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OVERVIEW

Section I (Descriptions) describes the architectural components and benefits

of Comesh technology.  Section II (Illustrated Tour) provides dozens of

simple and intermediate examples of Comesh circuits, with emphasis on

comparison of different array configurations.  Section III (Implementations)

provides the dnet code generated by Losp which accompanies the illustrations.
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Comesh

Computational mesh (Comesh) is an array-based technique for the construction

of both combinational and sequential semiconductor circuitry. The specialized

array is a triangular matrix of bit storage sites with inverters on the

diagonal.

The mesh is an array of row and column wires which can be connected at

selected intersection points (cross-points). The functionality of the target

circuit is encoded in the configuration of connected cross-points.

Essentially, each connected cross-point in a Comesh corresponds to a physical

wire in a conventional ASIC. Row connections are fanout of a signal; column

connections are wire-ORs of a collection of signals. Diagonal inverters

manage the flow of computation, by inverting each column, they create a

network of NOR logic. In combination, NOR logic constructed from wire-OR

columns and diagonal inversions fully implements all combinational and

sequential logic networks.  

Comesh is not composed of logic gates in the conventional sense. Each column

and inverter does implement the functionality of a NOR gate with an arbitrary

number of inputs. Each row does implement the fanout of that abstract NOR

gate. Input is defined by designated input rows; output is defined by

designated output rows. However, Comesh cross-point configurations are

explicitly structures of Iconic Logic. Rows are boundary objects, either

atoms or containers. Connections in a column indicate which boundary objects

share a common space. A column then is a bounded space. Connections in a row

indicate which spaces contain the row boundary object. The diagonal inverter

specifically represents the act of crossing a boundary, moving computational

focus from the column space to the row container of that space.

Comesh "registers" are also rows which generate output signals;  the

difference between logic and registers is that register rows outputs are

reentered into the array as inputs (together with external input signals) at

each internal clock cycle.  Thus Comesh registers are not flip-flops, and do

not behave as flip-flops, rather their behavior is equivalent to that of

Comesh gates.  This makes timing the Comesh exceedingly simple.

A Comesh replaces both conventional wiring and conventional timing with its

own internal structures. All timing is Comesh pipelined, all wiring is stored

in Comesh cross-points. Comesh provides multilevel logic functionality in a

PLD-like device, without the exponential explosion of flat AND-OR logic.

Since timing is defined by the Comesh rather than by wiring connecting

arbitrary sequences of gates, Comesh timing design is highly predictable.

Since wiring is defined by the location of cross-point connections, place-

and-route is equivalent to loading the mesh configuration. Performance is

therefore independent of wiring complexity, and largely insensitive to the

timing complexity in the original design.
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Cross-points

The types of connectivity at each cross-point vary across types of desired

performance, providing a wide choice of functional and manufacturing

properties. Comesh cross-points are essentially bit locations, cross-point

architectures mimic those available in commercial memories. Non-

reconfigurable meshes have hardwired cross-points. Hardwiring can be achieved

either by factory masking (Mask ROM), by write-once fuse technologies in the

field (PROM), or by limited writable reconfigurable EEPROMs.

Reconfigurable meshes require dynamic cross-points. The simplest, most dense,

and most familiar is DRAM, which uses one transistor per intersection. More

elaborate cross-point architectures include SRAM and Flash-ROM. Some

characteristics of these bit location architectures are listed below:

Mask ROM:  non-reconfigurable factory hardwired connections

very fast, high density, very low power, inexpensive, non-volatile

Flash RAM:  readable/writable RAM

inexpensive, high density, moderately reconfigurable, non-volatile

SRAM:  static read/write memory

fast, low density, high power, expensive, volatile

DRAM:  dynamic read/write memory

high density, inexpensive, low power, volatile

Comesh is not a memory, it is a bit-array.  No address decoding is necessary,

none of the control or read/write logic of memory is relevant to the

computation. All input lines are activated concurrently. All output lines

become available concurrently.

Configurations

Custom software (Losp/Pun) minimizes the target circuit and maps it into a

dnet, which is the internal format for Losp/Pun Comesh data-structures.  Losp

provides Boolean minimization and conversion to dnet format. Pun provides

management of network connectivity such as structure sharing and fanout.

Losp/Pun functionality is completely automated.  Configuration choices are

parameterized to achieve desired structural properties.

Although the mesh can be considered to be square, the number of rows is

greater than the number of columns by the number of input literals.  I.e.

rows = columns + input-literals

There is one row/column for each dnet cell in the function, and one row for

each input literal (positive and negative polarity inputs).
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Registers are a single Comesh row/column pair. The input of a Comesh

"register" is a row which is similar to any other input row. This row is

connected to a column which has no other connection points, it is the

register inversion column. When this column is inverted into a new row, that

row is the register input prior to the next clock cycle, the next state

stored in the register. The value in the register output row is treated as

any output, it is asserted as output into an output vector of conventional

registers (the Output Buffer).  On the following clock cycle, these register

outputs are reentered into the Comesh as inputs, equivalent to any other

inputs entering the mesh.

The number of dnet cells in a Comesh configuration, that is the number of

rows, is roughly equivalent to the number of n-input NOR gates plus registers

in an equivalent multilevel circuit.  Comesh columns are insensitive to

fanin, so that the gate count of an equivalent circuit should include any

amount of fanin;  gate counts are not determined by two-input gates.

