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Software

How does boundary logic simplify synthesis and increase efficiency?

Some example algorithmic and data structure features that make boundary logic

both simpler and more efficient include 1) a one-to-many mapping from boundary

logic to conventional logic, 2) a unary basis with one operator and one ground

state, 3) deletion operations that remove rather than rearrange structure, and

4) transparency operators that ignore intervening logic on a path, effecting

path transformations independent of the logic along the path.

Unary logic is a central feature of the boundary logic approach.  The 1, or

HIGH, logical state is represented explicitly;  the 0, or LOW, logical state

is implicit as the absence of the HIGH state, and is thus not represented.

Discarding one logical state into non-representation creates no algorithmic

confusion, and greatly improves the efficiency of all representations and

processes.  In converting back to conventional logic, we identify where

explicit 0 states are appropriate.  Unary logic is closer to the way physical

circuits behave (presence or absence of a signal) than is binary logic.
Removing the superfluous and redundant symbolic structures from binary logic
is central to the simplification capabilities of boundary logic.

Why is a “new understanding of circuit structure” important?

All current EDA tools, including those based on BDDs, Boolean factoring

algorithms, partitioning algorithms, Boolean minimization, etc., are

substantively ineffective since they lack multilevel Boolean modeling

capabilities.  A new understanding of logic networks that is simpler and more

powerful than existing tools improves all EDA processes.  In the case of the

CoMesh architecture, a new understanding leads to new hardware architectures

with dramatic performance improvements at lower costs.

In what ways are designs improved automatically?

The synthesis software provides world class optimization given pre-specified

structural parameters.  In the context of our CoMesh architecture, the

hardware guarantees a minimal timing, while the software automates timing

design.
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What are the abstractions the tool provides and why are these useful to the
user?

Abstraction capabilities include identification of recurrent functional

elements at any grain size, partitioning necessarily sequential from parallel

components of the circuit logic, vectorization of functions, control of

branchy low level functions such as XORs and MUXes, structure sharing, and

hierarchical partitioning.  Interactively, a user can work at the function

block level to identify mandatory resource requirements, time/space trade-

offs, hierarchical design components, available pipelining, available

structure and resource sharing, vector parallelization, parametric functional

decompositions, partially evaluated structures, and the like.  These

capabilities give the user an ability to closely control time/space trade-offs

in the design;  they also provide organizational hierarchy for management of

the design.

Are the synthesis tools developed in-house?

All BTC software has been developed in-house, is completely unique, and no

other companies or academic environments have or know of these algorithms.

What is the complete design flow? Compare to conventional FPGA/ASIC flow.

Standard Design Flow for PLDs

                       HDL Design Input

                              |

                          Simulation        <--   HDL Simulation Tools

Technology Library            |               |

        &       ----> HDL Compile/Synthesis <--   Static Timing Analysis

Design Constraints            |               |

                     Place&Route/Optimizer  ---   Fitting Iteration

                              |

                          FPGA/CPLD

Comesh Design Flow

                       HDL Design Input

                              |

                        BTC Simulation        <--   HDL Simulation Tools

                              |                        |  (optional, not

                     BTC Optimize/Compile/Synthesis  --         necessary)

                              |

                      BTC Place and Route

                              |

                          CoMesh chip
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BTC Tool-chain Integration (ASICs and PLDs)

Generic Design Steps                 BTC Design Steps

Device Selection                     select CoMesh

       |

Design Specification                 same

       |

Behavioral Description               same

       |

RTL Description (HDL) <-------       untimed HDL, FSM or Boolean equations

       |                 | | |

Functional Verification -- | |       BTC functional simulation

     and Testing           | |

       |                   | |                                single step

       |                   | |                                         ||

Logic Synthesis            | |       BTC Synthesis and Optimization    ||

       |                   | |                                         ||

Gate-level Netlist         | |       available on demand               ||

       |                   | |                                         ||

Logical Verification ------- |       BTC Formal Verification           ||

     and Testing             |                                         ||

       |                     |                                         ||

Technology Library Map       |       available on demand               ||

       |                     |                                         ||

Prelayout Timing             |       not required                      ||

       |                     |            (or technology specific)     ||

Floor Planning        <----- |       not required                      ||

Automatic Place & Route    | |            (or technology specific)     ||

       |                   | |                                         ||

Physical Layout            | |       CoMesh configuration              ||

       |                   | |            (or technology specific)     ||

Delay Backannotation       | |       available on demand               ||

       |                   | |                                         ||

Timing Verification        | |       CoMesh Timing Verification        ||

       |                   | |            (or technology specific)     ||

Layout Verification ----------       CoMesh Verification               ||

       |                                  (or technology specific)     ||

Program Device

Which low level design steps are removed?

