2,...}

w^(1/2) = {0,1,2,...|w,w/2,w/4,w/8,...}

Conway Operators

For a representation to be useful, it must be accompanied with a set of transformation rules.

Here is how the standard numerical operations are defined recursively for Conway numbers:

Addition

Base: 0 + 0 = { | }
Generator: x + y = {xL+y, x+yL | xG+y, x+yG}

Example: 2 + (-1) = {1| } + { |0}

xL+y = 1 + (-1)    = 0 this sum is computed recursively
x+yL = 2 + void    = void
xG+y = void + (-1) = void
x+yG = 2 + 0       = 2 this sum is computed recursively

x + y = {0|2} = 1

To show that {0|2} is a representation of {0| } = 1, show equality:

x={0|2} =?= y={0| }

every xG > y 2>1  true
every xL < y 0<1  true
every yL < x 0<1  true
every yG > x none true
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Negation

Base: -0 = { | }
Generator: -x = {-xG|-xL}

Mu l t i p l i c a t i o n

Base: 0*0 = { | }
Generator: x*y = {xL*y+x*yL-xL*yL, xG*y+x*yG-xG*yG |

 xL*y+x*yG-xL*yG, xG*y+x*yL-xG*yL}

Multiplication recurs on each partition of each variable.

D i v i s i o n

y is a number and x*y = 1

Base: y = {0| }
Generator: y = {0, (1 + (xG-x)*yL/xG, (1 + (xL-x)*yG/xL |

  (1 + (xL-x)*yL/xL, (1 + (xG-x)*yG/xG}

Conway Star

The form {0|0} is not a number.  However, it can be treated as an imaginary number, *, such

that

* + * = 0 * =/= 0

Star is its own inverse.  Generally,

n + * = {n|n}  for any n

n + * = {0+*,1+*,...(n-1)+*|0+*,1+*,...(n-1)+*}

Consider {0|*}, which is less than or equal to {0|1}, {0|1/2},{0|1/4},...

{0|*} is a positive number which is smaller than all other positive numbers, call it d+.

{*|0} is a negative number which is larger than all other negative numbers, call it d-.

{d+|d-} = {d+|0} = {0|d-} = {0|0} = *

d+ + * = {0,*|0}

d- + * = {0|0,*}

{0|d+} = d+ + d+ + *
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Spencer-Brown Numbers

Spencer-Brown Arithmetic (Parenthesis Version)

In Spencer-Brown arithmetic, each number is both an object and an operator.

Integers: (Stroke arithmetic in a container)

0 (  )
1 (())
2 (()())
3 (()()())

Operations:

a+b ((a)(b))
a*b   a  b
a^b ((a) b )

Reduction Rules (implicit commutativity and associativity):

((a)) = a Involution

(()()) a = ((a)(a)) Distribution

Examples:  (Brackets are for highlighting, they are identical to parentheses.)

2+3 = 5 (()()) + (()()()) =?= (()()()()())

[[ (()()) ][ (()()()) ]] sum

[   ()()      ()()()   ] involution

5 interpret

2*3 = 6 (()()) * (()()()) =?= (()()()()()())

[[][]] (()()()) product

[[ (()()()) ][ (()()()) ]] distribute 3 into 2

[   ()()()      ()()()   ] involution

2^3 = 8 (()()) ^ (()()()) =?= (()()()()()()()())

[[ (()()) ] (()()()) ] power

[   ()()    (()()()) ] involution

[( (()()) (()()) (()()) )] distribute 2 into 3

   (()()) (()()) [[][]] involution  (2*2*2)

   (()()) [[(()())][(()())]] distribute 2 into 2

   (()()) [  [][]    [][]  ] involution

[[(()())] [(()())] [(()())] [(()())]] distribute 2 into 4

[  ()()     ()()     ()()     ()()  ] involution
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Kauffman Numbers

Kauffman Arithmetic (String Version)

Integers
1 *
2 **  -->  (*)
3 *** -->  (*)*
4 **** -->  ((*))

Operations

+ juxtapose a + b is a   b
x substitute for * a x b is a   b

                                                             \_/

Canonical Transformations

Instance         Conventional arithmetic A lgebra ic

* a  =  a * 1 + a = a + 1  a  b = b  a

**  =  (*) 1 + 1 = 2 x 1    a a = 2a = (a)

(a)(b)  =  (a b) 2a + 2b = 2(a + b)  a)(b = a  b

Example 2 x (4 + 3)  -->  14

(*)    ((*)) (*)*    =    (  ((*))(*)*  )  -->  (  ((*)*)*  )
              \_____/____/_/