Similarly, Comesh rows are insensitive to fanout, so an appropriate

comparison would be circuits with unlimited fanout.  Since almost all

netlists use low fanin and fanout gates, Comesh optimization improves

significantly over conventional gate counts.  Very roughly, one Comesh row is

equivalent to about three conventional gates.

Comesh rows are coupled with their corresponding columns.  However the

relative position of each row is completely free.  This allows Comesh rows,

particularly input and output rows to be arranged to fit whatever pin

locations are required from the global connectivity context.

Comesh is fully composable.  Each segment can be treated as a complex logic

block with inputs and outputs which compose by connection.  Composition can

be achieved a Comesh blocks, or if preferred, within a single Comesh block.

Flattening a circuit to two-levels (SOP format) increases both fanout and

wire-OR loads of a Comesh.  Unlike a PLD, these increases are in the number

of cross-points, not in the number of physical wires or gates. The

exponential growth associated with SOP forms is limited to growth in clauses,

that is increases in the number of bounded groups of inputs, the AND gates of

a conventional PLD.

Comesh is optimized for deeply nested structures, since deep multilevel

nesting of gates minimizes the number of gates and thus the number of rows in

an equivalent Comesh circuit.  In deeply nested designs, propagation across

diagonals corresponds to the critical path of a conventional multilevel

design. A Comesh requires one diagonal propagation step for each conventional

gate in a multilevel path. Like conventional circuits, all Comesh

combinational logic is asynchronous.  Unlike conventional circuits,

propagation delays through a Comesh configuration are highly predictable.
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Diagonal Cells

Diagonal cells are inverters.  Wire-ORs feeding the inverter creates NOR-

logic.  The entire Comesh is unclocked, except at outputs.  

A possible clocking regime would be to clock each diagonal inverter. Clocking

each inverter turns the entire mesh into a fine-grain clocked network.  The

BILD Engine implements a version of diagonal element clocking, enhancing

predictability of performance at the cost of slower operation and more

hardware mechanism.

A hardwired Comesh ROM-like configuration requires two transistors per row,

the two transistors comprising the diagonal inverter. Thus, all Comesh gate-

equivalent rows require two transistors.  A 10K gate circuit literally

requires 20K transistors in the Comesh architecture.  This makes non-volatile

Comesh ROM extremely small and extremely inexpensive to manufacture.

Functional Behavior

Inputs (and their inversions) enter the Comesh concurrently. Active cross-

points in each row define the fanout of the incoming signals. Cross-points in

each column define the inputs to a dnet cell.  Low signals on a row have no

effect on a computation, they represent disconnected elements. High signals

on a row are propagated to each column that the row is connected to via a

cross-point.  hen a high column signal reaches the diagonal inverter, it is

in effect cancelled by the inverter, creating a corresponding row with no

signal. When the Comesh settles and a column has no signal, the pull-up on

the inverter of that column triggers the inverter to emit a high signal to

the corresponding row, in effect propagating an active signal.

Hierarchical Subdivision

Comesh area can be reduced by reclaiming unused cross-points in the sparse

array of connectivity. Several techniques are possible to reduce area:

1) Compose the Comesh of several smaller meshes. A 100 row mesh might

be made from tiling ten 10 row meshes, ten across the row. (Thus, the 100x100

mesh would be composed of one hundred 10x10 meshes.) Submeshes with no

connections can be abstracted to a single meta-non-connect.

2) Compose larger Comesh functions from smaller Comesh functions by

direct wiring.

3) Connect an array of Comesh submeshes using conventional interconnect

technology. Thus, a submesh would be similar to a smaller look-up table in a

CPLD architecture.
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4) Compose limited mesh resources over time. A large function would be

partitioned into several smaller mesh configurations, these smaller

configurations would be dynamically swapped by reconfiguring the mesh

connectivity.

5) Use multi-bit cross-point storage techniques to carry several

different functional configurations in the same mesh.

6) Reconfigure the connectivity in Losp by changing the structural

characteristics of the dnet. An example would be to triangulate the mesh

(assumed standard), another would be to form a SOP dnet.

7) With an appropriate cross-point architecture, reclaimed area can be

explicitly used as memory, providing a homogeneous computation/memory fabric.

Performance and Metrics

The essential advantage of a Comesh network is that it performs as a PLD

without the combinational explosion encountered in all other PLD

architectures.  Roughly,

2^N PLD gates ==> N^2 Comesh bits

Specifically,

N = number of input literals plus registers

M = number of internal gates, regardless of fanins and fanouts, plus

registers

CPLD gates, worst case:  2^N

Comesh rows, worst case:  N+M

       area:              (N+M)*M

Multilevel circuits originated in order to combat the exponential explosion

in PLD gate count.  Comesh provides the functional and manufacturing benefits

of any PLD, while retaining the structural economy and performance of any

multilevel ASIC.

Benefits

In a sentence:  Comesh combines the best of both ASICs and PLDs, with the

drawbacks of neither.  In particular,

Unlike ASICs, the design, verification and layout of Comesh functions is both

easy and rapid.  Comesh is homogeneous, and thus has the manufacturability
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characteristics of memory and of homogeneous gate arrays rather than custom

ASICs.  Comesh performance is slightly slower than an equivalent ASIC design.

Unlike PLDs, Comesh performs at ASIC speeds while reconfiguring at memory-

write speeds.  Internally Comesh requires no physical timing or routing.

Comesh performance is always better than an equivalent FPGA design, and is

roughly equivalent to a PLD design.  However, Comesh design sizes are

determined by the number of multilevel any-fanin gates.

Comesh area (die-size) is slightly smaller than a functionally equivalent

FPGA, since it does not require routing resources. This area is significantly

larger than an equivalent ASIC.

