Algebraic Logic

Equational Logic A=B

Logical expressions joined by 'equals'.

Axioms of Equations

1. Equality (and Truth) is preserved whenever an expression is substituted for its equal.

If A = B and B = C, then A = C

2. Functions of equals are equal.

If A = B, then F(A) = F(B).

Axioms of Equals

1. Identity:	A = A
2. Commutative:	A = B iff $B = A$
3. Transitive:	if $A = B$ and $B = C$, then $A = C$

Axioms of Substitution

- 0. A[X/Y] means "substitute Y for every X in A"
- 1. Substituting one expression for another in an equation preserves the equality.

If A = B, then A[C/E] = B[C/E]

2. Substituting equal expressions for any subexpressions in an expression preserves the equality.

If A = B, then C[A/E] = C[B/E]

Rule of Standardization

A = B iff (A iff B) = True

Algebraic Proof Techniques

Standard Form:

A = B iff $((A \rightarrow B) \text{ and } (B \rightarrow A)) = True$

Direct Transformation:

A = B iff $A \Rightarrow B$ or $B \Rightarrow A$

Mutual Transformation:

A = B iff $A \Rightarrow C$ and $B \Rightarrow C$

Case Analysis:

A = B iff A[T/E] = B[T/E]and A[F/E] = B[F/E]

Linear Algebra:

A = H	3 iff		A	=>	т	and	в =>	т
		or	А	=>	F	and	в =>	F

Lattice Theory

Lattice theory is the study of a single binary relation \geq to be read as "is contained in".

A *lattice* is a partially-ordered set (poset), and two elements of which have a **greater lower bound** (glb, meet) and a **least upper bound** (lub, join)

A *boolean lattice* is a complemented, distributed lattice, and forms a boolean algebra.