Within the context of a golden circuit specification, a specified technology

library and structural circuit performance parameters, the software generates

a conforming circuit automatically.
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How does the user guide the design and architectural choices the tool makes?
How much control does he have?

The software is completely modular;  we have not yet decided upon particular

interface styles and options.  At this time the user provides the desired

functionality and sets parameters such as the technology library, fanin and

fanout constraints, desired critical path length, testability, logic density,

and level of processing effort.  The software then generates a circuit that

fits within the parameters, given such a circuit is possible.

At a finer grain, the software consists of around 200 independent functions

that an experienced designer can mix and match.  Each modular transformation

achieves specific design trade-offs, so that a designer could specify a

subcircuit of interest and apply transformations to that subcircuit that

achieve known trade-offs, such as lowering fanout by increasing path length,

lowering area by increasing routing, and lowering path length by increasing

area.  These trade-offs are available at any grain size.

Our architectural strategy is to automate design so well that user choice and

control is moot for the majority of users.  There are no necessary obstacles

to giving the user control over every fine grain step taken by the software

(or some reasonable mixture in between).  The greatest difficulty in giving

the user control is that the algorithms are completely unfamiliar, so that the

user would have no cognitive model of what is going on or how automated design

decisions are being made.  Our experience is that the software can outperform

all but the top few percent of designers in arriving at designs that meet

specifications.  We mitigate the unfamiliarity of the algorithms by providing

the user with functional choices expressed as familiar design parameters, such

as desired timing and area.

For the CoMesh architecture, fine-grained user control is not preferred.

Rather, the user names the functional and performance requirements, and the

software generates and routes a hardware solution.  It should be understood

that portions of this co-designed strategy are fully implemented, and portions

are simulated.  CoMesh hardware has not yet been fabricated.

What is the design entry language?

We currently have parsers for EDIF 2 0 0, BLIF, KISS, a very limited subset of

Verilog, and we can easily enter logic equations, FSM specifications and other

formal models.  The BTC strategy is to be compatible with industry standard

design entry languages, particularly HDLs.  HDL parsers have not yet been

written;  no complications are expected since timed boundary logic maps

directly onto timed conventional logic.
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Is design entry behavioral or structural?

Design entry is primarily structural at this time, preferably an EDIF netlist.

Behavioral parsers can easily be written, specifically for HDLs.  We have

created proof-of-concept parametric circuit  generators for adders,

multipliers, comparators and some other functions, and intend to create an

extensive library of automated circuit generators for behavioral design entry.

What is the simulation capability of the BTC tools?

Currently we have simulation capabilities for combinational and sequential

test vectors with a limited variety of flip-flop types.  We also provide

partial simulation, in which some inputs can be locked-down to specific
values.  The software then generates the residual circuit given the specified

inputs.  Thus far, static timing simulation has been developed only for simple

unit-delay models and for aspects of the CoMesh architecture.  We envisage no

complications extending our simulation capabilities given appropriate timing

models.

How does one co-simulate HDL and BTC designs?

We have no provision for co-simulation at this time, and anticipate no

technical difficulties interfacing BTC tools with conventional CAD tools.

BTC's tools do not address design specification.  BTC's tools do optimize

specified designs in the context of a specific target technology, using

standard netlists and test vectors generated from HDL design specifications.

In the context of the CoMesh architecture, timing simulation will be provided

by the BTC software.  In other contexts, BTC synthesis results can be output

as a standard netlist at any time, for coordination with other EDA tools.

How does one integrate HDL-based IP into BTC designs?

Many options exist, depending on security, boundary integrity, size, etc.  The

simplest approach is to provide a netlist of the IP to the BTC software and

let the software place it within soft boundaries, with little to no

differentiation from non-IP functionality.

What is the timing closure process?

The BTC software/hardware architectural strategy is to make timing closure

easy for the designer.  In general, the process for the CoMesh chip is to

submit the functional design, set the preferred delay parameter for the

design, and evaluate the modeled performance of the generated circuit.  Should

some performance measures be unsatisfactory, those specific performance

parameters would be reset and the design resubmitted for generation.
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Within a guaranteed lower performance limit (2.4 ns per block of five levels

of logic, plus a maximum of 1.1 ns cross-chip busing delay for about 180K

gates at 100% utilization), CoMesh timing closure is independent of logic and
layout.  Multiple block delays can be reduced by flattening the design,

automatically trading area for time.  We have not yet designed timing software

for non-CoMesh architectures.

