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ABSTRACT

Evaluation of combinational and sequential circuits can be accomplished with

a single, rapidly converging operation, called occlusion.  The efficiency is

achieved through the unary notation of Boundary Logic which confounds nested

containment with both graph connectivity and logical implication.

This paper defines the essential semantic concepts, describes the generic

occlusion algorithm, and presents the occlusion algorithm for several void-

based models of circuit functionality.  Examples trace the dynamics of

occlusion during circuit evaluation.  The concentration is on models which

may be realizable in hardware, especially the occlusion array model (OAM).

All techniques apply to sequential circuits with registers, as well as to the

simpler combinational circuits.

The objective is to determine the cost/performance of boundary circuits

compared to the conventional signals-and-gates actualization used in

transistor-based silicon logic.
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OCCLUSION

Reducing a well-formed parens (WFP) without variables or labels is equivalent

to logical evaluation (without algebraic abstraction), using the occlusion

theorem as the single reduction rule:

(( ) A) = <void> OCCLUSION

An empty container erases (deletes, voids) its container and all contents.  

There is a single terminal variant: when an empty parens remains in the

outermost space, the precursor axiom to Occlusion is needed.

 ( ) A = ( ) DOMINION

Placing each side of this axiom within a container converts Dominion into

Occlusion, via Involution

(( ) A) = (( )) = <void> Proof of occlusion

The form on the left-hand-side of occlusion is a void-equivalent, it can

exist arbitrarily anywhere within any expression (including itself) any

number of times.  Increasing the size of an expression by manifesting void-

equivalents is rarely motivated.  Acknowledging the potential presence of

void-equivalents enables a quite powerful set of unique reduction tools.

Every evaluation algorithm herein describes the same mathematical operation,

that of occlusion.  No other transformations are used during evaluation.

When the representation (the data structure) varies, the evaluation

algorithms take on substantively different operational characteristics.

GENERIC OCCLUSION ALGORITHM  

The reductive power of the occlusion theorem comes from its identification of

a void-equivalent.  

(A ( )) = <void> OCCLUSION

The generic occlusion algorithm reduces any parens form which contains an

empty mark, ( ).  Since forms are assembled in space, without associative or

commutative structure, the appropriate implementation is strongly parallel.

Parallelism can be simulated by looping over all items within a particular

space, since forms sharing a space are independent (not coupled).  In parens

forms, spaces are nested.  These are best addressed by recursion, or more

succinctly, a parallel mapping across all forms in a space.   
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Recursive Algorithm

In this recursive mapping algorithm, "the form" is the input.

English description

if the form is empty or an atom
  then return the form
  else if the form contains a mark
    then delete the form
    else apply occlusion to each subform in the form.

Pseudo-English code

(if the-form-is (a-mark or an-atom)
  then return-the-form
  else (if (the-form-contains a-mark)
         then delete-the-form
         else (map occlusion over-each-subform)))

LISP code

(defun generic-occlusion (pf)
  (cond
    ((or (null pf) (atom pf)) pf)
    ((member mark pf) <no-op>)
    (T (map occlusion pf))))

Recursive Algorithm with Look-ahead

A more complex look-ahead algorithm keeps better track of the context of

evaluation.  The selector for look-ahead forms is strongly parallel.

English description

  STEP 1 if the form is empty or an atom
  then return the form
  else if the form contains a mark
    then delete the form
    else apply step two to the form.

  STEP 2 select a subform from the contents of the form
  if the subform is an atom
    then return the subform
    else if the subform contains a mark
      then delete the subform
      else add the application of step 2 to the subform
           to the application of step 2 to the rest of the form.
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Pseudo-English code

(if (the-form-is (empty or an-atom))
  then (return the-form)
  else (if (the-form-is a-container-of-a-mark)
         then (delete the-form)
         else (if (the-content-selection is-an-atom)
                then (add the-content-selection
                       to (recur-on the-rest-of-the-form))
                else (if (the-content-selection has-a-shallow-mark)
                       then (recur-on the-rest-of-the-form)
                       else (add (recur-on the-content-selection)
                              to (recur-on the-rest-of-the-form)))))

LISP code

(define generic-occlusion (pf)
  (cond
    ((or (null pf) (atom pf)) pf)
    ((member mark pf) <no-op>)
    (T (generic-occlusion-aux pf))))

(define generic-occlusion-aux (pf)
  (cond
    ((null pf) nil)
    ((atom (first pf))
     (cons (first pf) (generic-occlusion (rest pf))))
    ((member mark (first pf))
     (generic-occlusion (rest pf)))
    (T (cons (generic-occlusion-aux (first pf))
             (generic-occlusion-aux (rest pf)))))

OCCLUSION ARRAY MODEL (OAM)

The algorithms which follow are applicable to both combinational and

sequential circuits.  Sequential processing includes additional steps for

managing the state of registers.

An occlusion array for a given circuit functionality is a spatial display of

distinctions, each distinction corresponding to one dnode in a distinction

network.  This array is a binary-valued rank 2 square matrix.  Formally, an

occlusion array is the relation matrix for a set of containment pairs, and

the adjacency matrix for a distinction network.

The significant difference between an occlusion array and a matrix is that

the array has logical semantics, it can be used to evaluate logical

expressions and circuits.  The configuration of distinctions in an occlusion

array mirrors the topology of a distinction network.  This configuration acts

to steer the propagation of values through the array, analogous to the

propagation of values through a logical circuit.  In contrast, matrices are
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usually formulated for numerical computation.  The conventional matrix

addition and multiplication operations do not apply to occlusion arrays.

Transformations for void-based arrays are based on identifying the existence

of a mark, its relationship to the void.  Conventionally, matrix

transformation is based on specific numerical combination of matrix cells.

Occlusion arrays are void-based, thus their behavior is unary rather than

binary.  Only positive output values are asserted as output, negative output

values occur by default, in the absence of an asserted positive value.  The

termination condition is independent of value assertion, so a propagated

value (either negative or positive) is not necessary to terminate evaluation.

Progress occurs by masking, or eliminating, dnodes (array rows).  When all

rows are masked, computation is over.  As specific dnodes are masked, the

transparency of the output vector might change.  At termination, any

particular output either remains transparent (i.e. has a 0 value) or has

become opaque (i.e. has a 1 value).

In the following, the components of the occlusion array model are described

in detail, and the generic occlusion algorithm is transcribed into array

behavior.

MODEL COMPONENTS (SEQUENTIAL and COMBINATIONAL)

Components

•  Input I

•  Occlusion array C

•  Mask M

•  Active A

•  Input filter N

•  Output filter U

•  Register-top filter T

•  Register-bot filter B

•  Register state screen S

•  Output screen O

The sequential circuit model consists of 10 components: one array and nine

vectors, all with the same dimensions.  Two pairs of these vectors do not

intersect (S&O, T&B) and can possibly be combined.
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    input           circuit            masks       filters      screens

     ---       ------------------      -----      ---------      -----
     | |       |                |      | | |      | | | | |      | | |
     | |       |                |      | | |      | | | | |      | | |
     | |       |                |      | | |      | | | | |      | | |
     | |       |                |      | | |      | | | | |      | | |
     | |       |                |      | | |      | | | | |      | | |
     | |       |                |      | | |      | | | | |      | | |
     | |       |                |      | | |      | | | | |      | | |
     | |       |                |      | | |      | | | | |      | | |
     | |       |                |      | | |      | | | | |      | | |
     ---       ------------------      -----      ---------      -----

      I                 C               M A        N U T B        S O

Input vector

I = system Input

This dynamic element is activated with system input, at the beginning of

computation.  The maximal dimension of this vector could be substantively

less than the array dimension (which includes all dnodes as well).  For

hardware parallelism, all dimensions are the same in this model.

Technically, the input vector is not necessary, since positive and negative

inputs can be recorded directly into the masks.

Array

C = Occlusion array

This static element defines the functionality of the circuit.  Once loaded,

it is the static control element which guides computation but does not enter

into it through any transformations.  The array is analogous to the place and

routing of a conventional FPGA circuit, and to the machine instructions of a

conventional CPU.  It abstracts wiring so that circuit functionality does not

need to be expressed by physical wires.  As an abstraction, it is as

reconfigurable as machine instructions.

Rows and columns with the same occlusion array index identify the same dnode

from different perspectives.  Rows are the input perspective, columns are the

output perspective.  Marks in a row identify the column nodes for which the

row node is an input.  Marks in a column identify the row nodes which are

input to that column node.

Prior to loading, the computational array must be sized for the particular

circuit.  The Losp optimizing compiler on parens forms can convert the

circuit specification to a specified time/space configuration.
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Masks

M = Mask

A = Active

Masks are the computational elements, the only structures (other than the

input vector and the output screens) which change dynamically.

The mask vector permanently deletes/voids the corresponding dnode row and

column until evaluation is completed.  When all elements are masked,

evaluation ends, and input/output is refreshed.

The active vector identifies which dnodes are currently being transformed, it

tracks the evaluation frontier of the graph.  This vector also tracks when

specific registers receive input from the circuit computation, thus setting

their state.   

Filters

N = iNput filter

U = oUtput filter

T = register Top (output side) filter

B = register Bottom (input side) filter

Filters identify the type of particular row entries;  specifically, the

system inputs and outputs (not their i/o values), and the two parts of each

register.  The top of a register is the dnode which enters the register state

into the computation as input, as choreographed by the clock.  The bottom of

a register is the dnode which receives new state from the computation and

marks it on the register output screen.  These two components are called the

register-top and the register-bot.

Screens

S  = register State

O  = Output

Screens collect and display computational results, the system output and the

saved state of the registers.

Only positive marks are collected by screens, which are initialized each

input cycle to zero.  When all rows are masked, outputs which have not been

marked retain the logically correct zero/void value which was set at

initialization time.
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Dnodes which provide system output and are also further used within the

circuit will not be scheduled for deletion until they have satisfied all of

their containment relationships to the rest of the array.   

REGISTERS

Clocked registers are indicated by marks in the top, or 0, row of a

sequential circuit occlusion array.  Row 0 contains the clock input, which is

an input to every register in the single-clock system.  Thus, marks in row 0

indicate a column which is a register.

The dnode representation of a register is the same as any other distinction.

Since the logical semantics of a register is to pass a value unchanged, the

register label is inside a double container.  Involution assures consistent

semantics.

The top and bottom nodes of occlusion array registers manage register

behavior.  The register-top holds the state and provides input to the

evaluation process in the form of register state feedback.  The register-bot

receives the register state from the evaluation of the subcircuit leading

into it.

The state of each register is stored in the register state vector.  When the

state is reentered into the computation, the behavior of register state

vector is identical to that of the input vector.

Unlike conventional registers, all occlusion array register states are set to

zero each full clock tick.  During the next clock cycle (0->1->0) two

opportunities occur for state to be set to positive.  Only active registers

(as defined by the active vector) can accumulate a mark indicating positive

state.  On the following clock cycle, the state values which have accumulated

are fed back as input, the state vector is cleared, and the cycle repeats.

