Functions

Ordered Pairs

We have seen elements, a , and sets of elements $\{\mathrm{a}, \mathrm{b}\}$. Adding an ordering relation creates a lattice of ordered functions. Each function is specified by a collection of ordered pairs, (a,b).

Example:
The logical function (if a then b) is defined by a collection of three ordered pairs of the form (a, b), where the values of a, b are in the set $\{0,1\}$:

```
if a then b =def= {(0,0),(0,1),(1,1)}
```

The sixteen different ways of collecting the four possible ordered pairs, N at a time, $\mathrm{N}=0 . .4$, define the sixteen different Boolean functions of two variables.

Functions and Relations
relation: xRy isTrue function: $\mathrm{f}(\mathrm{x})=\mathrm{y}$ isTrue
The set of all first values of a set of ordered pairs is called the Domain.
The set of all second values of a set of ordered pairs is called the Range.
A relation is a collection of ordered pairs over two sets, the domain set and the range set.
A function is a relation $(x, f(x))$, such that

1. Every member of the domain is associated with a member of the range, and
2. No element in the domain is associated with more than one element in the range.

Perspectives on Functions

1. Formal constraints on a relation
```
existence: all x inDomain . exists y inRange
uniqueness: all pairs (x,f(x)) . if x1=x2 then f(x1)=f(x2)
```

2. Graph

Domain on x-axis, Range on y-axis uniqueness permits the graph to cross any vertical line (i.e. x-value) only once.
3. Lookup table

x	$\mathrm{f}(\mathrm{x})$
1	1
2	4
3	9

4. Static relation between variables
```
x = y + 5 "=" is an equivalence relation
```

5. Dynamic relation between variables
$\mathrm{f}(\mathrm{x})=\mathrm{y} \quad \mathrm{x}$ is the independent variable (controlled measurement) y is the dependent variable (observed measurement)
6. Pure operation
(lambda (\#) \#^2 + \# + 1)
\# is the formal parameter of the function which binds to any value
7. Sequence of combinators
fac $=(Y)$ lf.ln.(((0)n)1) ((*)n) (f) (-1) n
A tree of substitution instructions
8. Rule of correspondence/algorithm

take a number	x
double it	$2 * x$
add 3	$2 * x+3$

9. Set transformation

Domain	Range
a	b
b	c
c	d
d	d

10. Input-output machine

11. Way of finding and assigning names to unnamed objects
$2^{\wedge} 100$ is the short name of a large number
12. Digraph
(1) ---> (3) ---> (5)

Types of Functions

Surjective, Onto, Epic all y inRange, exists x inDomain. $f(x)=y$
Injective, 1-to-1, Monic if $f(x 1)=f(x 2)$ then $x 1=x 2$

Bijective 1-to-1 and Onto
Bijective functions have an inverse, since every element in both the Domain and the Range are in correspondence:

two-way existence	all x ind, exists y inR . $f(x)=y$
	all y inR, exists x ind . $f(x)=y$
two-way uniqueness	all ($\mathrm{x}, \mathrm{f}(\mathrm{x})$) . $\mathrm{x} 1=\mathrm{x} 2$ iff $\mathrm{f}(\mathrm{x} 1)=\mathrm{f}(\mathrm{x} 2)$
inverse:	Exists f-inverse iff f is onto and one-to-one

Special Functions

Mappings

$===$ Function $===$

$===$ Surjective/Onto/Epic Function===

ONTO
=def= all mapped
===Injective/1-to-1/Monic Function===

Function Composition

$(f \circ g)=$ All pairs (x, z) Exists y such that (x, y) in g and (y, z) in f Note that the Range of g is a subset of the Domain of f
$(f \circ g)(x)=f(g(x))$

Associative: ($\quad(\mathrm{f} \circ \mathrm{g}) \circ \mathrm{h}=\mathrm{f} \circ(\mathrm{g} \circ \mathrm{h})$

Not commutative: $f \circ \mathrm{~g}=/=\mathrm{g} \circ \mathrm{f}$

Maintains the type of the function:
if f and g are functions, then ($f \circ g$) is a function
if f and g are onto, then ($f \circ g$) is onto
if f and g are one-to-one, then ($f \circ g$) is one-to-one
Composition of a function with its inverse:

```
    f O f-inverse = identity I on Range of f
    f-inverse o f = identity I on Domain of f
Inverse of a composition: (f o g)-inverse = g-inverse o f-inverse
```


Binary Functions

Binary functions are a mapping of ordered pairs onto elements: ($(a, b) c)$
e.g.: $a+b=c \quad+=\{((a, b), c)$ such that (a, b) in $S X S$ and c ins $\}$

The domain consists of ordered pairs rather than single elements.

If a, b, and c are in the Domain,
then the Domain is closed with regard to the function:

All $x 1, x 2$ ind such that $f(x 1, x 2)$ ind