Reconfiguration

Reconfiguration is accomplished in software, at memory-write speeds.  Thus

RAM-based and flash-RAM Comesh is extremely adaptable, providing dynamic

reconfiguration combined with ease of design.   

Design flow

Here is a comparison of standard and Comesh design flows:

                           specification

                            /         \

  CPLD design-flow    /           \      ASIC design-flow

                          /             \

         costly, automated               long, complex, costly

  inefficient ready-to-use               synthesis and verification

                        \                 /

                         \               /

                           fast hardware

                        Comesh design-flow

                           specification

                                 |

                                 |

                             automated

                             inexpensive

                             ready-to-use

                                 |

                                 |

                           fast hardware
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For large designs, conventional CPLDs are too inefficient in space and

wiring.  Two solutions have developed, FPGAs and uPs.  FPGA design-flow is

very similar to CPLD design, except that the end product is slow, relatively

expensive hardware.  uP design is discussed below.

Microprocessors

Comesh is competitive with embedded microprocessors with a fixed variety of

functions.  The flexibility of software instruction sets is matched by the

rapid reprogramability of Comesh.  The trade-off is HDL design (for Comesh)

vs. instruction set design (for a vonNeumann uP).  Both are equally

difficult, but designing in HDL gives immediate hardware speedup, in the

range of two to three orders of magnitude.

Comparing instruction set and Comesh design:

                           specification

                            /         \

       uP design-flow    /           \      Comesh design-flow

                          /             \

         C or assembly language        ABEL or HDL

                   |                        |

             compiled code          automated synthesis

                   |                        |

        simulation or emulation         simulation

                   |                        |

               download                 download

                   |                        |

              slow software            fast hardware

uP compiler technology is relatively advanced, so that timing and resource

allocation is fully automated. Comesh has the same automated "compiler"

synthesis, but the resource allocation problem it addresses is far simpler,

so simple that the designer can just set design parameters such as delay and

area.   

Instruction set design is complex since hardware and software characteristics

interact. Software verification is at best horrible, algorithmic and formal

verification of software is not yet understood. Software engineering imposes

strict design regimes which again make software design difficult and highly

error prone. Worse, there are few techniques know to remove bugs; it is a

software industry standard that all software is shipped riddled with both

known and unknown bugs. From a hardware perspective, this is intolerable.
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Comesh synthesis is completely formal, and fully verified at every design

step.

Both software and hardware approaches make download easy, neither require

place and route. The cost of using a software approach is much slower

performance.

Many uPs use the flexibility of instruction set encoding to provide multiple

functionality. Dynamic reconfiguration of hardware FPGA architectures is

still in its infancy, it is not particularly easy to exchange functionality.

Comesh is reconfigurable at the same speed of reprogramming a software-based

uP. Reconfiguration design is easier than with software. Thus Comesh provides

all the benefits of instruction set programming, with none of the performance

disadvantages. Reconfigurable Comesh uses flash-ROM, DRAM or SRAM cell

technology for bit storage, which adds a small additional cost over non-

volatile Comesh ROM which is hardwired.

Manufacturability

Comesh is dominated by bit storage cells, which have a standard known

architecture. Memory (ROM, flash-ROM, DRAM, SRAM) is increasing in

price/density ratio faster than ASICs (an increase of 1.6 per year rather

than 1.25), thus costs of manufacturing Comesh will decrease faster than all

competing ASIC and FPGA products.

Layout control

Layout control is equivalent to place and route for conventional

reconfigurable hardware. However, Comesh layout is simply the identification

of which cross-points in the mesh to make active, either by storing in a DRAM

or flash-ROM-like cell, or by hardwiring the connection.

Pun provides parametric control of

the desired size of the array,

the degree of wire fanin/out (wire-OR loading),

the number of diagonal gates traversed during the computation

(process time), and

the contextual location of inputs and outputs.

Given that these parameters are all highly mutually interdependent, the

design space is actually quite small. The dnet form can vary over these

parameters, however a minimized dnet also places significant constraints on

connectivity design. This means that the Pun "synthesis and placement"

algorithms can be very efficient, as well as very definitive about resulting

behavioral characteristics such as propagation time and power usage.
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Since Comesh is composable by wiring outputs to inputs, it provides maximum

flexibility for extending and reusing resources. Complex functions can even

be dynamically partitioned and assembled later, using a single small Comesh.

IP cores

Configuration encoding of Comesh can be treated as IP, similar to any

software (instruction set) IP.

Summary of Advantages

--  pin i/o location is flexible

--  memory and computation can be mixed in the same fabric

--  only the output register and the diagonals change,

thus very low power and noise

--  configurations are easily decomposed for time/space trade-offs

--  since disconnections are propagated, very low power use

--  inherent Iconic Logic simplicity

--  wiring is virtual,

--  connected cross-points define paths though i/o space,

rather than paths through gates

--  two transistors per logic function (plus cross-point architecture)

--  all techniques are backward compatible

--  60% yearly growth in memory technology

--  registers are virtual and integrated into the Comesh configuration

--  freely partitionable for cross-mesh integration

--  timing is predictable

--  differentiable not incremental technology
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ILLUSTRATION TOUR

Over fifty illustrations of Comesh circuits follow.  They include the most

simple logic gates, common smaller circuits, and examples of Comesh

composition and timing.   