Kauffman Arithmetic  (Molecular Version)

Addition is physical mixing. 4 + 3

   *    *             (*)       (**)              ((*))
 *  *      -->   (*)  *     -->        *   -->           *
   *  *  *          (*)            (*)                (*)

Multiplication is chemical mixing. 2 x 7

            ((*))            (((*)))
    ___/                                   (((*)))
   /         (*)  -->        ((*))    -->               -->  (((*)*)*)
  (*)    *   /           (*)                   ((*)*)

         \____/___/
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James Numbers

James calculus uses three types of containers/boundaries to represent all types of numbers.

Several unique numerical concepts arise from this approach.  Generalized cardinality applies to

negative and fractional counts, as well as to integer counts.  The generalized inverse unifies

subtraction, division, and roots into a single concept and operation.  The James imaginary, JJ,

embeds inverse operations into numbers with phase as well as magnitude.  J can be used for

numerical computation as an alternative to using numbers.

     JJames Form Interpretat ion

Boundary Operators (swapping between exponential and logarithmic spaces)

(a) e^a
[a] ln a
<a> inverse a (generalized)

Boundary Units (every boundary is both an object and an operator)

( ) e^0 = 1
[ ] ln 0 = negative infinity
< > negative 0 = 0

I ntegers (stroke arithmetic using containers)

void 0
( ) 1
( ) ( ) 2 ...

Since stroke representation is rather clumsy. I will use decimal numbers to

abbreviate stroke numbers throughout this section.

Operat ions

    a   b a+b (shared space)
 ( [a] [b]) a*b
(([[a]][b])) a^b

Boundaries can be read as exponents and natural logs:

a*b = ([a][b]) = e^(ln a + ln b) = e^ln a * e^ln b = a*b

a^b = (([[a]][b])) = e^(e^(lnln a + ln b))
=  = e^(e^lnln a * e^ln b)

 = e^(ln a * b) = (e^ln a)^b = a^b
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Reduction Rules  (Axiomatic basis)

Computation is achieved through application of three reduction rules:

([a]) = [(a)] = a I nvo l u t i on

(a [b]) (a [c]) = (a [b c]) D i s t r i bu t i on

a <a> = void I n v e r s i o n

The Form of Numbers

Type  Standard form James form

zero 0 void

natural n ()()..n = ([n][()])

negative integer -n <()()..n> = ([n][<()>]) = <([n][()]>

rational m/n ([m]<[n]>)

irrational m^-n (([[m]]<[n]>))

complex i (([[<()>]]<[2]>))

transcendental e (())

The Form of Numerical Computation

In the container representation, the relationships between numerical operations becomes overt.

Essentially, any operation is applying the pair (...[...]...) to a particular part of the

existing form.  Addition begins with no boundaries.  Like stroke arithmetic, addition (and its

inverse subtraction) is putting things in the same space.  Multiplication (and its inverse

division) involves converting to logs with [...] and then back to powers of e with (...).

Power (and its inverse root) is another application of the (...[...]...) form.

addition     A    B
multiplication  ( [A]  [B] )
power (([[A]] [B] ))

subtraction     A  <  B  >
division  ( [A] < [B] >)
root (([[A]]< [B] >))

These forms are spread out to show how each operator is an (...[...]...) elaboration of the

previous form:



Mathematical Foundations

12

addition     A    B
multiplication   ( [ ]  [ ] )
power ( [   ]      )

subtraction     A  <  B  >
division  ( [ ]   [ ]  )
root ( [   ]        )

The placement of containers reflects the properties of each operator.  Both forms are free of

containment for commutative addition.  Both forms are enclosed for commutative multiplication.

One form is enclosed for power, it is not commutative.  Inversion is generic, the second form is

simply inverted in all cases, creating the non-commutative inverse operations.

