Course Information

Description

The class will emphasize both mathematical thinking and understanding mathematical tools, with some commentary on programming and implementation issues. The goals of this class are

1) to become familiar with mathematical tools in general, and with the types of mathematical tools used in software engineering for specification, formal modeling, and programming in specific.
2) to gain multiple perspectives on the primary mathematical techniques of logic, induction, proof, functions, relations, and graphs.

Homework will consist of substantial thinking and reflection on mathematical ideas and content, plus short selected exercises on each topic. Problems and readings from the text will accompany each class topic, however the lectures and class discussions will not necessarily duplicate or refer to textual materials. In-class exercises will not be graded. No graded tests, no final exam. The final assignment will be to outline the field of mathematics as you understand it.

My general attitude is that each student is a mature adult responsible for his/her own learning and motivation. As well, each student is an individual who will learn best with individually tailored content and experiences. I will provide all standard educational structures for students to choose between (assignments by the instructor, structured environments, multiple resources and references, and self-motivated exploration). I expect each student to know the style of both teaching and learning which best encourages his/her own positive educational experience. I also expect each student to be aware of his/her own goals and motivations for being here, and his/her own needs and expectations for success. Of course, you will need to let me know your goals and needs for me to effectively address them.

Text

Edgar G. Goodaire and Michael M. Parmenter, Discrete Mathematics with Graph Theory, Prentice-Hall, 1998.

This undergraduate text covers the elementary concepts of discrete mathematics. All students are expected to read or to skim all material in the book, and to do selected exercises on topics you do not fully undertstand.

The text is a supplement to the lectures and class time, not the primary content. Students are expected to do text book exercises as part of reading, to the extent needed for individual understanding. Class participation is in addition to the text readings and problems.

Unless specifically requested, the following chapters and sections of the text will not be covered in depth in class, although I will mention each briefly:

Chapter	Topic	Pages
3.3	Prime Numbers	$118-133$
5	Principles of Counting	$211-239$
6	Permutations and Combinations	$240-274$

Lecture notes and special readings for each class will be distributed in hardcopy prior to class meetings.

Evaluation

Available grades:
non-completion: Incomplete, Withdraw, etc.
completion: A A- B+ B B-C
A: reserved for superior performance
A- or B+: expected grade for conscientious performance
B : adequate work
B-: barely adequate
C: equivalent to failing

Grading Options:

1. Grading Contract: specify a set of behaviors and an associated grade.
2. Performance Quality: attendance, participation, assigned exercises
3. Self-determined: negotiate with instructor

Discussion:

If you already understand the subject, if you plan to excel, or if you need clear performance goals for motivation, then Option 1 is a good idea. If you prefer a clearly defined agenda, if you do well with concrete task assignments, or if you need a schedule of activities for motivation, then Option 2 is a good idea. If you are not concerned about grades, if you intend to do what you choose anyway, or if you are self-motivated, then Option 3 is a good idea.

I will notify any student who is not on a trajectory for personal success.

Course Syllabus