For designers not wishing to engage in timing specification or design, a

functional non-timed specification can be submitted to the software, and the

software will time, place and route the specification, reporting the number of

block delays in the design, or when a development board is attached, reporting

the timing performance of the physical circuit.  The designer can then elect

to lower the number of block delays by using more blocks, should they be

available.

How does the software support multiple clocks?

As our target technologies become more defined, we intend to create the

appropriate tools and extensions support multiple clocks as desired. and see

no difficulties in doing so.  We envisage supporting at least four clock

domains for the CoMesh hardware.

What does “software/hardware co-design strategy” mean?

Commonly, the performance of synthesis and layout software is degraded by

fixed and limited hardware resources. Co-designing hardware that optimizes the

performance of synthesis and layout software, while co-designing software

algorithms that take into account specialized hardware resources, removes or

minimizes traditional problems in reconfigurable architectures such as routing

congestion and wasted logic capabilities.

How scalable is the synthesis tool to larger devices?

Since all algorithms are both simpler than existing algorithms, and polynomial

in complexity, scalability is not a problem.  Our current implementation will

require a rewrite to reach maximal efficiency for very large devices, since

much of the slower cross-verification code can be eliminated.



7

Hardware

Define what you mean by deterministic timing.  What are the limitations and
exceptions?

Any block of 300 user gates of standard combinational or sequential logic with

five or fewer levels of logic, and with up to 16 inputs and 32 outputs, can be

processed in 2.4 ns or less, including clocking of registers.  Cross-chip

communication between blocks takes less than 1.1 ns for a 180K gate chip,

worst case.  We anticipate no exceptions to this performance.

Thus, deterministic timing is a guarantee that block to block processing,

including block registers, will incur a delay of 3.5 ns, worst case.  We do

not yet have timing models for i/o pads.

Explain contents of the cell.

We have a number cell designs that are variations on a basic theme. Our

current SPICE model is based upon the following cell structure: SRAM-based

selectable polarity for inputs, a small reconfigurable logic network that

expresses all three-input functions using one or two cells, steerable output

to cell neighbors and across multiple cell layers, and register feed-in to any

cell.  Cells are composed of standard transistor logic elements.

Is the cell 3-4 gate metric the number of gates in the cell or the expected
number of routed gates?

The 3-4 gates per cell metric refers to the expected number of routed gates.

A cell requires about 300 square microns of silicon area in a .18 micron

geometry.  A block of 80 cells is the primary logic element, handling around

300 gates at 100% utilization.  Average utilization is expected to be over

70%.  Blocks can mix different logic and FSM functions.

Explain how gate density numbers were arrived at in the comparisons. Does it
include I/O and pad ring for instance?

All BTC gates are available user logic gates at 100% utilization.  BTC uses no

"system gate" metrics.  Competitors’ gates are logic gates as claimed in

specification sheets, with exceedingly high expected logic densities.  For

example, we are quite skeptical of Xilinx’s claimed 100% utilization

expectation of 12 logic gates per 4LUT.  Experienced FPGA designers expect

fewer than 6 gates per 4LUT for hand-crafted designs, based on 100%

utilization of multiple LUTs.
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How does CoMesh support reconfigurable processing? Is there special H/W
support for reconfigurable processing? How does software support
reconfigurable processing?

CoMesh blocks are reconfigurable to any standard combinational or sequential

functionality.  The software automatically generates configuration files.

Currently JTAG standards are assumed for reconfiguration.  The SRAMs that

support reconfiguration are both readable and writable.  Within-block routing

is supported by SRAM switches at statistically optimized locations.  Global

routing is supported by conventional switching matrices.

Reconfiguration can be achieved in less than a microsecond, independently in

any block, and on-the-fly during dynamic processing, should we elect to

include circuitry to provide for this capability.  Our chip density

calculations do not include specialized circuitry for non-standard

reconfiguration options.

The block architecture has a flexible design, blocks can be fabricated in

wider and in deeper configurations.  Wider and deeper blocks are slower;

thinner and shallower blocks are faster.  We expect that mixing different

structural block types on the same chip will accommodate a wider diversity of

user logic more efficiently.