Logar i thms

log base e ln n   [n]
antilog base e antiln n   (n)

log base b logb n  ([[n]] <[[b]]>)

antilog base b antilogb n (( [n]   [[b]] ))

Setting the logarithmic base to e results in the appropriate reduction:

ln n = ([[n]] <[[(())]]>)
     = ([[n]] <[  ()  ]>)
     = ([[n]] <        >)
     = ([[n]]           )
     =   [n]

Converting between bases:

ln n = log10 n * ln 10

[n] = (([[n]]<[[10]]>)) times [10] hybrid

    = ([([[n]]<[[10]]>)][[10]])
    = (  [[n]]<[[10]]>  [[10]])
    = (  [[n]]                )
    =     [n]

Using the spread out form, we can see the relationship between logs and the other operations:

subtraction     A  <  B  >
division  ( [ ]   [ ]  )
logarithm base B   [   ] [   ]

addition     A     B
multiplication   ( [ ]   [ ]  )
antilog base B (       [   ]  )



Mathematical Foundations

13

Generalized Inverse

The generalized inverse treats subtraction, division, and roots as the same operation in

different contexts.  Below, the spacing between characters is used for emphasis.

-1        < ()  >
-B        <  B  >
A-B     A  <  B  >

1/2  (     <[ 2 ]>)
1/B  (     <[ B ]>)
A/B  ( [A] <[ B ]>)

A^2 (([[A]] [ 2 ] ))
A^B (([[A]] [ B ] ))
A^-B (([[A]] [<B>] ))
A^(1/B) (([[A]]<[ B ]>))

ln B         [ B ]
logA B  ([[A]]<[[B]]>)
antilogA B (( [A]  [[B]] ))

Some James Calculus Theorems

Name F o r m Interpretat ion

Ca rd i na l i t y A..n..A = ([A][n]) A+..n..+A = A*n

Domin ion  [ ] A  = [ ] -inf + A = -inf
([ ] A) = void e^(A + -inf) = 0

Inverse Collection <A><B> = <A B> (-A)+(-B) = -(A+B)

Inverse Cancellation <<A>> = A --A = A

Inverse Promotion ([A][<B>]) = <([A][B])> A*-B = -(A*B)

Some examples of proof:

--A = A <<A>>
<<A>><A>A inversion

        A inversion

-ln(e^A) = -A = ln(e^-A) <[(A)]>
<  A  > involution

[(<A>)] involution

A/A = 1 ([A] <[A]>)
(         ) inversion



Mathematical Foundations

14

e^A * e^-A = 1 ([(A)][(<A>)])
(  A    <A>  ) involution

(            ) inversion

Generalized Cardinality

Multiple reference can be explicit (a listing) or implicit (a counting).  n references to A
can be abstracted to n times a single A, in both the additive and the multiplicative contexts.  The

form of cardinality is:

([A][n])

Adding A to itself n times is the same as multiplying A by n:

  A ..n.. A   =  ( [A] [n])

Multiplying A by itself n times is the same as raising A to the power n:

([A]..n..[A]) = (([[A]][n]))

Negative cardinality cancels or suppresses positive occurrences.  The form of negative

cardinality is

([A][<n>])

Adding A to itself -n times is the same as multiplying A by -n, and is also the same as

adding -A to itself n times:

A..<n>..A = ([A][<n>]) = <([A][n])> = ([<A>][n]) = <A>..n..<A>

Adding ln A to itself n times and then raising e to that power is the same as

multiplying A by itself -n times.

(<[A]>..n..<[A]>) = (([<[A]>][n])) = (<([[A]][n])>)
= (([[A]][<n>])) = ([A]..<n>..[A])

Multiplying -A by itself n times is the same as raising -A to the nth power:

([<A>]..n..[<A>]) = (([[<A>]][n]))

Here is a proof that negative cardinality cancels positive cardinality:

([A][n]) ([A][<n>]) (n*A) + (-n*A) = 0

([A][n <n>]) distribution

([A][ ]) inversion

([ ]) dominion

void inversion
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Fractional cardinality constructs fractions and roots.  The form of fractional cardinality is:

([A]<[n]>)

Adding the fraction A/n to itself n times yields A.  Here is a proof that fractional

cardinality accumulates into a single form:

([A]<[n]>)..n..([A]<[n]>) (A/n) +..n..+ (A/n) = A

([([A]<[n]>)][n]) cardinality

(  [A]<[n]>  [n]) involution

(  [A]          ) inversion

    A involution

Multiplying the fraction n/A by itself 1/n times yields 1/A:

([n]<[A]>)..1/n..([n]<[A]>) (n/A)*(1/n)= 1/A

([([n]<[A]>)][(<[n]>)]) cardinality

(  [n]<[A]>    <[n]>  ) involution

(     <[A]>           ) inversion

James Calculus Unit Combinations

The two-unit combinations generate {0, e, inf}.  The only three unit combination which does not

reduce has an imaginary interpretation.