Negative state values remain zero by the following mechanism:  when the state

should be zero, the register holding that state will become masked during

computation, thus eliminating the opportunity to be marked as positive.

The structure of a simple pun register is : ((@clok id)).  This is separated

into two dnodes when a distinction network is constructed:

(3 (@clok id)) register-top

(14 (3)) register-bot

The value of @clok is used by the evaluation engine to coordinate when

register state values are collected and asserted.
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Structurally, registers indicate cyclic patterns in a distinction network.

They require a two-step mechanism which is implemented in the accompanying

control logic rather than in the structure of the circuit.  The gain is that

registers become functionally equivalent to dnodes for the purposes of

evaluating the array.   

STATIC/DYNAMIC PARTITION

Static

•  Occlusion array

•  Input filter

•  Output filter

•  Register-top filter

•  Register-bottom filter

Dynamic

•  Input

•  Mask

•  Active

•  Register State screen

•  Output screen

Several components (array and filters) are specific to a specific circuit, but

invariant to different inputs.  These describe the static abstract circuit.

Static components are loaded only once for each specific functionality.

Other components (interfaces and screens) are reset for each input vector,

and change dynamically during the course of evaluation.  (An exception is

that the register state vector is reset every other clock transition, when

clock ==> 0.)

COMBINATIONAL SUBSET

Combinational Components

•  Input I

•  Occlusion array C

•  Mask M

•  Active A

•  Input filter N

•  Output filter U

•  Output screen O

Sequential Components

•  Register-top filter T

•  Register-bot filter B

•  Register state screen S
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The model for a combinational circuit is simpler in that registers are not

needed.  Registers essentially double the mechanism, they are a second type

of i/o.  The components necessary for combinational circuit evaluation form a

simpler subset:  one array and six vectors.

    input           circuit          masks   filters    screen
                -1-2-3-4-5-6-7
     ---       ----------------      -----    -----      ---
1    | |       |              |      | | |    | | |      | |
2    | |       |              |      | | |    | | |      | |
3    | |       |              |      | | |    | | |      | |
4    | |       |              |      | | |    | | |      | |
5    | |       |              |      | | |    | | |      | |
6    | |       |              |      | | |    | | |      | |
7    | |       |              |      | | |    | | |      | |
     ---       ----------------      -----    -----      ---

      I                 C             M A      N U        O

An alternative combinational algorithm which does not use an active vector is

described later.

OCCLUSION FOR SEQUENTIAL AND COMBINATIONAL ARRAYS

This algorithm is the same for both types of circuits, with additional steps

for register processing added in the case of sequential circuits.

A double bar, ||, on the right indicates independent steps which can be taken

in parallel.

An asterisk, *,  marked in the right column indicates a part of the

sequential algorithm which can be skipped for combinational evaluation.
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Initialize

mark positive inputs into input-vector

for every input

  if the input is positive, mark the active-vector

    else mark the mask

||

for every register-top *

  if the state is positive, mark the active-vector *

    else mark the mask *

Repeat

for every active row

  when the row is-an-output, mark the output-vector

||

when clock=0 *

  for every active row *

    for every register-bot marked in that row *

      mark the register-top state *

||

for every active row

    mark the mask

||

for every mark in every active row

    mark the mask

when any row is unmasked

  for every unmasked row

    when that column is empty

      mark active

  repeat
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SIMULATIONS

The functioning of an occlusion array is first illustrated with a simple

combinational circuit, MAJORITY.

A sequential example follows, the ISCAS'89 LION circuit.  Several structural

versions of LION are included:

•  raw distinction network

•  relabeled homogeneous distinction network

•  raw occlusion array

•  reduced circuit

•  reduced occlusion array

The functioning of the LION occlusion array is demonstrated by a symbolic

circuit simulation.  The simulation is shown for a Losp reduced array;  the

CNF array simulation is in a following section.

COMBINATIONAL EXAMPLE, THE MAJORITY CIRCUIT

Here the majority circuit is expressed as a pun body.  Dnode numbering is

offset since each variable is given a numerical label also.  (Below letters

are maintained for clarity.)

         ((   4  (5 6 7) )
          (   5  (a b)   )
          (   6  (a c)   )
          (   7  (b c)   ))

The occlusion array is

                OUT
            1 2 3 5 6 7 4

          1       1 1 a
          2       1   1 b
      I   3         1 1 c
      N   5             1
          6             1
          7             1
          4              out

When the occlusion array for this circuit is loaded into the array processor,

it will look like this:
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    input           circuit          masks   filters    screen
                -1-2-3-5-6-7-4
     ---       ----------------      -----    -----      ---
1    | |       |       1 1    |      | | |    |1| |      | |
2    | |       |       1   1  |      | | |    |1| |      | |
3    | |       |         1 1  |      | | |    |1| |      | |
5    | |       |             1|      | | |    | | |      | |
6    | |       |             1|      | | |    | | |      | |
7    | |       |             1|      | | |    | | |      | |
4    | |       |              |      | | |    | |1|      | |
     ---       ----------------      -----    -----      ---
      I                 C             M A      N U        O

We now provide a binding for inputs: {(a 1),(b 0),(c 0)}.  New changes are

marked as X.

    input           circuit          masks   filters    screen
                -1-2-3-5-6-7-4
     ---       ----------------      -----    -----      ---
1    |X|       |       1 1    |      | |X|    |1| |      | |
2    | |       |       1   1  |      |X| |    |1| |      | |
3    | |       |         1 1  |      |X| |    |1| |      | |
5    | |       |             1|      | | |    | | |      | |
6    | |       |             1|      | | |    | | |      | |
7    | |       |             1|      | | |    | | |      | |
4    | |       |              |      | | |    | |1|      | |
     ---       ----------------      -----    -----      ---

Two steps are taken during input initialization (illustrated above):

INITIALIZATION

1.  Positive inputs are marked as active. {1}

2.  Negative inputs are masked. {2,3}

At this point the computational cycle begins.  The steps for the first cycle

leave the occlusion array in this state:

    input           circuit          masks   filters    screen
                -1-2-3-5-6-7-4
     ---       ----------------      -----    -----      ---
1    |1|       |       1 1    |      |X|1|    |1| |      | |
2    | |       |       1   1  |      |1| |    |1| |      | |
3    | |       |         1 1  |      |1| |    |1| |      | |
5    | |       |             1|      |X| |    | | |      | |
6    | |       |             1|      |X| |    | | |      | |
7    | |       |             1|      | |X|    | | |      | |
4    | |       |              |      | | |    | |1|      | |
     ---       ----------------      -----    -----      ---
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CYCLE 1

1-3.  Mark output-vector. (none)

1-4.  Mask active.  {1}

1-5.  Mask marks in active. {5,6}

1-6.  Test for opaque mask. (fails)

1-7.  Mark as active any empty columns. {7}

To help with the visualization of activating empty columns in step 1-7, below

the masked inactive portions of the array have been obscured:

    input           circuit          masks   filters    screen
                -1-2-3-5-6-7-4
     ---       ----------------      -----    -----      ---
1    |1|       |--------------|      |X|1|    |1| |      | |
2    | |       |--------------|      |1| |    |1| |      | |
3    | |       |--------------|      |1| |    |1| |      | |
5    | |       |--------------|      |X| |    | | |      | |
6    | |       |--------------|      |X| |    | | |      | |
7    | |       |----------   1|      | |X|    | | |      | |
4    | |       |----------    |      | | |    | |1|      | |
     ---       ----------------      -----    -----      ---

Next a second evaluation cycle (steps 3-7) begins.

    input           circuit          masks   filters    screen
                -1-2-3-5-6-7-4
     ---       ----------------      -----    -----      ---
1    |1|       |--------------|      |1| |    |1| |      | |
2    | |       |--------------|      |1| |    |1| |      | |
3    | |       |--------------|      |1| |    |1| |      | |
5    | |       |--------------|      |1| |    | | |      | |
6    | |       |--------------|      |1| |    | | |      | |
7    | |       |----------   1|      |X|1|    | | |      | |
4    | |       |----------    |      |X| |    | |1|      | |
     ---       ----------------      -----    -----      ---

CYCLE 2

2-3.  Mark output-vector (none)

2-4.  Mask active  {7}

2-5.  Mask marks in active {4}

2-6.  Test for opaque mask (succeeds)  

  Terminate

When the output row 4 became masked, it was as a consequence of row 7 being

active.  In such cases the output-vector does not have an opportunity to

become marked.  It is in effect set to zero by the absence of an action.

Since the mask is completely marked, the evaluation is over.  The output has

nothing marked in row 4, so its value is False.
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SEQUENTIAL EXAMPLE, THE LION CIRCUIT

The sequential process is illustrated by the ISCAS'89 circuit LION, after

Losp reduction.

The evaluation algorithm is followed from EDIF to occlusion array simulation,

with these illustrations of the pun form:

•  Raw Distinction Network

EDIF to raw-pun to algebraic raw-pun via the logic-to-parens map.

•  Homogeneous Distinction Network

Algebraic raw-pun to homogeneous raw-pun via relabeling.

•  Raw Occlusion Array

Homogeneous raw-pun to occlusion array

via graph adjacency matrix.

•  Optimized Lion Circuit

Losp optimized pun to occlusion array.

•  Simulation of Lion Circuit

RAW DISTINCTION NETWORK

When an EDIF netlist is transcribed into pun form, the "raw" translation is

literal, using the Logic to Parens mapping while keeping all conceptual

structures (such as ground, vcc, wires connecting input to output, etc.) as

separate tokenized concepts.  This is the initial raw-pun version.

Below, any ground states in the initial raw-pun have been evaluated.  That

is, all conceptual structures with logical ground semantics {T,F} have been

removed through propagation of their values.  These conceptual grounds exist

to support physical entities (such as ground and vcc wires) which are no

longer relevant for a void-based processor.  Also below, the raw-pun version

has been rendered as a distinction network, without any form of optimization.

The pun engine uses these typed labels for dnodes:

{(~n node), (!n register), (@ clock), ({a,b...} input), ({oa,ob...} output)}
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((lion raw-pun (2000 11 1 11 38 49))
 ((main)
  ((a unk) (b unk) (@clok unk))
  ((oa 0))
  ((!1 (@clok ~5))
   (!2 (@clok ~6))
   (~3 (a))
   (~4 (b))
   (~13 (!1))
   (~12 (!2))
   (~7 (~3))
   (~8 (~4))
   (~19 (~9))
   (~14 (~10))
   (~18 (~11))
   (~6 (~14))
   (~9 (~15))
   (~10 (~16))
   (~11 (~17))
   (~5 (~19))
   (~16 (~27))
   (~17 (~28))
   (~15 (~30))
   (~20 (~3 ~13))
   (~22 (~4 ~7))
   (~21 (~4 ~13))
   (~25 (~7 ~12))
   (~23 (~7 ~13))
   (~26 (~8 ~12))
   (~24 (~12 ~13))
   (~29 (~3 ~8 ~12))
   (~27 (~22 ~23 ~25))
   (~28 (~25 ~26 !1))
   (~30 (~20 ~21 ~24 ~29)))))
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HOMOGENEOUS DISTINCTION NETWORK

The typed labels and variable labels are now renumbered prior to the

construction of the occlusion array.  The dnet which follows is completely

prepared for conversion to a occlusion array.  It is in the homogeneous

distinction network form, with node typing eliminated.  This is a pure

containment graph, the varieties of structures which support conventional

physical circuits (gates, registers, wires, grounds, etc.) are not needed by

the occlusion array technology.

