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Techniques for Logical Deduction

Approaches to Deduction

Asterisks indicate primary features of approach

Truth Tables

*  easy to understand

exhaustive listing of all cases (doesn’t work for infinite domains)

*  brute force, little thinking

exponential (2^n) in number of variables

Natural Deduction

relatively easy to follow, hard to understand

flexible input form

*  many one-directional inference rules

requires insight and cleverness

stored intermediate facts grow exponentially

Reso lut ion

hard to understand

standardized input (CNF), grows exponentially

*  single one-directional inference rule  (good for algorithms)

stored intermediate facts grow exponentially

Algebraic Logic

easy to understand

flexible input form

*  few bidirectional simplification rules

requires some insight

stored intermediate facts not used

Matrix Logic

relatively easy to understand

*  every object is an operator

*  standard matrix addition and multiplication

brute force

exponential (effectively the same as truth tables)

Boundary Logic  (void-based reasoning)

hard to understand

flexible input form (any logical form)

*  few easy to apply rules

requires little thinking

*  facts shrink instead of growing
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Logic Gates

When numbers are expressed in binary, addition can be expressed in terms of logical gates.

32 16 8 4 2 1 powers of 2

 13 • • • summand

+22 • • • summand

=35 • • • sum

Rules of combination:

A B sum carry

0 0 0 0
0 1 1 0
1 0 1 0
1 1 0 1

XOR AND

N-variable Boolean Functions

Different Boolean functions have different binary values associated with each combination of

values of variables.  For N variables, there are 2^N combinations of values (all the rows in a

truth table).  For the 2^N combinations, there are two ways to assign a truth value, resulting in

(2^2^N) Boolean functions of N variables.

Number of variables Number of functions

0        2 2^2^0
1        4 2^2^1
2       16 2^2^2
3      256 2^2^3
4    65536 2^2^4
5 very large 2^2^5

These functions can be arranged at the nodes of an N-dimensional hypercube, which is also a

binary, complemented, distributed lattice.  Here are the listing for 0,1, and 2 variables:

0 variables

functions

0 1

function names    True  False
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1 variable

a functions

0 0 0 1 1
1 0 1 0 1

function names    False a ~a   True

2 variables

  a    b functions

 0  0 0   0   0   0   0   0   0   0   1   1   1   1   1   1   1   1
 0  1 0   0   0   0   1   1   1   1   0   0   0   0   1   1   1   1
 1  0 0   0   1   1   0   0   1   1   0   0   1   1   0   0   1   1
 1  1 0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1

names F   &       a       b  xor  v  nor  =  ~b      ~a  if  nand T
       nif     nfi                         fi

nif = ~(a -> b) fi = (b -> a) nfi = ~(b -> a)

Some of the 16 two-variable functions have common names, some have technical names from

Electrical Engineering, and others are not named.  Note that the above columns for the functions

are the truth tables for that function.

Normal Forms

Any Boolean function can be expressed as a conjunction of disjunctive clauses:

CNF: Conjugate Normal Form

E.g.: (A v B v ~C) & (A v C) & (B v ~C v D)

Groupings of forms joined by OR are called cclauses.  Clauses are joined by AND.

CNF has minimal depth (2 layers deep) and

a maximal number of variable references (up to 2^n)

CNF is a normal form in that a specific Boolean function will have a single CNF form.

Any Boolean function can be expressed as a nesting of implications:

INF : Implicate Normal Form

E.g.: ((((A -> ~B) -> C) -> (D -> E)) -> ~G)

INF has maximal nesting, or depth and a minimal number of variable references.
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There are many INF forms for a given Boolean function (so it’s not truly a normal form)

It is always possible to express a Boolean function

with only two occurrences of a selected variable.

Minimal Bases

It is possible to express many the Boolean functions in terms of other functions.  The basis set
is the set of functions which are taken to be non-decomposable.

Common Basis Sets: {and, or, not, T}
{not, if, T}

Small Basis Sets {nor, F}
{nand, T}

Minimal Basis Set: {nor} (this requires an innovative notation)

Reso lut ion

Resolution expresses Boolean functions as sets of literals.  This is a different way to express

CNF.  The disjunctive forms in each clause form a set with implicit disjunction.  Each clause

forms a different set.

