COMMON STRUCTURAL PATTERNS

William Bricken

April 2002

Here are some common small patterns (but larger than conventional library cells) found in the 200 benchmarks. All variables are assumed to be polarity selectable.
-- These are ordered very roughly by commonness, probably an overemphasis on arithmetic functions. Ordering gets arbitrary toward the end.
-- Chunked to a small grain size, they can be viewed as common building blocks.
-- I've put all inside a container, but they are just as common in shared space.
-- Names are somewhat descriptive in the beginning, fuzzier toward the end.
-- Analysis is in terms of 2NAND cells. Each cell is illustrated, together with connective topology.

$$
\begin{aligned}
& \text { C = cell } \\
& X=\text { pass-through } \\
& \%=\begin{array}{l}
\text { level achievable by between tier NAND } \\
\text { without selectable polarity (ie as is) }
\end{array} \\
& \#=\text { level achievable with fully selectable between tier NAND } \\
& \$=\begin{array}{l}
\text { level achievable with fully selectable NAND, } \\
\text { and selectable pass-though }
\end{array}
\end{aligned}
$$

-- from \% and \#, selectable polarity on the between tier 2NAND saves a lot. This is basically saying that most building block forms are neighbors, and that non-neighbor will not put a great demand on the next tier routing, so that middle cells may have only minimal routing.
-- from \$, this is actually giving cells two levels of selectable internal logic.
-- For multilevel structures with pass-through (which is all of them!), we can use feedup to save a level. Actually no time is saved, making feedup a packing freedom. Feedup does permit nice packing of wide functions.

Common gate types

$((x y)((x)(y)))$	XOR
$((x y)(z(x)))$	MUX
$\left(\begin{array}{l}\text { (} x \text { y } z)\end{array}\right.$	FLAT
$(((W)(x))((y)(z)))$	OR of ANDs

with level structure

Level combinations
NOR OR x

$$
(x(y z))
$$

C
\$

CONDITIONAL XOR, MAJORITY
$((x y)(z((x)(y))))$

\$

NESTED AND
(w (x ($(y)(z)))$)

\$
C

```
MUX OR x
    (x (y z) (w (y)))
XOR OR x
    (x (y z) ((y)(z)))
        X C C
        X C C
        C
NESTED MUXes of XOR, XOR CHAIN
        (Cw x)
        (((w)(x))
        (Cy z)
        (C(y)(z))
```


NESTED IF, SIMPLE CHAIN

$$
\begin{aligned}
& \text { (w }(x \quad(y \quad(z \ldots)))
\end{aligned}
$$

$$
\begin{aligned}
& \text { \$ }
\end{aligned}
$$

INVERTED CONDITIONAL XOR

$$
((w x y)(z(x)(y))
$$

DEPENDENT MUX

$$
((w x(y))(y z(w)))
$$

INVERTED MUX

$$
((w x y)(z(w(y)))
$$

MAJORITY OR x

$$
(x(y z)(w((y)(z))))
$$

PSEUDO-MAJORITY OR x

$$
(x(y z)(w((v)(y))))
$$


```
\$
    \(\wedge\) only ONE v
\%=first two \#=others
```

MUX on NOR OR x