((lion (2000 11 1 11 38 49))
 ((main)
  ((0 unk)(1 unk) (2 unk))
  ((oa 20))
  ((3 (0 7))
   (4 (0 8))
   (5 (1))
   (6 (2))
   (15 (3))
   (14 (4))
   (9 (5))
   (10 (6))
   (21 (11))
   (16 (12))
   (20 (13))
   (8 (16))
   (11 (17))
   (12 (18))
   (13 (19))
   (7 (21))
   (18 (29))
   (19 (30))
   (17 (32))
   (22 (5 15))
   (24 (6 9))
   (23 (6 15))
   (27 (9 14))
   (25 (9 15))
   (28 (10 14))
   (26 (14 15))
   (31 (5 10 14))
   (29 (24 25 27))
   (30 (27 28 3))
   (32 (22 23 26 31)))
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RAW OCCLUSION ARRAY

Below, the non-optimized raw-pun circuit has been converted directly into a

occlusion array with 33 rows and 48 marks.   Without counting inverters, this

reduces to 13 rows.

 -0-1-2-3-4-5-6-7-8-91011121314151617181920212223242526272829303132

 (      1 1                                                        )   0
 (          1                                                      )   1
 (            1                                                    )   2
 (                              1                             1    )   3
 (                            1                                    )   4
 (                  1                         1                 1  )   5
 (                    1                         1 1                )   6
 (      1                                                          )   7
 (        1                                                        )   8
 (                                                1 1   1          )   9
 (                                                        1     1  )   10
 (                                          1                      )   11
 (                                1                                )   12
 (                                        1                        )   13
 (                                                    1 1 1     1  )   14
 (                                            1 1   1 1            )   15
 (                1                                                )   16
 (                      1                                          )   17
 (                        1                                        )   18
 (                          1                                      )   19
 (                                                                 )   20
 (              1                                                  )   21
 (                                                                1)   22
 (                                                                1)   23
 (                                                          1      )   24
 (                                                          1      )   25
 (                                                                1)   26
 (                                                          1 1    )   27
 (                                                            1    )   28
 (                                    1                            )   29
 (                                      1                          )   30
 (                                                                1)   31
 (                                  1                              )   32

Rows and columns refer to the same dnode from different perspectives (input

and output).  The marks in each row are the fanout of that row's dnode.  The

marks in each column are the inputs to the column dnode.  The spatial

arrangement of marks represents the functionality of the circuit.  

REDUCED LION CIRCUIT

The same circuit functionality can be represented by different dnets and by

different occlusion arrays.  The LION homogeneous dnet is presented below,

after Losp reduction.  The accompanying occlusion array for the reduced dnet

follows (this array will be used in further examples).  
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The array has 20 rows and 31 marks. With free inverters, this reduces to 12

rows.  The mark at <13,8> is redundant;  with respect to the occlusion array,

this reduced circuit is not minimal.

((lion (2000 11 1 11 32 0))
 ((main)
 ((0 unk)(1 unk) (2 unk) )
 ((oa 9))
 (( 3 (0 14)  )
  ( 4 (0 15)  )
  ( 5 (1)  )
  ( 6 (4)  )
  ( 7 (3)  )
  ( 8 (13)  )
  ( 9 (19)  )
  (10 (1 7)  )
  (11 (1 12)  )
  (12 (2 4)  )
  (13 (2 7)  )
  (14 (10 11)  )
  (15 (16 17)  )
  (16 (5 8)  )
  (17 (6 18)  )
  (18 (1 2 3)  )
  (19 (10 13 4)  ) ))

  0-1-2-3-4-5-6-7-8-910111213141516171819

 (      1 1                              )   0
 (          1         1 1             1  )   1
 (                        1 1         1  )   2
 (              1                     1  )   3
 (            1           1             1)   4
 (                                1      )   5
 (                                  1    )   6
 (                    1     1            )   7
 (                                1      )   8
 (                                       )   9
 (                            1         1)   10
 (                            1          )   11
 (                      1                )   12
 (                1                     1)   13
 (      1                                )   14
 (        1                              )   15
 (                              1        )   16
 (                              1        )   17
 (                                  1    )   18
 (                  1                    )   19
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SIMULATION OF LION CIRCUIT

Prior to evaluation, the loaded occlusion array for the LION circuit looks

like this:

 input                 circuit                     masks    filters   screens

         0-1-2-3-4-5-6-7-8-910111213141516171819
   ---  -----------------------------------------  -----   ---------   -----
 0 | |  |      1 1                              |  | | |   |1| | | |   | | |
 1 | |  |          1         1 1             1  |  | | |   |1| | | |   | | |
 2 | |  |                        1 1         1  |  | | |   |1| | | |   | | |
 3 | |  |              1                     1  |  | | |   | | |1| |   |1| |
 4 | |  |            1           1             1|  | | |   | | |1| |   | | |
 5 | |  |                                1      |  | | |   | | | | |   | | |
 6 | |  |                                  1    |  | | |   | | | | |   | | |
 7 | |  |                    1     1            |  | | |   | | | | |   | | |
 8 | |  |                                1      |  | | |   | | | | |   | | |
 9 | |  |                                       |  | | |   | |1| | |   | | |
10 | |  |                            1         1|  | | |   | | | | |   | | |
11 | |  |                            1          |  | | |   | | | | |   | | |
12 | |  |                      1                |  | | |   | | | | |   | | |
13 | |  |                1                     1|  | | |   | | | | |   | | |
14 | |  |      1                                |  | | |   | | | |1|   | | |
15 | |  |        1                              |  | | |   | | | |1|   | | |
16 | |  |                              1        |  | | |   | | | | |   | | |
17 | |  |                              1        |  | | |   | | | | |   | | |
18 | |  |                                  1    |  | | |   | | | | |   | | |
19 | |  |                  1                    |  | | |   | | | | |   | | |
   ---  -----------------------------------------  -----   ---------   -----
    I                       C                       M A     N U T B     S O

For demonstration, the register in row 3 is assumed to be in a marked state

from the previous evaluation cycle.

The operations to load a circuit functionality follow.

LOAD FUNCTIONALITY

  I.  Size and build array

 II.  Build 9 vectors

III.  Load circuit into array

 IV.  Load filters:

input, output, register-top, register-bot

Row 0 is the clock, it equates with variable "a" in the input binding list.

The clock logic is meta to the table logic; the zero row is not used during

evaluation.  

Since initialization is invariant over evaluation, all filters are pre-

computed.  Although inputs and registers can be computed from the array
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(inputs = all empty columns, registers = row 0), the same is not true for

outputs.  The main output has an empty row, but intermediate outputs may not.

The array is initialized for evaluation.  Assume a binding of

{(a 0),(b 0),(c 1)}

         0-1-2-3-4-5-6-7-8-910111213141516171819
   ---  -----------------------------------------  -----   ---------   -----
 0 | |  |      1 1                              |  |X| |   |1| | | |   | | |
 1 | |  |          1         1 1             1  |  |X| |   |1| | | |   | | |
 2 |1|  |                        1 1         1  |  | |X|   |1| | | |   | | |
 3 | |  |              1                     1  |  | |X|   | | |1| |   | | |
 4 | |  |            1           1             1|  |X| |   | | |1| |   | | |
 5 | |  |                                1      |  | | |   | | | | |   | | |
 6 | |  |                                  1    |  | | |   | | | | |   | | |
 7 | |  |                    1     1            |  | | |   | | | | |   | | |
 8 | |  |                                1      |  | | |   | | | | |   | | |
 9 | |  |                                       |  | | |   | |1| | |   | | |
10 | |  |                            1         1|  | | |   | | | | |   | | |
11 | |  |                            1          |  | | |   | | | | |   | | |
12 | |  |                      1                |  | | |   | | | | |   | | |
13 | |  |                1                     1|  | | |   | | | | |   | | |
14 | |  |      1                                |  | | |   | | | |1|   | | |
15 | |  |        1                              |  | | |   | | | |1|   | | |
16 | |  |                              1        |  | | |   | | | | |   | | |
17 | |  |                              1        |  | | |   | | | | |   | | |
18 | |  |                                  1    |  | | |   | | | | |   | | |
19 | |  |                  1                    |  | | |   | | | | |   | | |
   ---  -----------------------------------------  -----   ---------   -----
    I                       C                       M A     N U T B     S O

The operations which constitute initialization follow.  All are parallel:

INITIALIZATION

1.  Mark the input-vector with positive inputs    {2}

2.  Mark the active-vector with positive inputs   {2}

3.  Mark the mask with negative inputs            {0,1}

4.  Mark the active-vector with positive states   {3}

5.  Mark the mask with negative states            {4}

6.  When clock=0, reset the state-vector to 0.

The input vector meant to represent the clocked and bussed bit stream

entering the occlusion array as input.  It is not used during computation.

The evaluation loop now begins.
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         0-1-2-3-4-5-6-7-8-910111213141516171819
   ---  -----------------------------------------  -----   ---------   -----
 0 | |  |      1 1                              |  |1| |   |1| | | |   | | |
 1 | |  |          1         1 1             1  |  |1| |   |1| | | |   | | |
 2 |1|  |                        1 1         1  |  |X| |   |1| | | |   | | |
 3 | |  |              1                     1  |  |X| |   | | |1| |   | | |
 4 | |  |            1           1             1|  |1| |   | | |1| |   | | |
 5 | |  |                                1      |  | |X|   | | | | |   | | |
 6 | |  |                                  1    |  | |X|   | | | | |   | | |
 7 | |  |                    1     1            |  |X| |   | | | | |   | | |
 8 | |  |                                1      |  | |X|   | | | | |   | | |
 9 | |  |                                       |  | | |   | |1| | |   | | |
10 | |  |                            1         1|  | |X|   | | | | |   | | |
11 | |  |                            1          |  | |X|   | | | | |   | | |
12 | |  |                      1                |  |X| |   | | | | |   | | |
13 | |  |                1                     1|  |X| |   | | | | |   | | |
14 | |  |      1                                |  | | |   | | | |1|   | | |
15 | |  |        1                              |  | | |   | | | |1|   | | |
16 | |  |                              1        |  | | |   | | | | |   | | |
17 | |  |                              1        |  | | |   | | | | |   | | |
18 | |  |                                  1    |  |X| |   | | | | |   | | |
19 | |  |                  1                    |  | | |   | | | | |   | | |
   ---  -----------------------------------------  -----   ---------   -----
    I                       C                       M A     N U T B     S O

The operations for each evaluation cycle follow:

CYCLE 1

1-7.  Mark the output-vector with active outputs   (none)

1-8.  When clock=0, mark the state-vector

                      with register-bots marked in active rows (none)

1-9.  Mask active rows                             {2,3}

1-10. Mask rows marked in active rows              {7,12,13,18}

1-11. Check for all masked                         (fails)

1-12. Clear active (optional)

1-13. Mark as active all unmasked empty columns    {5,6,8,10,11}

1-14. Repeat

The clock value in Step 1-8 (clock=0) is necessary to keep the occlusion

array output synchronized with test vectors designed for a conventional two-

state clock.  Further refinement of register placement and necessity should

remove this two-state clock model from the occlusion array algorithm.