L i te ra l s : atoms and negated atoms

Clauses: sets of literals joined by OR

The Resolution Rule

Let S1 and S2 be sets of clauses, and U be the set Union operator:

({a,b,...} U S1) & ({~a,b,...} U S2)  ==>  {b,...} U S1 U S2

E.g.: {a,b,~c} & {~a,b,d}  ==>  {b,~c,d} resolve on a

Terminat ion

{a} & {~a}  ==>  { }  ==>  False

{a,~a}  ==>  True

Not complete

~{~a,~b} & { }  ==>  no action
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Resolution and Natural Deduction

Resolution Natural deduction

End Case:
{a} & {~a} = { } (a & ~a) = False

Modus Ponens:
{a} & {~a,b} ==> {b} a & (~a v b) ==> b

a & (a -> b) ==> b

Chain ing:
{a,b} & {~a,c} ==> {b,c} (a v b) & (~a v c) ==> (b v c)

Lattices

A lattice is a directed graph with links representing an ordering relation.  Lattices can have a

maximal and a minimal element

      ( ) maximal
       |
      ( )
       | > greater than
      ( )
       |
      ( ) minimal

A partial ordering uses the ordering relation greater-than-or-equal-to.

      ( ) maximal
     /   \
   (1)   (2) 1 = 2
     \   /
      ( ) minimal

Hasse Diagrams (aka lattices)

A set and an ordering relation {S,>}, such that

•  each object is a vertex

•  if (a > b), then a is higher than b.

•  if there is no c such that (a > c > b), then a is connected to b.

   (a)    (b) no maximal element
     \   /
      (c) (a>c) & (b>c) & (c>d)
       |
      (d) minimal
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Matrix Logic

By arranging the truth table of a Boolean function in a matrix form, the rules of logic can be

converted into the rules of matrix algebra.  The general format is:

   B
 T   F

    T  •  •
        A

    F  •  •
Some examples:

A & B      A v B      A = B      A->B         A          ~A         T

 1 0        1 1        1 0        1 0        1 1        0 0        1 1
 0 0        1 0        0 1        1 1        0 0        1 1        1 1

Each Boolean matrix is an operator.  That is, in this formulation, there are no objects.  When

using binary operations, matrix addition is xor;  matrix multiplication is and.

a + b = c a * b = c

0 + 0 = 0 0 * 0 = 0
0 + 1 = 1 0 * 1 = 0
1 + 0 = 1 1 * 0 = 0
1 + 1 = 0 1 * 1 = 1

 xor  and

Note that these relations are the same ones that apply to computational addition.

As well, some matrix combinations result in matrices which are not Boolean functions.  This

then extends Boolean operations into generally unexplored territory, imaginary Boolean
operations.  Some examples of translating between operators:

a + ~a = T 1 1  +  0 0  =  1 1
0 0     1 1     1 1

a * ~a = a 1 1  *  0 0  =  1 1
0 0     1 1     0 0

xor + and = or 0 1  +  1 0  =  1 1
1 0     0 0     1 0

nor^2 = nor 0 0  *  0 0  =  0 0
0 1     0 1     0 1

xor^2 = equal 0 1  *  0 1  =  1 0
  (square-root of equal) 1 0     1 0     0 1

and + or = ? 1 0  +  1 1  =  2 1
0 0     1 0     1 0
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Boolean Cubes

A Boolean function can be expressed in terms of a collection of vertices of a hypercube (this is
not the same use as the lattice hypercube).  The set of all Boolean functions of N variables is

defined by all the possible collections (the power set) of vertices (called ccubes).

Each cube is the conjunction of unique literals, one from each variable.  The whole is formed by

the disjunction of all cubes.

Examples:
a  ~a

1 variable •---•

All possible combinations:

void   = F no cubes

   a single cube

  ~a single cube

a v ~a = T both cubes

    a&b   a&~b
2 variables       •---•

      |   |
      •---•
   ~a&b   ~a&~b

All possible combinations:

 void                          = F no cubes

a&b                            = and single cubes
a&~b                           = nif
~a&b                           = nfi
~a&~b                          = nor

a&b  v a&~b                    = a two cubes
a&b  v ~a&b                    = b
a&b  v ~a&~b                   = equal
a&~b v ~a&b                    = xor
a&~b v ~a&~b                   = ~b
~a&b v ~a&~b                   = ~a

a&b  v a&~b v ~a&b             = or three cubes
a&b  v a&~b v ~a&~b            = fi
a&b  v ~a&b v ~a&~b            = if
a&~b v ~a&b v ~a&~b            = nand

a&b v a&~b v ~a&b v ~a&~b      = T all cubes
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Boolean Cube Operations

Cubes can be used for computation, either symbolically or physically.

function = set of cubes

not function = set of cubes not in function

f or g = overlay the cubes of f and the cubes of g

f and g = intersect the cubes of f and the cubes of g

Perspective as an Operator

By removing the orientation of a Boolean cube (or a Boolean lattice), varieties of Boolean

function collapse into the same form.  For example, all single cube functions are the same (i.e.

composed of one cube) with orientation is ignored.  Another example, expressed in matrix

notation:

1 1  =  0 1  =  0 0  =  1 0
0 0     0 1     1 1     1 0

 a       ~b      ~a      b

These four functions are the same when the matrix is free to rotate.


