Functions

Ordered Pairs

We have seen elements, a, and sets of elements $\{a,b\}$. Adding an ordering relation creates a lattice of ordered functions. Each function is specified by a collection of ordered pairs, (a,b).

Example:

The logical function (if a then b) is defined by a collection of three ordered pairs of the form (a,b), where the values of a, b are in the set $\{0,1\}$:

if a then b =def= $\{(0,0), (0,1), (1,1)\}$

The sixteen different ways of collecting the four possible ordered pairs, N at a time, N=0..4, define the sixteen different Boolean functions of two variables.

Functions and Relations

relation: xRy isTrue *function:* f(x)=y isTrue

The set of all first values of a set of ordered pairs is called the *Domain*.

The set of all second values of a set of ordered pairs is called the *Range*.

A *relation* is a collection of ordered pairs over two sets, the domain set and the range set.

- A *function* is a relation (x, f(x)), such that
 - 1. Every member of the domain is associated with a member of the range, and
 - 2. No element in the domain is associated with more than one element in the range.

Perspectives on Functions

1. Formal constraints on a relation

existence:	all x inDomain . exists y inRange
uniqueness:	all pairs $(x, f(x))$. if $x1=x2$ then $f(x1)=f(x2)$

2. Graph

Domain on x-axis, Range on y-axis uniqueness permits the graph to cross any vertical line (i.e. x-value) *only once*.

- 3. Lookup table
 - x f(x) 1 1 2 4 3 9
- 4. Static relation between variables

x = y + 5 "=" is an equivalence relation

5. Dynamic relation between variables

f(x) = y x is the independent variable (controlled measurement)
y is the dependent variable (observed measurement)

6. Pure operation

(lambda (#) #^2 + # + 1)

is the formal parameter of the function which binds to any value

7. Sequence of combinators

fac = (Y) lf.ln.(((0)n)1) ((*)n) (f) (-1) n

A tree of substitution instructions

8. Rule of correspondence/algorithm

take a number	x	
double it	2*x	
add 3	2*x +	3

9. Set transformation

Domai	n	Range
a	>	b
b	>	С
С	>	d
d	>	d

10. Input-output machine

11. Way of finding and assigning names to unnamed objects

2^100 is the short name of a large number

12. Digraph

(1) ---> (3) ---> (5)

Types of Functions

Surjective, Onto, Epic	all y inRange, exists x inDomain . $f(x) = y$
<i>Injective</i> , 1-to-1, Monic	if $f(x1) = f(x2)$ then $x1 = x2$
Bijective	1-to-1 and Onto

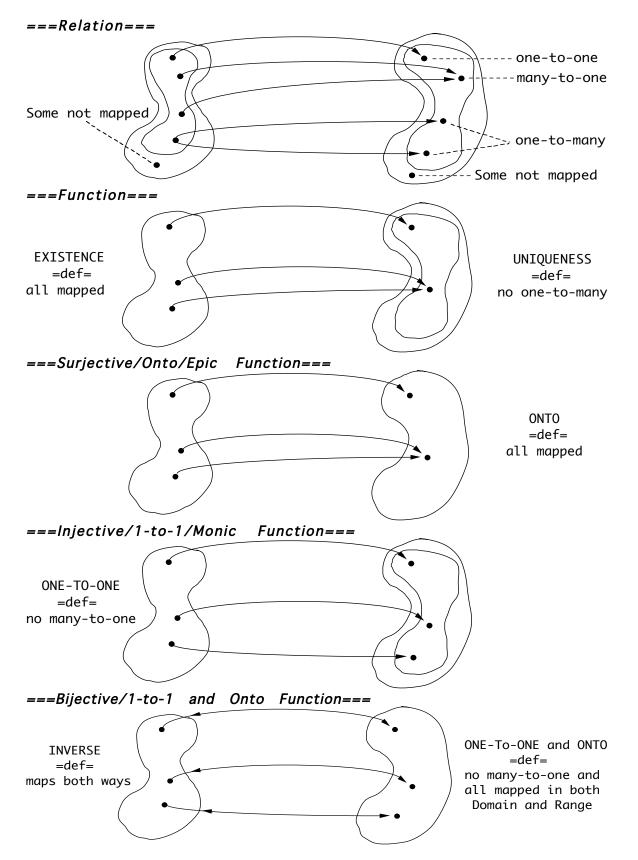
Bijective functions have an **inverse**, since every element in both the Domain and the Range are in correspondence:

two-way existence	all x inD, exists y inR . $f(x) = y$ all y inR, exists x inD . $f(x) = y$
two-way uniqueness	all $(x, f(x))$. $x1 = x2$ iff $f(x1) = f(x2)$
inverse:	Exists f-inverse iff f is onto and one-to-one

Special Functions

Identity	f(x) = x
Characteristic	$f(x) = 1 if x inA \\ = 0 if x not inA$
Permutations	(1,2,3) <> (3,1,2) <> (2,3,1)
Sequences	1 n <> 1/1 1/n

Mappings



Function Composition

 $(f \circ g) = All pairs (x,z)$ Exists y such that (x,y) in g and (y,z) in f Note that the Range of g is a subset of the Domain of f

 $(f \circ g)(x) = f(g(x))$

Associative: $(f \circ g) \circ h = f \circ (g \circ h)$

Not commutative: f o g =/= g o f

Maintains the type of the function:

if f and g are functions, then $(f \circ g)$ is a function if f and g are onto, then $(f \circ g)$ is onto if f and g are one-to-one, then $(f \circ g)$ is one-to-one

Composition of a function with its inverse:

f o f-inverse = identity I on Range of f
f-inverse o f = identity I on Domain of f
Inverse of a composition: (f o g)-inverse = g-inverse o f-inverse

Binary Functions

Binary functions are a mapping of ordered pairs onto elements: ((a,b) c)
e.g.: a + b = c + = {((a,b),c) such that (a,b) in S X S and c inS}

The domain consists of ordered pairs rather than single elements.

If a,b, and c are in the Domain,

then the Domain is closed with regard to the function:

All x1,x2 inD such that f(x1,x2) inD