Reference number (not page number)

Cross-points

generic cross-point 01

ROM cross-point 01a

PROM cross-point 01b

EEPROM cross-point 01c

SRAM cross-point 01d

DRAM cross-point 01e

Diagonal Elements

inverter 02

Registers

single explicit register 02a

register feedback loop 02b

self-connected register 02c

generic register 02d

Logical Operators

nor1 03

nor2 04

nor4 05

and2 06

and4 07

or2 08

or4 09

xor2 10a

xor2, alternative 10b

Three Input Functions

2to1-multiplexer 11

2/3-majority 12

half-adder 13

2bit-tally 14

Combinational Functions

1to4-demultiplexer 15

4to1-multiplexer 16

2to4-decoder 17

decimal-BCD-encoder 18

bcd-to-7segment-encoder 19a
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bcd-to-7segment-encoder diagonalized 19b

2bit comparator 20

1bit-fulladder 21

1bit-subtractor 22

4bit-adder 23

9parity-generator 24

Composition

fulladder-simpler 25

fulladder-simpler-tidy 26

fulladder-composed 27

fulladder-composed-tidy 28

2bit-adder-composed 29

decimal-to-7segment-encoder 30

4bit-multiplier 31

Comparator Versions

1bit-comparator-iterative 32

4bit-comparator-iterative-composed 33

4bit-comparator-parallel 34

4bit-magnitude-comparator-with-enables 35

4bit-magnitude-comparator-SOP 36

4bit-comparator-parallel-square 37

Registers

4bit-shiftregister-serialin-serialout 38

4bit-serial-shiftregister-registerbank 38a

4bit-serial-shiftregister-feedbackloop 38b

4bit-serial-shiftregister-direct 38c

4bit-shiftregister-serialin-parallelout 39

4bit-shiftregister-serial-parallel-load 40

4bit-shiftregister-parallelin-serialout 41

4bit-shiftregister-bidirectional 42

4bit-ripple-counter 43

4bit-synchronous-counter-serialEnable 44

4bit-synchronous-counter 45

4bit-johnson-counter-decode 46

Sequential Circuits

fulladder-serial 47

fulladder-composed-serial 48

2bit-comparator-serial 49

15cent-vendingFSM 50

lion 51

daio 52

s27 53

lion-square 54
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Cross-points

Cross-points are indicated symbolically by an angle join of a row and a

column.

Row cross-points spread a particular signal value to other rows, via column

collection.  Column cross-points form a logical wire-OR.  In boundary terms,

row cross-points identify the containers of the row output, column cross-

points indicate contents of the column input.

In a void-based model, any Hi row value will dominate (Dominion) both the row

and the column of a -point.  Other potential inputs to row or column are

irrelevant.  The dominant signal will propagate through all row cross-points

to all connected columns.  These will propagate to the diagonal, where they

will be inverted into void.  Lo signals do not propagate and do not change

the state the Comesh.

Generic Cross-point

Row-ACTIVE=1

Column-ACTIVE=Row-ACTIVE

+
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ROM Cross-point

Row-CONNECT=1

PROM Cross-point

Fuse- INTACT=1

EEPROM Cross-point

Row- and-Voltage-ACTIVE=1

+5V



15

SRAM Cross-point

Row-ACTIVE=1

SELECT- cr osspoint

Q

READ/not-WRITE

&

DRAM Cross-point

WRITE-Data

Row-ACTIVE=1

READ/not-WRITE
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Diagonal Elements

Simple inverter

INVERTED OUTGOING

INCOMING

Hi incoming is voided.  Lo incoming is made dominant.

Clocked inverter

CLOCK

INCOMING

INVERTED OUTGOING

The diagonal element is clocked to tightly control propagation.
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Registers

A single register

r eg
D

C

S

R

Q

Q

Shorthand notation using a feedback loop

r eg

Shorthand notation using an implicit loop.  This register is connected to

itself.

r eg
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The representation of a generic register.  

Register input fr om mesh r ow

Register output into mesh columns

r eg
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1-input NOR

(A)

A

(NOR A)

2-input NOR

(NOR A B)

B

A

(A B)

4-input NOR

     (A B C D)

D

C

B

A

(NOR A B C D)

Arity is simply the opportunity for any one of several row signals to

dominate a column.  Once a column is dominated, it becomes irrelevant since

the Hi signal is inverted into void.
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2-input AND

( (A)(B) )

(AND A B)

A

B
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4-input AND

( (A)(B)(C)(D) )

(AND A B C D)

A

B

C

D

AND and NOR have the same column structure;  however AND rows come from

inverters.
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2-input OR

( (A B) )

A

B

(OR A B)

OR has the same structure as NOR, but its column signal is inverted twice,

and thus kept active.

4-input OR

  ( (A B C D) )

B

A

C

D

(OR A B C D)
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2-input XOR, Version I

(A)

(B)

(A B)

(1 2)

(3 4)

543

5

4

3

B

A

(XOR A B)

1

2

1 2

( (A B) ((A)(B)) )

XOR takes two NOR columns, one with positive signals and one with inverted

signals, and combines them in another column.
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2-input XOR, Version II

6

(5)6

(B 1)

(A 2)

( ( (A (B)) (B (A)) ) )

21

2

1

(XOR A B)

A

B

3

4

5

3 4 5

(3 4)

(B)

(A)

An alternative version of XOR, slightly less efficient.
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2to1 MULTIPLEXER (MUX)

(IF S THEN D0 ELSE D1)

( (S D1) ((S) D0) )

(2 3)

(1 D2)

(S D1)

(S)

Data1

Data0

Select

1 2

2

43

4

3

1
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2/3 MAJORITY

(1 2 3)

(B C)

(A C)

(A B)

A

B

1

2

3

4

2 3 4

( (A B) (A C) (B C) )

1

C

(MAJORITY A B C)

2/3 MAJORITY combines all pairs of incoming rows into another row.
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HALF-ADDER

B

(3 4)

(1 2) Cout

Sum

1

2

3

4

5

3 4 51 2

A

(A)

(B)

(A B)

( (A)(B) )

( (A B) ((A)(B)) )

A half-adder is XOR with two outputs. Here two separate networks are combined

into one Comesh.  They happen also to share structure, row 4 is the branch

point.  Row 3 also provides a branch point to both outputs, a possibility not

usually incorporated in conventional half-adders.