Register minimization and retiming are currently open questions.

As a visual aid for step 1-13 (activating empty columns), all prior masked

rows and columns have been shaded out in the following:
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         0-1-2-3-4-5-6-7-8-910111213141516171819
   ---  -----------------------------------------  -----   ---------   -----
 0 | |  |---------------------------------------|  |1| |   |1| | | |   | | |
 1 | |  |---------------------------------------|  |1| |   |1| | | |   | | |
 2 |1|  |---------------------------------------|  |X| |   |1| | | |   | | |
 3 | |  |---------------------------------------|  |X| |   | | |1| |   | | |
 4 | |  |---------------------------------------|  |1| |   | | |1| |   | | |
 5 | |  |---------    --        ----     1  --  |  | |X|   | | | | |   | | |
 6 | |  |---------    --        ----       1--  |  | |X|   | | | | |   | | |
 7 | |  |---------------------------------------|  |X| |   | | | | |   | | |
 8 | |  |---------    --        ----     1  --  |  | |X|   | | | | |   | | |
 9 | |  |---------    --        ----        --  |  | | |   | |1| | |   | | |
10 | |  |---------    --        ---- 1      -- 1|  | |X|   | | | | |   | | |
11 | |  |---------    --        ---- 1      --  |  | |X|   | | | | |   | | |
12 | |  |---------------------------------------|  |X| |   | | | | |   | | |
13 | |  |---------------------------------------|  |X| |   | | | | |   | | |
14 | |  |---------    --        ----        --  |  | | |   | | | |1|   | | |
15 | |  |---------    --        ----        --  |  | | |   | | | |1|   | | |
16 | |  |---------    --        ----   1    --  |  | | |   | | | | |   | | |
17 | |  |---------    --        ----   1    --  |  | | |   | | | | |   | | |
18 | |  |---------------------------------------|  |X| |   | | | | |   | | |
19 | |  |---------    --   1    ----        --  |  | | |   | | | | |   | | |
   ---  -----------------------------------------  -----   ---------   -----
    I                       C                       M A     N U T B     S O

By inspection, columns {5,6,8,10,11} are empty.

The second cycle leaves the array in the following state:

         0-1-2-3-4-5-6-7-8-910111213141516171819
   ---  -----------------------------------------  -----   ---------   -----
 0 | |  |---------------------------------------|  |1| |   |1| | | |   | | |
 1 | |  |---------------------------------------|  |1| |   |1| | | |   | | |
 2 |1|  |---------------------------------------|  |1| |   |1| | | |   | | |
 3 | |  |---------------------------------------|  |1| |   | | |1| |   |X| |
 4 | |  |---------------------------------------|  |1| |   | | |1| |   | | |
 5 | |  |---------    --        ----     1  --  |  |X| |   | | | | |   | | |
 6 | |  |---------    --        ----       1--  |  |X| |   | | | | |   | | |
 7 | |  |---------------------------------------|  |1| |   | | | | |   | | |
 8 | |  |---------    --        ----     1  --  |  |X| |   | | | | |   | | |
 9 | |  |---------    --        ----        --  |  | |X|   | |1| | |   | | |
10 | |  |---------    --        ---- 1      -- 1|  |X| |   | | | | |   | | |
11 | |  |---------    --        ---- 1      --  |  |X| |   | | | | |   | | |
12 | |  |---------------------------------------|  |1| |   | | | | |   | | |
13 | |  |---------------------------------------|  |1| |   | | | | |   | | |
14 | |  |---------    --        ----        --  |  |X| |   | | | |1|   | | |
15 | |  |---------    --        ----        --  |  | |X|   | | | |1|   | | |
16 | |  |---------    --        ----   1    --  |  |X| |   | | | | |   | | |
17 | |  |---------    --        ----   1    --  |  |X| |   | | | | |   | | |
18 | |  |---------------------------------------|  |1| |   | | | | |   | | |
19 | |  |---------    --   1    ----        --  |  |X| |   | | | | |   | | |
   ---  -----------------------------------------  -----   ---------   -----
    I                       C                       M A     N U T B     S O
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CYCLE 2

2-7.  Mark the output-vector with active outputs    (none)

2-8.  When clock=0, mark the state-vector

                      with register-bots marked in active rows  {3}

2-9.  Mask active rows                              {5,6,8,10,11}

2-10. Mask rows marked in active rows               {14,16,17,19}

2-11. Check for all masked                          (fails)

2-12. Clear active

2-13. Mark as active all unmasked empty columns     {9,15}

2-14. Repeat

The register-bots are rows 14 and 15.  The column for register-bot 14 is

marked in the active rows 10 and 11, so the state of the corresponding top

(row 3) is marked in the state vector.

Again the all-masked check fails, and empty rows are activated.  

A visualization of what remains as empty rows are collected in Cycle 2.  Four

empty cells remain.  Since both rows are empty, both rows have been

activated.

         0-1-2-3-4-5-6-7-8-910111213141516171819
   ---  -----------------------------------------  -----   ---------   -----
 0 | |  |---------------------------------------|  |1| |   |1| | | |   | | |
 1 | |  |---------------------------------------|  |1| |   |1| | | |   | | |
 2 |1|  |---------------------------------------|  |1| |   |1| | | |   | | |
 3 | |  |---------------------------------------|  |1| |   | | |1| |   |X| |
 4 | |  |---------------------------------------|  |1| |   | | |1| |   | | |
 5 | |  |---------------------------------------|  |X| |   | | | | |   | | |
 6 | |  |---------------------------------------|  |X| |   | | | | |   | | |
 7 | |  |---------------------------------------|  |1| |   | | | | |   | | |
 8 | |  |---------------------------------------|  |X| |   | | | | |   | | |
 9 | |  |-----------------  ----------  --------|  | |X|   | |1| | |   | | |
10 | |  |---------------------------------------|  |X| |   | | | | |   | | |
11 | |  |---------------------------------------|  |X| |   | | | | |   | | |
12 | |  |---------------------------------------|  |1| |   | | | | |   | | |
13 | |  |---------------------------------------|  |1| |   | | | | |   | | |
14 | |  |---------------------------------------|  |X| |   | | | |1|   | | |
15 | |  |-----------------  ----------  --------|  | |X|   | | | |1|   | | |
16 | |  |---------------------------------------|  |X| |   | | | | |   | | |
17 | |  |---------------------------------------|  |X| |   | | | | |   | | |
18 | |  |---------------------------------------|  |1| |   | | | | |   | | |
19 | |  |---------------------------------------|  |X| |   | | | | |   | | |
   ---  -----------------------------------------  -----   ---------   -----
    I                       C                       M A     N U T B     S O
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Cycle three begins:

         0-1-2-3-4-5-6-7-8-910111213141516171819
   ---  -----------------------------------------  -----   ---------   -----
 0 | |  |---------------------------------------|  |1| |   |1| | | |   | | |
 1 | |  |---------------------------------------|  |1| |   |1| | | |   | | |
 2 |1|  |---------------------------------------|  |1| |   |1| | | |   | | |
 3 | |  |---------------------------------------|  |1| |   | | |1| |   |1| |
 4 | |  |---------------------------------------|  |1| |   | | |1| |   | | |
 5 | |  |---------------------------------------|  |1| |   | | | | |   | | |
 6 | |  |---------------------------------------|  |1| |   | | | | |   | | |
 7 | |  |---------------------------------------|  |1| |   | | | | |   | | |
 8 | |  |---------------------------------------|  |1| |   | | | | |   | | |
 9 | |  |-----------------  ----------  --------|  |X|1|   | |1| | |   | |X|
10 | |  |---------------------------------------|  |1| |   | | | | |   | | |
11 | |  |---------------------------------------|  |1| |   | | | | |   | | |
12 | |  |---------------------------------------|  |1| |   | | | | |   | | |
13 | |  |---------------------------------------|  |1| |   | | | | |   | | |
14 | |  |---------------------------------------|  |1| |   | | | |1|   | | |
15 | |  |-----------------  ----------  --------|  |X|1|   | | | |1|   | | |
16 | |  |---------------------------------------|  |1| |   | | | | |   | | |
17 | |  |---------------------------------------|  |1| |   | | | | |   | | |
18 | |  |---------------------------------------|  |1| |   | | | | |   | | |
19 | |  |---------------------------------------|  |1| |   | | | | |   | | |
   ---  -----------------------------------------  -----   ---------   -----
    I                       C                       M A     N U T B     S O

CYCLE 3

3-7.  Mark the output-vector with active outputs      {9}

3-8.  When clock=0, mark the state-vector

                      with register-bots marked in active rows    (none)

3-9.  Mask active rows                                {9,15}

3-10. Mask rows marked in active rows                 (none)

3-11. Check for all masked.  Terminate.               (succeeds)

The all-masked test succeeds, and the output result can be read from the

output vector O, while the register states are stored in the state vector S.

SCHEMATICS

Five schematics of the Occlusion Array routing for the same circuit, cm85a, a

4-bit magnitude comparator with enables.  The schematics show how parens

reduction effects the size and layout of occlusion arrays.

