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Induction and Recursion

Induction is a mathematical proof technique.  When this technique is used in programming, it

is called rrecursion.  The difference is that induction applies to infinite sets and cannot be

implemented, while recursion applies to finite sets and can be implemented.

Induction/recursion is the fundamental mechanism for

•  extending logical proof techniques into object domains and data structures,

•  defining and building mathematical and programming objects,

•  decomposing objects so that functions can be applied to the elementary units, and

•  robust programming style and program verification.

Most practical computational problems are succinctly expressed in a recursive form (for

instance, tree and graph traversal, spatial decomposition, divide-and-conquer algorithms,

sorting, searching, and large classes of mathematical functions).  As well, recursive function

theory defines what can and cannot be computed.

Optimizing compilers usually convert recursion into do-loops.  This is because the overhead of

making multiple function calls during recursion is greater than a single do-loop.  During the

1980s, programmers learned to write loops rather than recursions so that programs would run

faster.  This type of optimization is irrelevant today.  It is far more important to enhance code

readability, maintenance, and extendibility than to do an obsolete runtime optimization.

Recursive programming is mathematical programming.  Once learned, almost all data

structures and algorithms become both simpler and more comprehendible using recursion.  The

essential difficulty is that programmers need to be trained to think recursively.

Recursive Programming

Inductive definitions build up from the base case to any degree of complexity.  Recursive

programs reduce any degree of complexity one step at a time until the base case is reached.  A

recursion must be well-founded, that is, the steps must eventually terminate at the base.  In

most cases, the step increment is monotonically decreasing.

Recursive programs can be expressed in two forms, mathematical and accumulating.  The

mathematical form accumulates unevaluated operators on the outside and evaluates them after

the base is reached.  The accumulating form evaluates operators as they accumulate;  when the

base is reached, the result is returned.  Accumulating functions have better performance than

mathematical recursions, and easily compile into do-loops.

      Mathematical:

if (base-case is true) then base-value else F[recursive-step]

      Accumulating:

if (base-case is true) then accum else F[recursive-step, (accum + step)]
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Mathematical Induction

Induction depends on a order relation over a domain U.  The idea is to demonstrate truth for the

base case (the simplest member of the ordered set), and then to demonstrate the truth for an

arbitrary member of the set, assuming the truth of the member next to it in the order relation.

If N is an ordered set and property P isTrue for
1) the minimal member of N, and
2) if P(x) then P(next(x))

then P isTrue for all members x of N.

Using the natural numbers,  N = {1, 2,...}:

If P(1) isTrue, and
assuming P(x) we can show that P(x+1) isTrue, then

P(x) isTrue for all members of N.

Some Inductive Definitions

Base case: the value of the most elementary case

Examples: 

zero the additive identity

one the multiplicative identity

Phi the empty set

nil the empty list, the empty tree

false the logical ground

Generating rule:  the transform which defines the next case, given an arbitrary case

Examples:

successor[n] = current[n] + 1
power-of-2[n] = 2 * current[n]
summation[n] = n + current[n]
last[list] = rest[list] = nil
length[list] = length[rest[list]] + 1
member[x,S] = x=select[S] or member[x,rest[S]]
power-set[S] = current[S] * S
cardinality[S] = cardinality[rest[S]] + 1
node[btree] = left[btree] + right[btree]
logic-form[lf] = current[lf] implies next[lf]
parenthesis[pf] = "(" + current[pf] + ")" or

current[pf] + next[pf]
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Recu rs i on

Recursion is a form of induction in which we demonstrate two truths via computation.  For the

boolean property P,

1) P(minimal-member) isTrue

2)  If P(arbitrary-member) isTrue
then P(arbitrary-member-one-step-closer-to-minimal-member) isTrue

Without algebraic processing, the second step requires an instance of the arbitrary member in

order to perform computation.  For example, say you are trying to find the product of N integers

(the factorial function):

factorial[n] =def=

(if n=1 then 1 else (n * factorial[n-1]))

This code requires a value of N in order to compute a value for the factorial of N.  However,

writing and proving the code itself requires mathematical induction.  Above, the base case is

when N=1.  The recursive invariant, which is true for all N>1, is:

factorial[n] = (n * factorial[n-1])

The recursive invariant is the general definition of the function.  It states what remains the

same when the value of N changes.  When a function is written as a do-loop, the recursive

invariant is called the loop invariant.  Again, it defines what is always true each time through

the loop.  By verifying that a loop or a recursion maintains its invariant, it is possible to prove

that code performs correctly.