Reading the Comesh:

Row 3 is relevant only when neither input dominates (both 0), in which

case the carryout is Hi and the sum is void.
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2-bit TALLY

6

(3)6

521

( (A B) ((A)(B)) )

( (A)(B) )

( (A B) )

0

1

2

A

B

1

2

3

4

5

3 4

(A)

(B)

(A B)

(1 2)

(3 4)
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1to4 DEMULTIPLEXER

A3

A2

A1

A0

3

(D S0 S1)

(D 1 S1)

(D S0 2)

(D 1 2)

(S1)

(S0)

Select1

Select0

Data

6

6

1

2

3

4

4 5

5
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4to1 MULTIPLEXER

DataOut

121110987

(11)12

(7 8 9 10)

10

11

(S0 S1 6)

(S1 1 5)

(S0 2 4)

(1 2 3)

9

8

7

(D3)

(D2)

(D1)

(D0)

(S1)

(S0)

Data3

Data2

Data1

Data0

Select1

Select0

4

3

2

1

6

5
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2to4 DECODER

(D0 D1 (E))

((D0) D1 (E))

(D0 (D1)(E))

((D0)(D1)(E))

5

(D0 D1 3)

(1 D1 3)

(D0 2 3)

(1 2 3)

(E)

(D1)

(D0)

Enable

Data1

Data0

54

4

3

2

1

6

7

6 7
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DECIMAL-TO-BCD ENCODER

A3

A2

A1

A0

654321

(D8 D9)

(D4 D5 D6 D7)

(D2 D3 D6 D7)

(D1 D3 D5 D7 D9)

(1)

(2)

(3)

(4)

D9

D8

D7

D6

D5

D4

D3

D2

D1

5

6

1

2

3

4

7

8

7 8
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BCD-TO-7SEGMENT ENCODER

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

(1 2)

(1 3)

(11)

(7)

(8)

(2 11)

(9 15)

(15 16)

(7 13 22)

(17)

(18)

(19)

(23)

(20)

(21)

OUT-1

OUT-2

OUT-3

OUT-4

OUT-5

OUT-6

OUT-7

A0

A1

A2

A3

(A0)

(A1)

(A2)

(A0 A1)

(A0 A2)

(A1 3)

(A2 2)

(A3 6)

(A0 7)

(A1 12)

(A0 A3 14)

(A1 A3 5 11)

(A3 3 4 10)

(A0 6)
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BCD-TO-7SEGMENT ENCODER diagonalized

(21)

(20)

(19)

(13)

(9)

(5 15 16)

(4 11 15 18)

(3 5 18)

(14)

(2 6 8)

(1 12)

(1 7)

(A3)

(A1 A3 10 12)

( 4 7)

(A0 A2)

(A0 A1)

(A0 A2 A3 1)

(A1 4 7)

(A0)

(A0 5)

(A1 4)

(A2)

(A0 2)

(A2 1)

(A1)

A3

A2

A1

A0

OUT-7

OUT-6

OUT-5

OUT-4

OUT-3

OUT-2

OUT-1

(17)

27

26

25

24

23

22

21

20

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1
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2-bit COMPARATOR

(16)

(15)

(6 10)

(5 9)

(2 4)

(1 3)

19

18

17

16

15

10

9

8

7

6

5

4

3

2

1

Equal

Gr eater

Less

A0

B1

(A0)

(B1)

A1

B0

(A1)

(B0)

(A0 B0)

(A1 B1)

(A1 4)

(B1 2)

11

(11 12)

12

(A0 3 12)

(B0 1 12)

13

(7 13)

14

(8 14)
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1-bit FULL-ADDER

(A)

11

10

9

8

7

6

(C)

1

2

3

4

5 (1 2)

(4 5)

(6)

(3 7)

(C 6)

(5 8)

(8 9)

12 (10)

Sum

Cout

Cin

(A B)

(B)

B

A
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1-bit SUBTRACTOR

(6 8)

(4 7)

(2 3)

(1 2)

(A 5)

11

10

9

8

7

6

(B C)

(A B)

(C)

1

2

3

4

5

(9) Differ ence

Bor r owOut

Bor r owIn

(B)

(A)

A

B

C
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4-bit ADDER

30 (25)

(13 17)

(12 16)

(11 15)

(10 14)

(17 24)

(13 23)

(16 22)

(12 21)

(15 20)

(11 19)

(14 18)

(9 10)

(7 8)

(5 6)

(3 4)

(1 2)

(G H)

(E F)

(C D)

(A B)

(I)

(H)

(G)

(F)

(E)

(D)

I

H

G

F

E

D

C

A

B

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

11

10

9

8

7

6

(C)

(A)

(B)

1

2

3

4

5

12

A0

B0

A1

B1

A2

B2

A3

B3

S1

S0

S2

S3

Cout

Cin
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9-bit PARITY GENERATOR

5

6

1

2

3

4

7

8

A

B

C

D

E

F

G

H

I

Even

Odd

(A)