Two unit combinations

(<>) = () = 1 e^-0
(()) = e e^1
([]) = void = 0 e^(ln 0) = e^(-inf)

[<>] = [] = -inf ln -0 = -inf
[()] = void = 0 ln e^0 = ln 1 = 0
[[]] = [] = J inf lnln 0 = ln -inf = ln -1 + ln inf

<<>> = <> = void --0 = 0
<()> = -1 -e^0
<[]> = inf --inf = inf

Three unit combinations

<([])> = <[()]> = ([<>]) = [(<>)] = 0

(<[]>) = <[]> e^--inf = e^inf = inf

[<()>] J, the James imaginary

J = [<()>] = ln -1
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The James Imaginary

Independence

[<(A)>] = A [<()>] = A J

Interpretation:

ln(-e^A) = A + ln-1 = A + J

Proof:
[<(A)>] =    [<(A)>][ () ] add 0

  = [ ([<(A)>][ () ]) ] involution

  = [<([ (A) ][ () ])>] promote

  = [ ([ (A) ][<()>]) ] promote

  =       A   [<()>]  involution

Imaginary Cancellation

[<()>] [<()>] = JJ = void

Interpretation:

J + J = 0

Proof:
[<()>][<()>] = [  ([<()>][<()>])  ] involution

 = [<<([ () ][ () ])>>] promote

 = [<<(            )>>] involution

 = [  (            )  ] cancel

 = void involution

Own Inverse (only 0 has this property in conventional number systems)

J = <J>

Interpretation:

J = -J and J =/= 0

Proof:
J = J <> add 0

  = J <JJ> J cancel

  = J <J><J> collect

  = <J> inversion
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Phase

The phase of J is determined by its cardinality.

void = JJ = JJJJ = ... period 2

Rules of J

Here are some common patterns which involve J.

J = <J>
JJ = void

 J  = [<()>]
(J) =  <()>

  A   = <(J  [A] )> A (J [A]) = void
 <A>  =  (J  [A] )

 (A)  = <(J   A  )> (A) (J A) = void
<(A)> =  (J   A  )

 [A]  = <(J [[A]])> [A] (J [[A]]) = void
<[A]> =  (J [[A]])

(  A  [J]) = <( A [J])>
([<A>][J]) =  ([A][J])

void = () <()> = () (J)

Inverse Operations as J Operations

J is intimately connected with the act of inversion.  Its definition contains -1;  as well, it is

implicated in the definition of a reciprocal since 1/A = A^(-1).  All occurrences of the

generalized inverse can be converted to J forms:

subtraction A-B A <B> = A (J [B])

reciprocal 1/B (<[B]>) = ((J [[B]]))

division A/B ([A]<[B]>) = ([A](J [[B]]))

root A^(1/B) (([[A]]<[B]>)) = (([[A]] (J [[B]])))

negative power A^-B (([[A]][<B>])) = (([[A]][(J [B])]))
   = ((J [B][[A]]))

log base A logA B ([[A]]<[[B]]>) = ([[A]] (J [[[B]]]))
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J in Action

J provides an alternative technique for numerical computation.  Consider the two versions of

this proof:

(-1)*(-1) = 1   ([<()>][<()>])
 <([ () ][<()>])> promote

<<([ () ][ () ])>> promote

  ([ () ][ () ]) cancel

  (            ) involution

(-1)*(-1) = 1   ([<()>][<()>])
  (  J     J   ) J

  (            ) J cancel

Finding and creating Js in a form usually offers a short cut for reduction.

(-1)/(-1) = 1   ([J] <[J]>) = () inversion

A^(-1) = 1/A (([[A]] [<()>])) =?= (<[A]>)

(([[A]]   J   ))
( <[A]>        )

(a+1)(a-1) = a^2 - 1

([a ()][a <()>]) = ([a ()][a (J)])
     = ([a ()][a]) ([a ()][(J)])
     = ([a][a]) ([()][a]) ([a] J) ([()] J)
     = ([a][a]) (    [a]) ([a] J) (     J)
     = ([a][a])       a   ([a] J) (     J)
     = ([a][a])                   (     J)

     = (([[a]][2])) (J) = a^2 - 1

Transcendentals and Complex Functions

(()) = e^(e^0) = e

Since no rules reduce (()) to any other form, e is incommensurable with other numbers.