Schematic I:    the unoptimized benchmark circuit

Schematic II:   diagonalized with trivial redundancy removed

Schematic III:  optimized two-level PLA form

Schematic IV:   optimized for conventional ASIC gates

Schematic V:    optimized for occlusion array
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SCHEMATIC I:  Occlusion Array (raw multilevel benchmark)

a                                                    1                                                                                                                                       1                                                                                             1
b                                                      1                                                                                                                                   1                                                                                               1
c                                                  1                                                                                                                                                                                                                                       1
d                                                1                                                                                                                                                                                                                                         1
e                                            1                                                                                                                                                   1                                                                                         1
f                                              1                                                                                                                                               1                                                                                           1
g                                        1                                                                                                                                                                                                                                                 1
h                                      1                                                                                                                                                                                                                                                   1
i                                    1                                                                                                                                                                                                                                                     1
j                                          1                                                                                                                                                                                                                                               1
k                                  1                                                                                                                                                                                                                                                       1
                                                                                                                                                   1                                                                                                                              
                                                                                                                                             1                                                                                                                                    
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                                                                                                                                                                                                                                                                 1                
                                                                                                                                                                                                                                                                   1              
                                                                                               1                                                                                                                                                                                  
                                                                                                                                                                                                                                                                         1        
                                                                                                                                                                                                                                                                           1      
                                                                                                                                                                                                                                                                           1      
                                                                                                                                                                                                                                                                             1    
                                                                                                                                                                                                                                                                             1    
                                                                                                                                                                                                                                                                               1  
                                                                                                                                                                                                                                                                                              1
                                                                                                                                                                                                                                                                                 1
                                                                                                                                                               1                                                                                                                  
                                                                                                                                                                 1                                                                                                                
                                                                                                                                                                   1                                                                                                              
                                                                                                                                                                     1                                                                                                            
                                                                                                                                                                       1                                                                                                          
                                                                                                                                                                         1                                                                                                        
                                                                                                                                                                           1                                                                                                      
                                                                                                                                                                             1                                                                                                    
                                                                                                                                                                               1                                                                                                  
                                                                                                                                                                                 1                                                                                                
                                                                                                                                                                                   1                                                                                              
                                                                                                                                                                                     1                                                                                            
                                                                                                                                                                                       1                                                                                          
                                                                                                                                                                                         1                                                                                        
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SCHEMATIC II: Occlusion Array (clean multilevel benchmark)

occlusion

    logic

 input 

vector
occlusion

   array

input/output

      filter

processing

    logic

output

vector

a
b
c
d
e
f
g
h
i
j
k

1
1
1
1
1
1
1
1
1
1
1

   1
   1
   1

                      1                         1                                                                                                
                        1                         1                                                                                              
                          1             1           1                                                                                            
                            1           1             1                                                                                          
                              1                         1                                                                                        
                                1                         1                                                                                      
                                  1       1                 1                                                                                    
                                    1     1                   1                                                                                  
                                            1                   1                                                                                
                                      1     1 1                                                                                                  
                                              1                   1                                                                              
                                                  1                                                                                              
                                                1                                                                                                
                                                      1             1                                                                            
                                                    1               1                                                                            
                                                          1                                                                                      
                                                        1                                                                                        
                                                              1       1                                                                          
                                                            1         1                                                                          
                                                                                    1                                                            
                                                                1       1                                                                        
                                                                  1       1                                                                      
                                                                            1                                                                    
                                                                              1                                                                  
                                                                                1     1                                                          
                                                                                1       1                                                        
                                                                                                                      1                          
                                                                                                                        1                        
                                                                                  1       1                                                      
                                                                                  1         1                                                    
                                                                                                                                                 
                                                                                                                                                 
                                                                            1                                                                    
                                                                              1                                                                  
                                                                        1                                                                        
                                                                          1                                                                      
                                                                                                                    1                            
                                                                                    1                                                            
                                                                                                          1                                      
                                                                                                            1                                    
                                                                                              1                                                  
                                                                                                1                                                
                                                                                                  1                                              
                                                                                                                                    1            
                                                                                                                                      1          
                                                                                                    1                                            
                                                                                                      1                                          
                                                                                                                                            1    
                                                                                                        1                                        
                                                                                                    1 1 1                                        
                                                                                                          1                                      
                                                                                                            1                                    
                                                                                                              1           1 1                    
                                                                                                                1                                
                                                                                                                  1                              
                                                                                                                    1                            
                                                                                                                      1   1                      
                                                                                                                        1   1                    
                                                                                                                                  1              
                                                                                                                              1                  
                                                                                                                                1                
                                                                                                                              1                  
                                                                                                                                1                
                                                                                                                                        1        
                                                                                                                                          1      
                                                                                                                                    1 1     1    
                                                                                                                                        1        
                                                                                                                                          1      
                                                                                                                                              1  
                                                                                                                                                1
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SCHEMATIC III:  Occlusion Array  (2-level distinction network)

occlusion

    logic

 input 

vector
occlusion

   array

input/output

      filter

processing

    logic

output

vector

1
1
1
1
1
1
1
1
1
1
1
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g
h
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k

                      1                 1                                           1 1 1 1 1 1 1 1                          
                        1                 1                                                         1 1 1 1 1 1 1 1          
                          1                 1                       1 1 1 1         1 1 1 1                                  
                            1                 1                             1 1 1 1                 1 1 1 1                  
                              1                 1           1 1     1 1             1 1     1 1                              
                                1                 1             1 1         1 1                     1 1     1 1              
                                  1                 1   1   1       1   1           1   1   1   1                            
                                    1                 1   1     1           1   1                   1   1   1   1            
                                                                                                                    1        
                                      1                                                                                      
                                                                                                                      1      
                                          1                                                         1 1 1 1 1 1 1 1          
                                        1                                           1 1 1 1 1 1 1 1                          
                                              1                             1 1 1 1                         1 1 1 1          
                                            1                       1 1 1 1                 1 1 1 1                          
                                                  1             1 1             1 1                     1 1     1 1          
                                                1           1 1         1 1             1 1     1 1                          
                                                      1   1       1           1   1                   1   1   1   1          
                                                    1   1     1       1   1           1   1   1   1                          
                                                        1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1     1    
                                                                                                                        1    
                                                                                                                        1    
                                                                                                                        1    
                                                                                                                        1    
                                                                                                                        1    
                                                                                                                        1    
                                                                                                                        1    
                                                                                                                        1    
                                                                                                                    1        
                                                                                                                      1      
                                                                                                                    1        
                                                                                                                    1        
                                                                                                                      1      
                                                                                                                      1      
                                                                                                                    1        
                                                                                                                    1        
                                                                                                                    1        
                                                                                                                    1        
                                                                                                                      1      
                                                                                                                      1      
                                                                                                                      1      
                                                                                                                      1      
                                                                                                                    1        
                                                                                                                    1        
                                                                                                                    1        
                                                                                                                    1        
                                                                                                                    1        
                                                                                                                    1        
                                                                                                                    1        
                                                                                                                    1        
                                                                                                                      1      
                                                                                                                      1      
                                                                                                                      1      
                                                                                                                      1      
                                                                                                                      1      
                                                                                                                      1      
                                                                                                                      1      
                                                                                                                      1      
                                                                                                                          1  
                                                                                                                            1
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SCHEMATIC IV:  Occlusion Array (optimized for conventional ASIC)

occlusion

    logic

 input 

vector
occlusion

   array
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1
1
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  1
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                    1                   1                           1                        
                      1                   1                           1                      
                        1                   1                           1                    
                          1                   1                           1                  
                            1                   1                           1                
                              1                   1                           1              
                                1                   1                           1            
                                  1                   1                           1          
                                                                                    1        
                                    1                                                        
                                                                                      1      
                                        1                             1                      
                                      1                             1                        
                                            1                             1                  
                                          1                             1                    
                                                1                             1              
                                              1                             1                
                                                    1                             1          
                                                  1                             1            
                                                        1                       1 1          
                                                                                        1    
                                                                                        1    
                                                                1                            
                                                                1                            
                                                            1                                
                                                            1                                
                                                        1                                    
                                                        1                                    
                                                          1                                  
                                                            1               1 1              
                                                              1                              
                                                                1       1 1                  
                                                                  1                          
                                                                    1 1                 1    
                                                                                      1      
                                                                                    1        
                                                                                      1      
                                                                                    1        
                                                                                      1      
                                                                                    1        
                                                                                      1      
                                                                                    1        
                                                                                          1  
                                                                                            1
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SCHEMATIC V:  Occlusion Array (optimized for occlusion array)

occlusion
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 input 
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                      1                 1               1                                    
                        1                 1               1                                  
                          1                 1                                                
                            1                 1                                              
                              1                 1                                            
                                1                 1                                          
                                  1                 1                                        
                                    1                 1                                      
                                                                                    1        
                                      1                                                      
                                                                                      1      
                                          1               1                                  
                                        1               1                                    
                                              1                                              
                                            1                                                
                                                  1                                          
                                                1                                            
                                                      1                                      
                                                    1                                        
                                                                              1   1         1
                                                                                            1
                                                        1                                   1
                                                          1 1                               1
                                                              1                             1
                                                                1   1                       1
                                                                  1   1                     1
                                                                        1       1           1
                                                                          1 1               1
                                                            1                                
                                                              1                              
                                                                  1                          
                                                                1                            
                                                                      1                      
                                                                    1                        
                                                                          1                  
                                                                        1                    
                                                                            1                
                                                                                1            
                                                                              1              
                                                                                      1      
                                                                                  1          
                                                                                    1        
                                                                                        1    
                                                                                          1  
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ENCODING

Generally, the same organization can be realized by many different

structures.  There are many different pun circuits for any given logical

functionality.  This variety was addressed in the previous section by

contrasting raw arrays with reduced arrays.

Several other strategies for optimizing occlusion arrays follow.

•  Parens-Pun Form

A parens network with logic clustered into one parens

expression.

•  CNF-Pun Form

Parens forms with a minimal depth of nesting..

•  Deep-coding

Adding all the possible wires which do not undermine the

intended functionality.

•  Relation Matrices

Matrix transformations on occlusion arrays.

•  Array Subdivision

NxN array components which can be ganged together to form

a larger array.

Deep-coding, relation matrices, and array subdivision are not discussed in

this paper.

PARENS-PUN FORM

The occlusion array used above has one unnecessary mark (at <13,8>).  That

is, it is not fully optimized.  Optimization in the space of circuit

functionality is multi-dimensional, so at best a satisficing solution to a

set of constraints is sought.  Satisficing solutions are those within an

acceptable tolerance with regard to physical resources.

In this section, another, slightly different, optimized form is presented,

this one derived from the parens-pun form of a circuit.  In a parens-pun

network, nodes are permitted to contain arbitrary parens expressions, rather

than single distinctions.

The parens-pun form of a combinational circuit is one single (sometimes

large) parens expression.  The parens-pun form of a sequential circuit

requires several parens forms, thus the pun format is necessary for this

representation.  Each register requires a separate parens form to avoid
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reentrant expressions.  The minimal parens-pun form for sequential circuits

consists of a parens expression for each register and for each output.  This

is equivalent to clustering the combinational logic between registers into a

single node.  For the LION body this is:

  (( 3 (0 14)  )
   ( 4 (0 15)  )
   ( 9 (( 4 ((3) ((1)(2))) ))  )
   (14 (( 1 (2 3 4) ))  )
   (15 ((2 (1) (3)) ((4) (1 2 3)))  ))

Node 9 is the output.

Note that each register is represented by a register-top {3,4}, which has the

clock input, and a register-bot {14,15}, which accumulates state.  The two-

dnode register constraint essentially blocks the occurrence of self-

referential dnodes.

Converting the above parens-pun form back to a distinction network results in

a slightly different homogeneous pun and a slightly different array.  

(Below, some distinctions have been renumbered relative to the parens-pun

LION body above.)