(B)

(C)

(D)

(E)

(F)

(G)

(H)

9 (I)

10

11

12

13

14

15

16

17

18

19

20

21

(A B)

(1 2)

(C 12)

(3 10 11)

(D E)

(4 5)

22

23

24

25

26

27

28

29

30

31

(G H)

(7 8)

32

33

34

35

36

(13 14)

(10 11)

(16 17)

(F 18)

(6 16 17)

(19 20)

(22 23)

(I 24)

(9 22 23)

(25 26)

(15 21)

(13 14 19 20)

(28 29)

(25 26 30)

(27 28 29)

(27 30)

(25 26 28 29)

(33 34)

(31 32)



40

FULL-ADDER simplified

(3 4 5)

Cin

Cout

Sum

(10)12

(8 9)

(5 8)

(C 6)

(4 5)

(1 2)5

4

3

2

1

(C)

6

8

9

10

11

A

B

(A)

(B)

(A B)

Structure sharing reduces the number of rows for a full-adder.
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FULL-ADDER simplified and tidy

(9)

(7 8)

(5 7)

7

(A B)

(B)

(A)

B

A

11

10

9

8

6

(C)

1

2

3

4

5 (1 2)

(4 5)

(C 6)

Sum

Cout

Cin

(3 4 5)
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FULL-ADDER composed of two HALF-ADDERs

Sum

B

Cin

Cout

HALF-ADDER

HALF-ADDER

OR

A

Two half-adders are ORed together by connecting Comesh i/o pins.
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FULL-ADDER composed and tidy

Cout

Cin

A

B

Sum

The composed full-adder with i/o pins removed.
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2-bit ADDER composed of HALF-ADDER and FULL-ADDER

Cout

A0

B0

A1

B1

Sum1

Sum0
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DECIMAL-TO-7SEGMENT-ENCODER composed

OUT-7

OUT-6

OUT-5

OUT-4

OUT-3

OUT-2

OUT-1

D9

D8

D7

D6

D5

D4

D3

D2

D1

Decimal-to-BCD and BCD-to-7segment are composed by connecting i/o pins.
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4-bit MULTIPLIER composed

to- FA24

to- FA22

to- FA22

to- FA21

S1

9

13

14

15

16

17

18

19

20

21

22

23

24

11

10

12

A0

B0

A1

B1

A2

B2

A3

B3

S0

S2

S3

S4

S5

S6

S7

FA14

FA17

FA18

FA19

FA21

FA22

FAS5

FA24

HA10

HA12

HA15

HAS4

fr om- FA17- to- FA21

fr om- FA18- to- HAS4

fr om- FA19- to- FA21

fr om- FA19- to- FA22

fr om- FA18

fr om- FA17

fr om- FA19

fr om-24

fr om-21

fr om- FA19

fr om-22

fr om-23

This illustration is too large to fit on one page; the discontinuous lower

submesh is a continuation of the upper submesh.
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1-bit COMPARATOR iterated

Pr ior

(Pr ior )

(1 4 5)

(2 3)

6

(A B)

(B)

(A)

5

4

3

2

1

B

A

Equal

An iterative unit for an N-bit comparator.
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4-bit COMPARATOR iteratively composed

Cin

B1

A1

A2

B2

A3

B3

A0

B0

Equal

Composing four unit comparators to yield a 4-bit comparator.
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4-bit PARALLEL COMPARATOR

26

25

24

23

22

21

20

19

18

17

16

15

14

13

12

11

10

8

7

6

5

4

3

2

1

A0

B0

A1

B1

A2

B2

A3

B3

(A0)

(B0)

(A1)

(B1)

(A2)

(B2)

(A3)

(B3)

9 (A0 B0)

(A1 B1)

(A2 B2)

(A3 B3)

(1 2)

(3 4)

(5 6)

(7 8)

(9 13)

(10 14)

(1115)

(12 16)

(17 18)

(19 20)

(21)

(22)

(23 24)

(25) Equal

In contrast to composition, this 4-bit comparator has been optimized by Losp.
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4-bit PARALLEL COMPARATOR SQUARE (2 comparators)

Equal

B3

A3

B2

A2

B1

A1

B0

A0

Equal

B3

A3

B2

A2

B1

A1

B0

A0
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4-bit MAGNITUDE COMPARATOR with enables

Enable- Gr eater

Enable- Equal

Enable- Less

Equal

Gr eater

Less

B3

A3

B2

A2

B1

A1

B0

A0

D

C

B

A

E

F

G

H

I

J

K

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

(A)

(B)

(C)

(D)

(E)

(F)

(G)

(H)

(J )

(A 2)

(B 1)

(C 4)

(D 3)

(E 6)

(F 5)

(G 8)

(H 7)

(A 2 13)

(B 1 12)

(12 18)

(33)

(9 10 11 12 13 14 15 16 17)

(14 27)

(K 32)

(16 29)

(15 28)

(17 30)

(9 31)

(26)

(13 19)

(I 25)

(9 24)

(16 23)

(17 22)

(14 21)

(15 20)
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4-bit MAGNITUDE COMPARATOR SOP

D

C

B

A

E

F

G

H

I

J

K

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

(A)

(B)

(C)

(D)

(E)

(F)

(G)

(H)

(J )

(A 2)

(B 1)

(C 4)

(D 3)

(E 6)

(F 5)

(G 8)

(H 7)

(G 8 9)

(H 7 9)