i, the square root of -1

i = (-1)^(1/2) (([[ -1 ]] [  1/2  ])) hybrid

(([[<()>]] [(<[2]>)]))
(([  J   ]   <[2]>  ))
(([  J   ](J [[2]]) ))
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i = (([J](J [[2]])))

This leads to the interesting interpretation:

i = (([J]<[2]>)) = e^(J/2)

Squaring:

i^2 = e^J = -1

This can be derived directly:

i^2 = -1  (([[i]] [2]))  =  <()>
[(([[i]] [2]))] = [<()>]
  ([[i]] [2])   =   J

This yields an interpretation which is consistent with the derivation from i:

J = 2 ln i

The J form of complex numbers is:

a+bi = a ([b][i]) = a ([b][(([J](J [[2]])))])
= a ([b]  ([J](J [[2]]))  )

P i

Using Euler's formula we can find another interesting result:

e^(i*Pi) = -1
e^J      = -1

J = i*Pi

Now we can express Pi in terms of J:

Pi = J/i = ([J]<[i]>) = ([J]<[(([J](J [[2]])))]>)
    = ([J]<  ([J](J [[2]]))  >)
    = ([J]   ([J](J [[2]]))   )

Pi = ([J] ([J] (J [[2]])))

Interpreting:

Pi = ([J] ([J] (J [[2]])))
   = ([J] ([J] <[2]>))
   = ([J]    J/2     ) hybrid
   = ([J]  [(J/2)]   )
   = J * e^(J/2)

Pi = Je^(J/2)
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Yet another relationship:

Pi = 2i ln i = J*i

2i ln i = ([2] [(([J]<[2]>))] [[(([J]<[2]>))]])
  = ([2]   ([J]<[2]>)       [J]<[2]>    )
  = (      ([J]<[2]>)       [J]         ) = Pi

Combining results from above, we get the straightforward result:

J*i = J/i

cos x = (e^ix + e^-ix)/2

Trigonometric functions can be expressed as imaginary powers of e:

cos x = ([(ix)(<ix>)]<[2]>) hybrid

where  i = (([J] <[2]>))

ix = ([i][x]) = (([J]<[2]>)[x])

cos x = ( [((([J]<[2]>)[x])) (<(([J]<[2]>)[x])>)] <[2]>)

= ([((([J]<[2]>)[x]))] <[2]>) ([(<(([J]<[2]>)[x])>)] <[2]>)
= (  (([J]<[2]>)[x])   <[2]>) (  <(([J]<[2]>)[x])>   <[2]>)

let c = <[2]> = (J [[2]])

cos x = ((([J] c)[x]) c) (<(([J] c)[x])> c)

let d = [x] (c [J])

cos x = ((d) c) (<(d)> c)
      = ((d) c) ((J d) c)

      = (c   (d))   (c   (J d)  )
      = (c [((d))]) (c [((J d))])
      = (c [((d))((J d))])

J in Standard Notation

i is the additive imaginary.  J is the multiplicative imaginary.

J + J = 0

J = ln -1

e^J = e^(ln -1) = -1
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Bricken Star, *

When the value -1 is accessed by going through the imaginary J, call it *.

* = -1 *^2 = 1 * = -* * + * = 0

- A = A times * = Ae^J

1/A = A^* = A^e^J

n^(1/A) = n^A^* = n^A^e^J

i = *^(1/2) = *^2^*

Base - f r ee

In going through imaginary hyperbolic space and then returning, the base is arbitrary.

n^J = n(logn -1) = -1

Thus the base can be chosen to be the same as the inverse number, i.e.:

- A = A times * = AA^J = A^(J+1)

1/A = A^* = A^A^J

A^(1/A) = A^A^* = A^A^A^J

* algebra

a^* + b^* = (a+b) times (ab)^*

(([[a]][*])) (([[b]][*])) = ([a b] ([[a]][*]) ([[b]][*]))

I n f i n i t i e s

This calculus has a natural representation of infinity, <[]> which we can use computationally:

[] <[]> =/= void

<[]> = (J [[]])

<[]> X = <[]> inf + X = inf

[<[]>] = <[]> ln inf = inf

(<[]>) = <[]> e^inf = inf (<[]>) = 1/0

[[]] = J <[]> ln ln 0 = ln -inf = J inf
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1^inf = (([[1 ]][inf ])) hybrid
= (([[()]][<[]>]))
= (([    ][<[]>]))
= (              ) = 1

Here we can see that 1 raised to any power will result in 1.  However:

0^inf = (([[]][<[]>]))
= (([[]] <[]> ))
= ((     <[]> ))
= <[]> = inf

0^0 = (([[]][])) = (([])) = () = 1

0/0 = ([]<[]>) = ([]) = void = 0

1/0 = ([()] <[]>) = (<[]>) = <[]> = inf

0^(1/0) = (([[]] [([()] <[]>)]))
  = (([[]]        <[]>  )) = <[]> = inf

Di f fe rent iat ion

The rules of differentiation in the James calculus follow.  Let 'A' be dA/dx.