  (( 3 (0 14)  )
   ( 4 (0 15)  )
   ( 5 (1)  )
   ( 6 (2)  )
   ( 7 (3)  )
   ( 8 (4)  )
   ( 9 (10)  )
   (14 (13)  )
   (10 (4 11)  )
   (11 (7 12)  )
   (12 (5 6)  )
   (13 (1 16)  )
   (15 (17 18)  )
   (16 (2 3 4)  )
   (17 (2 5 7)  )
   (18 (8 19)  )
   (19 (1 2 3)  ))

For comparison, the occlusion array for this alternative circuit follows.  It

too has 20 rows and 31 marks, however with free inverters, only 12 rows are

needed.  Alternative optimizations do not necessarily result in an array of

the same size or with the same number of marks.  It is very difficult to

perceive visual similarities in different functionally equivalent arrays

(that is, they are difficult to read).  This is partially due to the fact

that rows and columns can be in any location without changing the

functionality of the array.
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  0-1-2-3-4-5-6-7-8-910111213141516171819

 (      1 1                              )   0
 (          1               1           1)   1
 (            1                   1 1   1)   2
 (              1                 1     1)   3
 (                1   1           1      )   4
 (                        1         1    )   5
 (                        1              )   6
 (                      1           1    )   7
 (                                    1  )   8
 (                                       )   9
 (                  1                    )   10
 (                    1                  )   11
 (                      1                )   12
 (                            1          )   13
 (      1                                )   14
 (        1                              )   15
 (                          1            )   16
 (                              1        )   17
 (                              1        )   18
 (                                    1  )   19

CNF FORM

Structurally rearranging a circuit so that all logic between gates is in CNF

(Conjunctive Normal Form) form permits pipelining of array computations.  CNF

form has only two layers of logic, it is the conjunction of the disjunction

of input values (positive and negative).  By limiting the layers of logic,

the maximum number of cycles required for complete evaluation is standardized

at three (2 layers of logic and 1 register bottom).

CNF is also known as Product of Sums.  Another standard representation is Sum

of Products (SOP), which would correspond to the logical Disjunctive Normal

Form.  Very conveniently, the two varieties of representational focus (AND-

centered vs. OR-centered) are a single form in parens notation.

Logic  Parens

a AND b ((a)(b))

NOT a OR NOT b  (a)(b)

Here, the conversion from CNF to DNF is by removing the outer container.

DeMorgan transformations are notationally indistinguishable in parens form.

One might say that the transformation is "built-in".  However, the boundary

math perspective is that such ransformations do not exist.

a AND b = NOT((NOT a) OR (NOT b)) DEMORGAN

((a)(b)) = ((a)(b)) Parens
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The starting point for generating a CNF form is again the parens-pun form of

the LION circuit:

  (( 3 (0 14)  )
   ( 4 (0 15)  )
   ( 9 (( 4 ((3) ((1)(2))) ))  )
   (14 (( 1 (2 3 4) ))  )
   (15 ((2 (1) (3)) ((4) (1 2 3)))  ))

Each row in this body can be converted to CNF form, yielding:

  (( 3 (0 14)  )
   ( 4 (0 15)  )
   ( 9 ((3 4) (4 (1)(2)))  )
   (14 (( 1 (2 3 4) ))  )
   (15 (( (4 (2)) (1 4) (3 4) (1 2 3) ))  )

Converting this CNF-pun form into a distinction network and homogenizing via

renumbering yields a third variation:

  (( 3 (0 8)  )
   ( 4 (0 9)  )
   ( 5 (10 11)  )
   ( 6 (1)  )
   ( 7 (2)  )
   ( 8 (14)  )
   ( 9 (17)   
   (10 (3 4)  )
   (11 (4 6 7)  )
   (12 (2 3 4)  )
   (13 (4 7)  )
   (14 (1 12)  )
   (15 (1 4)  )
   (16 (1 2 3)  )
   (17 (13 15 10 16)  ))

The input variables are ((0 unk)(1 unk)(2 unk)).  The output is ((oa 9)).

The accompanying occlusion array has 18 rows and 31 marks;  without

inverters, it has 12 rows.
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  0-1-2-3-4-5-6-7-8-91011121314151617

 (      1 1                          )   0
 (            1               1 1 1  )   1
 (              1         1       1  )   2
 (                    1   1       1  )   3
 (                    1 1 1 1   1    )   4
 (                                   )   5
 (                      1            )   6
 (                      1   1        )   7
 (      1                            )   8
 (        1                          )   9
 (          1                       1)   10
 (          1                        )   11
 (                            1      )   12
 (                                  1)   13
 (                1                  )   14
 (                                  1)   15
 (                                  1)   16
 (                  1                )   17

For small and moderate circuits (<~1000 rows) the combinational explosion of

CNF forms is largely avoided by CNF optimization using the Losp engine.

Technically a CNF form has a mention of every input in every clause.  This

results in a homogeneous data structure which is well suited for the PLA

logic circuitry of decades ago.  The research community currently believes

that deeply nested forms, INF forms, are necessary for today's large

circuits.   

The number of dnodes in a CNF form is the number of clauses.  This may be

less than the number of dnodes in a functionally identical INF form, as is

the case here.   

Optimizing CNF forms can reduce the number of clauses.  Reducing the number

of literal mentions is irrelevant for occlusion arrays, since more mentions

add more marks but not more rows.

SIMULATION OF CNF LION CIRCUIT

This example illustrates the primary characteristics of CNF coding:

    1.  Positive outputs and register states are asserted in the final cycle.

    2.  The maximal number of cycles is 3.

The loaded occlusion array for the CNF form of LION follows.  The input

values {(a 0),(b 0),(c 1)} have been asserted as initialization, as well as

the register states {(3 1),(4 1)}.  These input values differ from those used

for the previous simulation of LION, and illustrate a positive output.
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         0-1-2-3-4-5-6-7-8-91011121314151617
   ---  -------------------------------------  -----   ---------   -----
 0 | |  |      1 1                          |  |X| |   |1| | | |   | | |
 1 | |  |            1               1 1 1  |  |X| |   |1| | | |   | | |
 2 |1|  |              1         1       1  |  | |X|   |1| | | |   | | |
 3 | |  |                    1   1       1  |  | |X|   | | |1| |   |1| |
 4 | |  |                    1 1 1 1   1    |  | |X|   | | |1| |   |1| |
 5 | |  |                                   |  | | |   | |1| | |   | | |
 6 | |  |                      1            |  | | |   | | | | |   | | |
 7 | |  |                      1   1        |  | | |   | | | | |   | | |
 8 | |  |      1                            |  | | |   | | | |1|   | | |
 9 | |  |        1                          |  | | |   | | | |1|   | | |
10 | |  |          1                       1|  | | |   | | | | |   | | |
11 | |  |          1                        |  | | |   | | | | |   | | |
12 | |  |                            1      |  | | |   | | | | |   | | |
13 | |  |                                  1|  | | |   | | | | |   | | |
14 | |  |                1                  |  | | |   | | | | |   | | |
15 | |  |                                  1|  | | |   | | | | |   | | |
16 | |  |                                  1|  | | |   | | | | |   | | |
17 | |  |                  1                |  | | |   | | | | |   | | |
   ---  -------------------------------------  -----   ---------   -----
    I                       C                   M A     N U T B     S O

INITIALIZATION

1.  Mark the input-vector with positive inputs    {2}

2.  Mark the active-vector with positive inputs   {2}

3.  Mark the mask with negative inputs            {0,1}

4.  Mark the active-vector with positive states   {3,4}

5.  Mark the mask with negative states            (none)

6.  When clock=0, reset the state-vector to 0.

The evaluation cycle begins, new changes are indicated by X.

         0-1-2-3-4-5-6-7-8-91011121314151617
   ---  -------------------------------------  -----   ---------   -----
 0 | |  |      1 1                          |  |1| |   |1| | | |   | | |
 1 | |  |            1               1 1 1  |  |1| |   |1| | | |   | | |
 2 |1|  |              1         1       1  |  |X| |   |1| | | |   | | |
 3 | |  |                    1   1       1  |  |X| |   | | |1| |   | | |
 4 | |  |                    1 1 1 1   1    |  |X| |   | | |1| |   | | |
 5 | |  |                                   |  | |X|   | |1| | |   | | |
 6 | |  |                      1            |  | |X|   | | | | |   | | |
 7 | |  |                      1   1        |  |X| |   | | | | |   | | |
 8 | |  |      1                            |  | | |   | | | |1|   | | |
 9 | |  |        1                          |  | | |   | | | |1|   | | |
10 | |  |          1                       1|  |X| |   | | | | |   | | |
11 | |  |          1                        |  |X| |   | | | | |   | | |
12 | |  |                            1      |  |X| |   | | | | |   | | |
13 | |  |                                  1|  |X| |   | | | | |   | | |
14 | |  |                1                  |  | |X|   | | | | |   | | |
15 | |  |                                  1|  |X| |   | | | | |   | | |
16 | |  |                                  1|  |X| |   | | | | |   | | |
17 | |  |                  1                |  | |X|   | | | | |   | | |
   ---  -------------------------------------  -----   ---------   -----
    I                       C                   M A     N U T B     S O
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CYCLE 1

1-7,8.  No outputs are asserted.  

1-9.    Active rows are masked. {2,3,4}

1-10.   Active row marks are masked. {7,10,11,12,13,15,16}

1-11.   Termination fails.

1-13.   Empty columns are marked active. {5,6,14,17}

The results of the first evaluation cycle are displayed above in the state of

the mask and active computational vectors (M and A), and in the output

vectors (S and O).  All output values are 0.

Below, masked rows are shaded for ease of reading the results for step 1-13.

         0-1-2-3-4-5-6-7-8-91011121314151617
   ---  -------------------------------------  -----   ---------   -----
 0 | |  |-----------------------------------|  |1| |   |1| | | |   | | |
 1 | |  |-----------------------------------|  |1| |   |1| | | |   | | |
 2 |1|  |-----------------------------------|  |X| |   |1| | | |   | | |
 3 | |  |-----------------------------------|  |X| |   | | |1| |   | | |
 4 | |  |-----------------------------------|  |X| |   | | |1| |   | | |
 5 | |  |---------    --    --------  ----  |  | |X|   | |1| | |   | | |
 6 | |  |---------    --    --------  ----  |  | |X|   | | | | |   | | |
 7 | |  |-----------------------------------|  |X| |   | | | | |   | | |
 8 | |  |---------    --    --------  ----  |  | | |   | | | |1|   | | |
 9 | |  |---------    --    --------  ----  |  | | |   | | | |1|   | | |
10 | |  |-----------------------------------|  |X| |   | | | | |   | | |
11 | |  |-----------------------------------|  |X| |   | | | | |   | | |
12 | |  |-----------------------------------|  |X| |   | | | | |   | | |
13 | |  |-----------------------------------|  |X| |   | | | | |   | | |
14 | |  |---------    -- 1  --------  ----  |  | |X|   | | | | |   | | |
15 | |  |-----------------------------------|  |X| |   | | | | |   | | |
16 | |  |-----------------------------------|  |X| |   | | | | |   | | |
17 | |  |---------    --   1--------  ----  |  | |X|   | | | | |   | | |
   ---  -------------------------------------  -----   ---------   -----
    I                       C                   M A     N U T B     S O

The second cycle begins:
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         0-1-2-3-4-5-6-7-8-91011121314151617
   ---  -------------------------------------  -----   ---------   -----
 0 | |  |-----------------------------------|  |1| |   |1| | | |   | | |
 1 | |  |-----------------------------------|  |1| |   |1| | | |   | | |
 2 |1|  |-----------------------------------|  |1| |   |1| | | |   | | |
 3 | |  |-----------------------------------|  |1| |   | | |1| |   | | |
 4 | |  |-----------------------------------|  |1| |   | | |1| |   | | |
 5 | |  |---------    --    --------  ----  |  |X|1|   | |1| | |   | |X|
 6 | |  |---------    --    --------  ----  |  |X|1|   | | | | |   | | |
 7 | |  |-----------------------------------|  |1| |   | | | | |   | | |
 8 | |  |---------    --    --------  ----  |  |X| |   | | | |1|   | | |
 9 | |  |---------    --    --------  ----  |  |X| |   | | | |1|   | | |
10 | |  |-----------------------------------|  |1| |   | | | | |   | | |
11 | |  |-----------------------------------|  |1| |   | | | | |   | | |
12 | |  |-----------------------------------|  |1| |   | | | | |   | | |
13 | |  |-----------------------------------|  |1| |   | | | | |   | | |
14 | |  |---------    -- 1  --------  ----  |  |X|1|   | | | | |   | | |
15 | |  |-----------------------------------|  |1| |   | | | | |   | | |
16 | |  |-----------------------------------|  |1| |   | | | | |   | | |
17 | |  |---------    --   1--------  ----  |  |X|1|   | | | | |   | | |
   ---  -------------------------------------  -----   ---------   -----
    I                       C                   M A     N U T B     S O

CYCLE 2

2-7,8.  Output is asserted. {5}

2-9.    Active rows are masked. {5,6,14,17}

2-10.   Active row marks are masked. {8,9}

2-11.   Termination succeeds.