(E G 6 9)

(E 6 8 9)

(F H 5 9)

(F 5 7 9)

(C E G 4 9)

(C E 4 8 9)

(C G 4 6 9)

(C 4 6 8 9)

(D F H 3 9)

(D F 3 7 9)

(D H 3 5 9)

(D 3 5 7 9)

(A C E G 2 9)

(A C E 2 8 9)

(A C G 2 6 9)

(A C 2 6 8 9)

(A E G 2 4 9)

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

(A E 2 4 8 9)

(A G 2 4 6 9)

(A 2 4 6 8 9)

(B D F H 1 9)

(B D F 1 7 9)

(B D H 1 5 9)

(B D 1 5 7 9)

(B F H 1 3 9)

(B F 1 3 7 9)

(B H 1 3 5 9)

(B 1 3 5 7 9)

(9 10 11 12 13 14 15 16 17)

(I 18 20 21 24 25 26 27 32 33 34 35 36 37 38 39)

(K 19 22 23 28 29 30 31 40 41 42 43 44 45 46 47)

(48)

(49)

Equal

Less

Gr eater

A0

B0

A1

B1

A2

B2

A3

B3

Enable- Less

Enable- Equal

Enable- Gr eater

The two-level SOP form restricts all connections to the input rows and to

three columns.
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4-bit SHIFT-REGISTER serial-in, serial-out

OUT

r eg3

r eg2

r eg1

A

r eg4
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4-bit SERIAL SHIFT-REGISTER with register bank

OUT

r eg3

r eg2

r eg1

A

(A)(r eg1) (r eg2)

r eg4

(r eg3)

D

C

S

R

Q

Q

D

C

S

R

Q

Q

D

C

S

R

Q

Q

D

C

S

R

Q

Q

A more explicit illustration of the shift register, showing the register bank

and the clock.
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4-bit SERIAL SHIFT-REGISTER with looped connection

(r eg3)

r eg4

(r eg2)(r eg1) (A)

A

r eg1

r eg2

r eg3

OUT

Another illustration of the shift-register, showing the loop wiring for re-

entering register values.
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4-bit SERIAL SHIFT-REGISTER, direct wired, not inverted

(r eg3)

r eg4

(r eg2)(r eg1) (A)

A

r eg1

r eg2

r eg3

OUT

D

C

S

R

Q

Q

D

C

S

R

Q

Q

D

C

S

R

Q

Q

D

C

S

R

Q

Q

Direct wiring of registers avoids the double inversion while undermining the

homogeneous structure of the mesh.
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4-bit SHIFT-REGISTER serial-in, parallel-out

Q3

Q2

Q1

Q0

r eg3

r eg2

r eg1

A

r eg4
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4-bit SHIFT-REGISTER serial-in, parallel-out with load

(35)

(33 34)

(15 20)

(L 13)

(L 12)

(31)

(29 30)

(16 20)

(L 14)

36

35

34

33

32

31

30

29

28 (27)

(25 26)

(17 20)

(23)

(21 22)

(18 20)

(L 19)

(L)

(S)

(P3)

(P2)

(P1)

(P0)

P2

P3

P1

P0

Load

Ser ial- in

Q3

17

14

16

15

13

12

11

(r eg4)

r eg4

r eg1

r eg2

r eg3

(r eg1)

(r eg2 )

Q0

Q1

Q2

(r eg3)

18

19

20

21

22

23

24

25

26

27
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4-bit SHIFT-REGISTER parallel-in, serial-out with load

27

26

25

24

23

22

21

20

19

18

(r eg3)

(r eg2 )

(r eg1)

r eg3

r eg2

r eg1

r eg4

11

12

13

15

16

14

17

Ser ial- in

Load

P0

P1

P3

P2

(P0)

(P1)

(P2)

(P3)

(S)

(L)

28

29

30

31

32

33

34

35

Ser ialOut

(L 18)

(14 19)

(20 21)

(22)

(L 11)

(15 19)

(24 25)

(26)

(L 12)

(16 19)

(28 29)

(30)

(L 13)

(17 19)

(32 33)

(34)
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4-bit SHIFT-REGISTER bidirectional

Q3

17

14

16

15

13

12

11

10

9

(r eg4)

r eg4

r eg1

r eg2

r eg3

7

5

6

(r eg1)

(r eg2 )

Q0

Q1

Q2

8

(r eg3)

Dir ection

Right- in

Left- in

(R)

(L)

(D)

(9 11)

(D 6)

(12 13)

(14)

(5 11)

(D 7)

18 (16 17)

19 (18)

20

21

22

23

24

25

26

27

(6 11)

(D 8)

(20 21)

(22)

(7 11)

(D 10)

(24 25)

(26)
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4-bit RIPPLE COUNTER

(7)

(6)

(5)

10

9

Q3r eg4

r eg1

r eg2

r eg3

7

5

6

(r eg1)

(r eg2 )

Q0

Q1

Q2

8

(r eg3)
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4-bit SYNCHRONOUS COUNTER with serial enable

(7 12)

(13)14

(11)

(6 10)

(9)

(5 8)

(E)

Enable

Q3

13

12

11

10

9

r eg4

r eg1

r eg2

r eg3

7

5

6

(r eg1)

(r eg2 )

Q0

Q1

Q2

8

(r eg3)
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4-bit SYNCHRONOUS COUNTER

(r eg3)

8

Q2

Q1

Q0

(r eg2 )

(r eg1)

6

5

7

r eg3

r eg2

r eg1

r eg4

(r eg4)