'c' = void dc = 0

'x' = () dx = 1

'(A)' = (['A']  A  ) de^A = e^A dA

'[A]' = (['A']<[A]>) dln A = 1/A dA

'<A>' = <'A'> d-A = -dA

'A B' = 'A' 'B' d(A+B) = dA + dB

Proof of the Chain Rule of Differential Calculus

d(a*b) = b da + a db

'([a][b])'

 ([a][b]['[a][b]'])

 ([a][b] [(<[a]>['a']) (<[b]>['b'])])

 ([a][b] [(<[a]>['a'])]) ([a][b] [(<[b]>['b'])])

 ([a][b]   <[a]>['a'])   ([a][b]  <[b]> ['b']  )

 (   [b]        ['a'])   ([a]           ['b']  )
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Using James differentiation:

y = e^(ax) dy = ae^(ax)

y = (([a][x]))

dy = '(([a][x]))'
   =  ([ '([a]  [x])'        ] ([a][x]))
   =  ([(['[a]  [x]'] [a][x])] ([a][x]))
   =  (  ['[a]  [x]'] [a][x]   ([a][x]))
   =  (  ['[a]''[x]'] [a][x]   ([a][x]))
   =  (  [(['a']<[a]>)(['x']<[x]>)] [a][x] ([a][x])  )
   =  (  [([   ]<[a]>)([() ]<[x]>)] [a][x] ([a][x])  )
   =  (  [            (     <[x]>)] [a][x] ([a][x])  )
   =  (                     <[x]>   [a][x] ([a][x])  )
   =  (                             [a]    ([a][x])  )

Interpreting:

dy =  ([a]  ([a][x])  )
dy =  ([a][(([a][x]))]) = a*e^(a*x)

y = x^n dy = nx^(n-1)

y = (([[x]][n])) dy = ([n][(([[x]][n <()>]))])
dy = ([n]  ([[x]][n <()>])  )

   dy ='(([[x]][n]))'
= (['([[x]][n])'             ] ([[x]][n]))
= ([(['[[x]]  [n]'] [[x]][n])] ([[x]][n]))
= (  ['[[x]]  [n]'] [[x]][n]   ([[x]][n]))
= (  ['[[x]]''[n]'] [[x]][n]   ([[x]][n]))

= (  [(['[x]'       ]<[[x]]>) (['n']<[n]>)] [[x]][n] ([[x]][n]))
= (  [([(['x']<[x]>)]<[[x]]>) (['n']<[n]>)] [[x]][n] ([[x]][n]))
= (  [(  ['x']<[x]>  <[[x]]>) (['n']<[n]>)] [[x]][n] ([[x]][n]))
= (  [(  [() ]<[x]>  <[[x]]>) ([   ]<[n]>)] [[x]][n] ([[x]][n]))
= (  [(       <[x]>  <[[x]]>)             ] [[x]][n] ([[x]][n]))
= (           <[x]>  <[[x]]>                [[x]][n] ([[x]][n]))
= (           <[x]>                              [n] ([[x]][n]))

= ([n] ([[x]][<()>]) ([[x]][n     ]))
= ([n]               ([[x]][n <()>]))

Interpreting:

dy = ([n]   ([[x]][n <()>])  )
dy = ([n] [(([[x]][n <()>]))]) = n*x^(n-1)



Mathematical Foundations

24

The next derivation illustrates the use of J :

y = J  = [<()>]

dy = '[<()>]'
   = (['<()>'] <[<()>]>)
   = ([<'()'>] <[<()>]>)
   = ([<    >] <[<()>]>)
   = ([      ] <[<()>]>) = void

'<A>' = '(J [A])'
= (['J''[A]'           ] J [A])
= ([   (['A'](J [[A]]))] J [A])
= (     ['A']            J    )
=       <'A'>