The resulting output is positive, while both register states are negative.

COMPLEXITY MEASURES

The size and complexity of each occlusion array examined in the previous

examples are compared in the following table:

   Reduction type  rows w/o inv   marks   w/o inv

    Raw circuit   33           14           48           29

    Losp reduced   20           13           31           24

    Parens-pun reduced   20           12           31           23

    CNF   18           12           31           25

The various forms of reduction result in varying array sizes, an indication

that minimization is not trivial.  The number of marks in an occlusion array

is not relevant to the functioning of that array.   

In general, optimization of occlusion arrays depends on several factors.  The

dominant design issue is a classical time-space trade-off.  A smaller dnet

with fewer distinctions uses less computational area.  A deeply nested dnet
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usually contains fewer dnodes than a functionally equivalent dnet which is

shallower.  Deep nesting takes more computational cycles for the worst case

input, trading computational time for area.

Thus the dominant measures of complexity for occlusion arrays are size and

cycles.  Cycles can be reduced by making the circuit shallower;  area can be

reduced by decreasing the number of dnodes.  Often a mean between these two

can be measured by a composite measure, the simplest of which is

(cycles * size).

CNF form provides time-standardization, at the cost of array size for larger

circuits.  Array subdivision can provide area-standardization.

OCCLUSION ARRAY ALGORITHM DESCRIPTIONS

Several other ways of describing the occlusion array algorithm follow.  All

algorithms apply equally to combinational and to sequential circuits.  Some

of the algorithms have been simplified to illustrate pure combinational code.

The algorithms are:

•  Five-step

The algorithm is partitioned into five coherent steps.  

Description is pseudo-English combined with vector notation.

•  Alternative termination branch for five-step

Termination keys on the presence of active rows rather than an

opaque mask.  This approach is good for partial evaluation.

•  Fine-grain steps

The algorithm is partitioned into atomic operations.  

Description is in pseudo-English.

•  Vector logic and assignment

The fine-grain atomic operations are expressed as logical

operations on vectors.  The results of each operation are

assigned to a vector.

•  Symbolic vector logic

Vector logic operations are grouped for each vector assignment,

and expressed symbolically.

•  LISP source code

Verified LISP source code which implements the entire occlusion

algorithm.  The core control code models the five step algorithm.

A double bar, ||, indicates independent steps.  An asterisk, *, indicates

part of the sequential algorithm.
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FIVE-STEP DESCRIPTION

A = active vector

M = mask

O = output screen

S = register state screen

U = output filter

B = register-bot filter

0.  INITIALIZATION

Mark positive inputs into A.   

Mask negative inputs into M.

1.  PROJECT RESULTS

For all rows, when (U=1 and A=1), mark O.

For all rows, when (B=1 and A=1), mark S. *

2.  MASK

For all rows, when (A=1),

mark M

and for all marks in each row,

mark M.

3.  TERMININATION BRANCH

If M is opaque

  then terminate

  else

4.  COLLECT NEW ACTIVE

For all columns, when (M=1 and column-is-empty),

mark A.

5.  RETURN TO 1
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ALTERNATIVE TERMINATION BRANCH

The operational termination condition is when rows are no longer scheduled

for deletion.  This can be expressed either by an opaque (full) mask, or by a

transparent (empty) active-vector.

Alternative loop termination:

1.  PROJECT RESULTS

2.  MASK

3.  COLLECT NEW ACTIVE

For all columns, when (M=1)

mark A.

4.  TERMININATION BRANCH

If A is empty

  then terminate

  else

5.  RETURN TO 1

This approach is necessary whenever a circuit is partially evaluated.
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FINE-GRAIN STEPS

1.  For every positive input to the system

      mark the input-vector

2.  For every input that is marked in the input-vector

      mark the active-vector

||

3.  For every input that is not marked in the input-vector

      mark the mask

||

4.  For every register-top with marked state *

      mark the active-vector *

||

5.  For every register-top with unmarked state *

      mark the mask *

6.  Repeat

7.  For every active row that is an output

      mark the output-vector

||

8.  When clock=0 *

      for every active row *

        for every register-bot marked in that row *

          mark the register-top state *

||

9.  For every active row

      mark the mask

||

10. For every mark in each active row

      mark the mask

11. When any row is not masked

      for every unmasked row with an empty column

        mark the active-vector

12. When any row is not masked

      goto repeat

COMMENTS:

Step 3 could be mask := negative inputs.

Steps {4,5,8} are for sequential circuits only.

The repeat in step 12 is nested under step 11.
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VECTOR LOGIC AND ASSIGNMENT

1.  input-vector :=

  bindings OR input-vector

2.  active :=

  active OR (input-filter AND input-vector)

||

3.  mask :=

  mask OR (input-filter AND NOT input-vector)

||

4.  active := *

  active OR (register-top AND state) *

||

5.  mask := *

  mask OR (register-top AND NOT state) *

6.  repeat

7.  output-vector :=

  output-vector OR (active AND output-filter)

||

8.  when clock=0,  register-top-state := *

  state OR (active AND (row-of-active AND register-bot)) *

||

9.  mask :=

  mask OR active

||

10. mask :=

  mask OR (active AND row-of-active)

11. branch:  (APPLY OR mask)   

  when F  exit

12.  T  active :=

    active OR (NOT mask AND NOT (APPLY OR column))

13   T  goto repeat
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SYMBOLIC VECTOR LOGIC

Vector assignment operations have been combined into single assertions where

possible.  The distinction between combinational and sequential steps is

lost.  This description is intended to be closest to the physical logic

wiring in the occlusion array substrate.

Ci refers to the row vector indexed by A.

Cj refers to the column vector indexed by not M.

Operations   

I := BINDINGS or I

A := A or (N and I) or (T and S)

||

M := M or (N and not I) or (T and not S)

loop

O := O or (A and U)

||

when clock=0,

  S := S or (A and Ci and B)

||

M := M or A or Ci

if not (apply or M)

  exit

  A := A or (not M and not (apply or Cj))
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LISP SOURCE CODE

(defun evaluate-circuit ()
  (initialize-vectors)
  (evaluate-circuit-loop))

(defun initialize-vectors ()   
  (build-mask)                
  (build-active)    
  (build-in)          
  (build-out)    
  (initialize-in)        
  (initialize-mask-and-active)
  (when (and *cam-clock* (= 0 *cam-clock*))
    (build-ffout)) )                   

(defun initialize-in ()
  (do ((i 0 (incf i))
       (binds *cam-input* (cdr binds)))      
      ((= i *array-size*))
    (when (and binds (= 1 (cadar binds)))        
      (setf (sbit *in* i) 1))))

(defun initialize-mask-and-active ()
  (do ((i 0 (incf i)))
      ((= i *array-size*))
    (when (= 1 (sbit *inmask* i))
      (if (= 1 (sbit *in* i))
        (setf (sbit *active* i) 1)
        (setf (sbit *mask* i) 1)))
    (when (and *cam-clock* (= 1 (sbit *ffmask* i)))
      (if (= 1 (sbit *ffout* i))
        (setf (sbit *active* i) 1)
        (setf (sbit *mask* i) 1)))))   

(defun evaluate-circuit-loop ()
  (set-out)
  (set-ffout)
  (set-mask)
  (when (some-unmasked)      
    (set-active)
    (evaluate-circuit-loop)))

(defun set-out ()
  (do ((i 0 (incf i)))                   
      ((= i *array-size*))
    (when (and (= 1 (sbit *outmask* i))
               (= 1 (sbit *active* i)))
      (setf (sbit *out* i) 1))))
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(defun set-ffout ()
  (when (and *cam-clock* (= 0 *cam-clock*))
    (do ((i 0 (incf i)))                   
        ((= i *array-size*))
      (when (= 1 (sbit *active* i))
        (do ((j 0 (incf j)))
            ((= j *array-size*))
          (when (and (= 1 (sbit *ffinmask* j))
                     (= 1 (aref *array* i j)))   
            (setf (sbit *ffout* (ff-dereference j)) 1)))))))

(defun ff-dereference (i)
  (do ((j 0 (incf j)))
      ((= j *array-size*))
    (when (and (= 1 (sbit *ffmask* j))
               (= 1 (aref *array* i j)))
      (return j))) )

(defun set-mask ()       
  (do ((i 0 (incf i)))                   
      ((= i *array-size*))
    (when (= 1 (sbit *active* i))
      (setf (sbit *mask* i) 1)
      (do ((j 0 (incf j)))
          ((= j *array-size*))
        (when (= 1 (aref *array* i j))
          (setf (sbit *mask* j) 1))))))

(defun set-active ()
  (do ((i 0 (incf i)))                   
      ((= i *array-size*))
    (when (and (= 0 (sbit *mask* i))
               (empty-col i))
      (setf (sbit *active* i) 1))))

(defun some-unmasked ()
 (do ((i 0 (incf i)))               
      ((= i *array-size*))
    (when (not (= 1 (sbit *mask* i)))
      (return T))))

(defun empty-col (i)   
  (do ((j 0 (incf j)))
      ((= j *array-size*) T)
    (when (and (not (= 1 (sbit *mask* j)))
               (= 1 (aref *array* j i)))
      (return nil))))
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ALTERNATIVE OCCLUSION ARRAY ALGORITHM (NO ACTIVE VECTOR)

The algorithm below uses look-ahead in order to stay O[N^2].  It assumes that

register-tops are found by searching the rows of register-bots.

Computational complexity can be exchanged for a better data structure.  If

association lists can be built in hardware, then this alternative algorithm

is unnecessary.  It differs only slightly from the previous algorithm, in

implementation of erasure, and in dereferencing register components

(register-top and register-bot).