9

10

11

12

13

15

16

14

17

(r eg1 r eg2)

(5 6)

(9 10)

(r eg3 10)

(5 6 7)

(12 13)

(r eg4 13)

(5 6 7 8)

(15 16)

Q3
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4-bit JOHNSON COUNTER with DECODER

0001

0011

0111

1111

1110

1100

1000

0000

(r eg1 6)

(r eg2 7)

(r eg3 8)

(r eg 4 r eg 1)

(r eg2 5)

(r eg4 7)

(r eg3 6)

(5 8)

19

18

17

16

15

14

13

(8)

12

11

(r eg4)

(7)

(6)

10

9

r eg4

r eg1

r eg2

r eg3

7

5

6

(r eg1)

(r eg2 )

8

(r eg3)
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FULL-ADDER serial

(9 (Reset))

(Reset)

r egister

(7 8)

(5 7)

7

(A B)

(B)

(A)

B

A

11

10

9

8

6

(C)

1

2

3

4

5 (1 2)

(4 5)

(C 6)

Sum

Cin

(3 4 5)

A full-adder unit for sequential composition.
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FULL-ADDER serial and composed

Sum

Reset

r egister

B

A

Cout

A full-adder for serial composition, itself composed of two half-adders.
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2-bit COMPARATOR, serial

Equal

(R)

Reset

(1 7)

(2 8)

(9)10

(3 4)

9

(5 6)

8

7

(r egister )

r egister

A

B

1

2

3

4

5

(A)

(B)

(A B)

6

A 2-bit comparator for serial composition.
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15cent vending machine FSM

(14)

(8 9 10 11)

(12)

(r eg2 D 7)

(r eg1 6)

Open(r eg1 r eg2)16

(r eg2 D)

(r eg2 N)

15

14

13

12

11

(5 N)

(r eg1 N)

(N)

(r eg1)

Dime

Nickel

10

9

r eg1

r eg2

7

5

6

8
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LION

(r eg2 )

(r eg1)

(A)

6

5

7

r eg2

r eg1

A

B

8

9

10

11

12

13

14

15

16

17

18

19

(A B r eg1)

(B r eg2)

(A 6)

(B 6)

(11)

(5 12)

(A 9)

(7 8)

(r eg2 10 11)

(10 14)

(13 15)

(16) OUT-1
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DAIO

(9 20)

20

21

22 (15 19)

(4 18)

(17)

(16 17)

(2 3)

19

18

17

16

15

14

13

12

11

10

9

8

A

r eg1

r eg2

7

6 (A)

(r eg1)

(r eg2 )

r eg3

r eg4

(r eg3)

(r eg4)

(1 2)

(6 7)

(7 8)

(9 10)

(12 14)

OUT-1

OUT-2

(11 13)
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S27

(23 24 25 26 27 28 29 30)

(32)

(16 17 18 19)

(22 31)

(6 15 16 17 19 20 21)

(2 6 7 11)

(2 4 6 7 8)

(2 8 13 14)

(1 3 6 14)

(1 3 7 13)

(8 10 14)

(8 10 13)

(8 9 10)

(1 3 9)

(1 12)

(5 14)

(5 9)

(8 14)

(8 13)

(8 9)

(4 8)

(4 5)

36

35

34

33

32

31

30

29

28

27

26

25

24

23

(A)

(B)

(C)

(D)

(r eg1)

D

C

B

19

18

17

16

15

14

13

12

11

10

9

8

A

r eg1

r eg2

(r eg2 )

r eg3

20

21

22

(r eg3)

OUT-1
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LION SQUARE (2 LION circuits)

OUT-1'

r eg1'

r eg2'

A'

B'

OUT- 1

B

A

r eg1

r eg2
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APPENDIX:

Diagonalized CM85A Pun, used as MUX

((cm85a canon-renumber pun22 pun22 44-sort

  (stats cm85a lits 70 conn 73 dnode 36 gate 36) 0.29 (2001 9 5 22 4 50))

 ((main)

  ((a unk)(b unk)(c unk)(d unk)(e unk)(f unk)(g unk)(h unk)(i unk)(j unk)(k unk))

  ((oa ~35) (ob ~36) (oc ~34))

  ((~1     (a)   )

   (~2     (b)   )

   (~3     (c)   )

   (~4     (d)   )

   (~5     (e)   )

   (~6     (f)   )

   (~7     (g)   )

   (~8     (h)   )

   (~9     (j)   )

   (~10    (a ~2)   )

   (~11    (b ~1)   )

   (~12    (c ~4)   )

   (~13    (d ~3)   )

   (~14    (e ~6)   )

   (~15    (f ~5)   )

   (~16    (g ~8)   )

   (~17    (h ~7)   )

   (~18    (a ~2 ~13)   )

   (~19    (b ~1 ~12)   )

   (~20    (~12 ~18)   )

   (~21    (~13 ~19)   )

   (~22    (~14 ~21)   )

   (~23    (~15 ~22)   )

   (~24    (~15 ~20)   )

   (~25    (~14 ~24)   )

   (~26    (~16 ~23)   )

   (~27    (~17 ~25)   )

   (~28    (~17 ~26)   )

   (~29    (~16 ~27)   )

   (~30    (~9 ~28)   )

   (~31    (~9 ~29)   )

   (~32    (k ~30)   )

   (~33    (i ~31)   )

   (~34    (~32)   )

   (~35    (~33)   )

   (~36    (~9 ~10 ~11 ~12 ~13 ~14 ~15 ~16 ~17)   )  )) )