The accumulating version of the factorial function is

factorial-acc[n, acc] =def=

(if n=1 then acc else factorial-acc[n-1, n*acc])

Recursive Function Exercises

Write recursive procedures (actual or pseudo-code) for the following functions.  Where

possible, write both the mathematical and the accumulating versions.  Example:

+[i,j] =def= (if j=0 then i else (+[i,j-1] + 1))

+[i,j] =def= +acc[j,i]

    +acc[j,acc] =def= (if j=0 then acc else +acc[j-1,acc+1])
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Integer Domain:  {i,j,k,n} are positive integers.  Note that the definitions below use

mathematical induction;  a recursive procedure must phrase the ordering relation in a

descending form.

i+j  =def=  i+0 = i
  i+next[j] = (i+j) + 1

i*j  =def=  i*0 = 0
  i*next[j] = (i*j) + i

i^j    =def=  i^0 = 1
  i^next[j] = (i^j) * i

sum[n] =def=  sum[0] = 0
  sum[i+1] = sum[i] + (i+1)

fac[n] =def=  fac[0] = 1
  fac[i+1] = fac[i] * (i+1)

fib[n] =def=  fib[1] = fib[2] = 1
  fib[i+2] = fib[i+1] + fib[n]

Using mathematical induction, prove the following for integers:

(i*i) = (i^2)

(i*j) + (i*k) = i*(j+k)

(2*sum[n]) = n*(n+1)

(n^2) = (2*sum[n-1]) + n

(3*sum[n^2]) = (2*n + 1) * sum[n]

fib[n^2] = fib[n+1] * fib[n]

sum[n^3] = (sum[n]^2)

List Domain:  {x,y} are elements, list is a list.  Write these recursive functions:

last[list]

returns the last element of list.

length[list]

returns the length of list.

member[x,list]

Boolean, returns T iff x is a member of list.
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copy[list]

returns a copy of list.

alternating-elements[list]

returns a new list of every other element of list.

reverse[list]

returns a new list with the elements of list in reverse order.

samelength[list1,list2]

Boolean, returns T iff both lists have the same length

(Do not use any integer arithmetic for this.)

intersection[list1,list2]

returns a new list which contains elements in both list1 and list2.

list-equal[list1,list2]

Boolean, returns T iff list1=list2 (elements in same order).

set-equal[list1,list2]

Boolean, returns T iff both list1 and list2 have the same elements,

not necessarily in order.

append[list1,list2]

returns a new list which is list1 appended to list2.

substitute[x,y,list]

returns a new list with x substituted for every occurrence of y in list.

Using mathematical induction, prove the following properties about list functions (harder):

length[append[list1,list2]] = length[list1] + length[list2]

last[list] = first[reverse[list]]

samelength[list, reverse[list]]

reverse[reverse[list]] = list

substitute[x,y,substitute[y,x,list]] =/= list
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Tree Domain:  tree is an arbitrary tree.

depth[tree]

returns the maximum depth of tree.

flatten[tree]

returns a list of all nodes of tree

fringe[tree]

returns a list of the leaf nodes of tree

Function Domain:  f is a function; p is a Boolean function

andlist[list]

returns the Boolean AND of a list of Boolean elements

map[f,list]

returns a new list with the function f applied to each element of list

mapchoose[p,list]

returns a new list with every element from list which satisfies test p

Challenge:  Implement the following recursive functions over integers and trace their

execution.  What do you observe? (Try fm for i= {341,96,104,336,133}; try ackermann and

takeuchi for small integers only.)

fm[i] =def=

if i=1 then stop else
if even[i] then fm[i/2] else

fm[(3i+1)/2]

ackermann[i,j] =def=

if i=0 then j+1 else
if j=0 then ackermann[i-1,j] else

ackermann[i,j-1]

ackermann2[i,j] =def=

if i=0 then j+1 else
if j=0 then ackermann[i-1,1] else

      ackermann[i-1,ackermann[i,j-1]]
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takeuchi[i,j,k] =def=

  if (i =< j) then k else
    takeuchi[takeuchi[i-1,j,k],takeuchi[j-1,k,i],takeuchi[k-1,i,j]]