These versions follow:

•  Fine-grain steps

•  Vector logic and assignment

•  Vector logic and assignment for combinational circuits

•  Pseudo-English code

•  LISP source code

•  LISP source code for combinational circuits

The main versions apply to both sequential and combinational circuits.

Condensed algorithms which address only combinational circuits are included

also.

The alternative algorithm is illustrated using the MAJORITY circuit.
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ALTERNATIVE FINE-GRAIN STEPS

1.  Initialize the input-vector with positive input values.

2.  Initialize the mask with negative input values.

3.  Mask all register-tops.

4.  When a register state is positive,

mask all rows marked in the register's row.

5.  When a register state is positive and the register-top is an output,

mark the output vector.

6.  When a row is not masked and the column is empty,

when the row is an output, mark the output vector

7.  When a row is not masked and the column is empty,

when the row is a register-bottom and the clock=0,

  mask the register-top.

8.  When a row is not masked and the column is empty,

mask the row.

9.  When a row is not masked and the column is empty,

mask all rows marked in the particular row.

10. When the clock=0 and a row is a register-bot and that row is masked,

when the register-top is not masked, mark the register state

11. When the clock=0 and a row is a register-bot,

register-mask the register-top.

12.  Go to 6.
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MAJORITY EXAMPLE, ALTERNATIVE OCCLUSION ARRAY MODEL

The loaded occlusion array for the MAJORITY circuit, with the input bindings:  

{(a 1),(b 0),(c 0)}

    input           circuit          mask    filters    screen
                -1-2-3-5-6-7-4
     ---       ----------------      ---      -----      ---
1    |1|       |       1 1    |      | |      |1| |      | |
2    | |       |       1   1  |      |1|      |1| |      | |
3    | |       |         1 1  |      |1|      |1| |      | |
5    | |       |             1|      | |      | | |      | |
6    | |       |             1|      | |      | | |      | |
7    | |       |             1|      | |      | | |      | |
4    | |       |              |      | |      | |1|      | |
     ---       ----------------      ---      -----      ---

The difference in the two algorithms for initiation is that without an active

vector, only the negative input is masked.

At this point the computational cycle begins.

    input           circuit          mask    filters    screen
                -1-2-3-5-6-7-4
     ---       ----------------      ---      -----      ---
1    |1|       |       1 1    |      |X|      |1| |      | |
2    | |       |       1   1  |      |1|      |1| |      | |
3    | |       |         1 1  |      |1|      |1| |      | |
5    | |       |             1|      |X|      | | |      | |
6    | |       |             1|      |X|      | | |      | |
7    | |       |             1|      |X|      | | |      | |
4    | |       |              |      |X|      | |1|      | |
     ---       ----------------      ---      -----      ---

CYCLE 1

1.  Mark output (none)

2.  Mask empty columns {1,7}

3.  Mask marks in each empty column {4,5,6}

4.  Opaque mask?  Terminate.

Here, rows 1 and 7 are masked because their columns are empty (after ignoring

all masked rows).  Row 4 is masked because it is marked in row 7;  rows 5 and

6 are masked because they are marked in row 1.

When the output row 4 became masked, it was as a consequence of row 7 being

active.  In such cases the output-vector does not have an opportunity to

become marked.  It is in effect set to zero by the absence of an action.

Since the mask is fully marked, the evaluation is over.  The output has

nothing in row 4, so its value is False.
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ALTERNATIVE VECTOR LOGIC AND ASSIGNMENT

Below, read ":" as "which meet the following test(s)"

Initialize  (all in parallel)

input-vector :=  all input values: positive

||

mask := all input values: negative

||

mask := all rows: register-tops *

||

mask := all rows: *

marked in any other row: *

register and positive-state. *

||

output := all rows:  *

           register-top and positive-state and is-an-output *

Repeat when any row is not masked

output := all rows: not-masked and empty-column and is-an-output

when clock=0 *

  mask := all register-tops: *

register-bot is (not-masked and empty-column) *

mask := all rows: not-masked and empty-column.

||

mask := all rows:   

marked in any other row:

not-masked and empty-column.

when clock=0 *

  register-state := all rows:

register-bot and masked and register-top not masked *

||

when clock=0 *

  register-mask := all rows:  if register-bot, register-top *
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ALTERNATIVE VECTOR LOGIC AND ASSIGNMENT  (COMBINATIONAL)

Initialize  (all in parallel)

input-vector :=  all input values: positive

||

mask := all input values: negative

Repeat when any row is not masked

output := all rows: not-masked and empty-column and is-an-output

mask := all rows: not-masked and empty-column.

||

mask := all rows:   

            marked in any other row: not-masked and empty-column.



53

ALTERNATIVE PSEUDO-ENGLISH CODE

In this pseudo-English version, the long-names hide particular variables,

loops, and functional complexities.  Since the map from long-name to source

code structure is 1-to-1, this code can be transcribed directly into the

original source code, and is therefore executable when compiled.

(define initialize-in
  (for-every-row
    (when (the-row-is-an-input and the-input-is-positive)

mark-the-input-vector)))

(define initialize-mask  
  (for-every-row
    (when (the-row-is-an-input and the-input-is-negative)
      mask-the-row)
    (when the-row-is-a-register-top
      mask-the-row
      (when the-register-state-is-positive
        (when the-register-is-an-output
          mark-the-output-vector)
        mask-the-containers of-the-register-top))))

(define mask-the-containers (row)
  (for every column
    (when the-row-is-contained-by-the-column
      mask-the-container)))

(define repeat-evaluation  
  (when (there-are-unmasked-rows)
    (mask-more-rows)
    (mark-register-states)
    (repeat-evaluation)))

(define mask-more-rows
  (for-every-row
    (when (the-row-is-not-masked and the column-is-empty)
      (when the-row-is-an-output mark-the-output-vector)
      (mark-the-register-mask-for-register-bots of-the-row)
      mask-the-row
      mask-the-containers of-the-row) ))
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(define mark-register-states
  (when the-clock-ticks
    (for-every-row
      (when (the-row-is-a-register-bot and the-row-is-masked)
        (for-the-register-top
          (when the-register-is-not-masked mark-the-register-state)
          mark-the-register-top-mask))))

(define mark-the-register-mask-for-register-bots (row)
  (when (the-clock-ticks and the-row-is-a-register-bot)
    (for-the-register-top from-the-row
      mark-the-register-mask))

(define for-the-register-receiving-input (row)
  (locate-the-register-receiving-input-by-searching-the-column))

(define there-is-more-to-do
  (for-every-row
    (when the-row-is-not-masked there-is-more-to-evaluate)))

(define the-column-is-empty (row)
  (for-every-row
    (when (the-column-is-not-masked and the-column-is-marked-in-the-row)
      the-column-is-not-empty)))
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ALTERNATIVE SOURCE CODE

(defun initialize-in ()
  (do ((i 0 (incf i))
       (binds *cam-input* (cdr binds)))      
      ((= i *array-size*))
    (when (and binds (= 1 (cadar binds)))
      (setf (sbit *in* i) 1))))

(defun initialize-mask ()
  (do ((i 0 (incf i)))
      ((= i *array-size*))
    (when (and (= 1 (sbit *inmask* i)) (= 0 (sbit *in* i)))
      (setf (sbit *mask* i) 1))
    (when (and *cam-clock* (= 1 (sbit *ffmask* i)))
      (setf (sbit *mask* i) 1)
      (when (= 1 (sbit *ffout* i))
        (when (= 1 (sbit *outmask* i)) (setf (sbit *out* i) 1))
        (mask-containers i)))))

(defun mask-containers (i)
  (do ((j 0 (incf j)))
      ((= j *array-size*))
    (when (= 1 (aref *array* i j))
      (setf (sbit *mask* j) 1))))

(defun evaluate-circuit-loop ()
  (when (do-some-more)
    (set-out-and-mask)
    (mark-register-state)
    (evaluate-circuit-loop)))

(defun set-out-and-mask ()
  (do ((i 0 (incf i)))                   
      ((= i *array-size*))
    (when (and (= 0 (sbit *mask* i)) (col-is-empty i))
      (when (= 1 (sbit *outmask* i)) (setf (sbit *out* i) 1))
      (mark-register-mask i)
      (setf (sbit *mask* i) 1)
      (mask-containers i)) ))
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(defun mark-register-state ()
  (when (and *cam-clock* (= 0 *cam-clock*))
    (do ((i 0 (incf i)))                   
        ((= i *array-size*))
      (when (and (= 1 (sbit *ffinmask* i)) (= 1 (sbit *mask* i)))
        (let ((ff (dereference-to-ff i)))
          (when (= 0 (sbit *ffmasked* ff))
            (setf (sbit *ffout* ff) 1))
          (setf (sbit *ffmasked* ff) 1) )))))   ;order important

(defun mark-register-mask (i)
  (when (and *cam-clock* (= 0 *cam-clock*) (= 1 (sbit *ffinmask* i)))
    (let ((ff (dereference-to-ff i)))
        (setf (sbit *ffmasked* ff) 1)) ))

(defun dereference-to-ff (i)
  (do ((j 1 (incf j)))
      ((= j *array-size*))
    (when (= 1 (aref *array* i j))
      (return j))))

(defun do-some-more ()
  (do ((i 0 (incf i)))   
      ((= i *array-size*))
    (when (= 0 (sbit *mask* i))
      (return T))))

(defun col-is-empty (i)
  (do ((j 0 (incf j)))
      ((= j *array-size*) T)
    (when (and (= 0 (sbit *mask* j)) (= 1 (aref *array* j i)))
      (return nil))))
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ALTERNATIVE SOURCE CODE  (COMBINATIONAL)

(defun initialize-in ()
  (do ((i 0 (incf i))
       (binds *cam-input* (cdr binds)))      
      ((= i *array-size*))
    (when (and binds (= 1 (cadar binds)))
      (setf (sbit *in* i) 1))))

(defun initialize-mask ()
  (do ((i 0 (incf i)))
      ((= i *array-size*))
    (when (and (= 1 (sbit *inmask* i)) (= 0 (sbit *in* i)))
      (setf (sbit *mask* i) 1)) ))

(defun mask-containers (i)
  (do ((j 0 (incf j)))
      ((= j *array-size*))
    (when (= 1 (aref *array* i j))
      (setf (sbit *mask* j) 1))))

(defun evaluate-circuit-loop ()
  (when (do-some-more)
    (set-out-and-mask)
    (evaluate-circuit-loop)))

(defun set-out-and-mask ()
  (do ((i 0 (incf i)))                   
      ((= i *array-size*))
    (when (and (= 0 (sbit *mask* i)) (col-is-empty i))
      (when (= 1 (sbit *outmask* i))
        (setf (sbit *out* i) 1))
      (setf (sbit *mask* i) 1)
      (mask-containers i)) ))

(defun do-some-more ()
  (do ((i 0 (incf i)))   
      ((= i *array-size*))
    (when (= 0 (sbit *mask* i))
      (return T))))

(defun col-is-empty (i)
  (do ((j 0 (incf j)))
      ((= j *array-size*) T)
    (when (and (= 0 (sbit *mask* j)) (= 1 (aref *array* j i)))
      (return nil))))