Define what you mean by “scalable”. What are the limitations and exceptions?

Performance of the software scales polynomially with circuit size.  At all

scales, we anticipate at least 70% logic utilization using automated software

partitioning, placement, and routing.  The software can partition large

designs with exceptional efficiency, anticipating and configuring bus

utilization to avoid routing congestion.  Due to the very large logic block

size, and the hierarchical routing scheme, we expect software place and route

capabilities to maintain 70% utilization without incurring timing degradation

due to routing inefficiencies.

According to our SPICE models, all hardware blocks are expected to process 300

logic gates (100% utilization, .18 geometry) in 2.2 ns, plus .2 ns for

register output.  Communication between blocks in a block-neighborhood is

expected to be a maximum of about .4 ns.  Thus, each block-neighborhood can

evaluate approximately 5000 gates of logic (100% utilization) in 2.8 ns when

all blocks are processing in parallel.  This performance is consistent for all

block-neighborhoods on a chip.

Our design permits up to 20 block-neighborhoods (100K gates at 100%

utilization) to communicate over the hierarchical local bus within a delay of

.7 ns.  Thus the design scales to 100K gates with a block-to-block processing

time of 3.1 ns.

Using the global bus, our design permits up to 36 block-neighborhoods (180K

gates at 100% utilization) to communicate within a delay of 1.1 ns.  Thus the
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design scales to 180K gates with a block-to-block processing time of 3.5 ns.

For larger gate counts, the block-to-block communication delay over the global

bus degrades gracefully, with a cross-chip block-to-block processing delay of

approximately 4.5 ns for 500K gates (100% utilization, .18 geometry).

The architecture is designed to scale down to below .1 microns while

incorporating the proportional improvements of smaller geometries.  We expect

to handle all conventional functionalities with the automated partitioning

software without encountering routing congestion.  We emphasize that the large

logic blocks will rarely require more than local routing to accommodate very

large designs.

What does multilevel logic mean?  Does it mean each logic cell holds multiple
values or that there is hierarchical routing?

Multilevel logic refers to logic resources in series.  ASICs use multilevel

logic to combat the exponential explosion of routing required by two-level

logic.

No, not multivalued logic or hierarchical routing.  There is hierarchical
routing in the BTC design, but not at the block level.  One five-level CoMesh

block is analogous to five 4LUTs in a logic path.  The block width is

analogous to about five 4LUTs, so a CoMesh block is functionally analogous to

a square array of about 25 4LUTs, although architecturally there is nothing in

common between CoMesh blocks and 4LUTs.

One 4LUT can reasonably be expected to accommodate about 6 logic gates, thus a

square array of 25 4LUTs might accommodate around 150 logic gates at 100%

utilization.  Assuming the utilization ratios of CoMesh blocks and 4LUT arrays

are equivalent, the CoMesh logic capacity of 300 gates/block doubles the logic

density of 4LUT architectures.  Since CoMesh cells are more fine grain that

4LUTs, and since CoMesh blocks can easily mix logic functionalities, the

utilization of CoMesh blocks is expected to be significantly higher than an

analogous 4LUT array.

How does the routing interact between cell, block, and block neighborhoods?

Cell routing is dedicated to the block a cell is in.  Block routing is

optimized for fast communication within the block-neighborhood a block is in.

Block to block routing speeds are hierarchically enhanced for close block-

neighborhoods, within about 3 mm.  The worst case 1.1 ns block-to-block global

routing delay is cross-chip, using the global routing facilities.

The software configures all routing interaction at the functional level.  The

cell routing architecture within blocks is statistically optimized to the

software partitioning capabilities and to the expected average types of

functional usage.  The block routing architecture within block-neighborhoods
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is similarly optimized to the software partitioning capabilities.  The block-

neighborhood routing is designed for efficient use of the global bus.

Does the routing delay increase in a step function when moving from block to
block and neighborhood to neighborhood?

Blocks within neighborhoods have dedicated local routing;  at this time we

intend to provide up to 16 inputs per block, and up to 32 outputs.  We can

provide up to 64 input wires into block-neighborhoods, and up to 128 output

wires, more if statistically justified.  These dedicated local routing

resources do not incur the switch box delays of conventional reconfigurable

architectures.  Instead, the design statistically distributes SRAM routing

switches between blocks in order to optimize the software placement and

routing capabilities.

Neighborhood to neighborhood routing will be supported by both local and

global hierarchical busses.  Due to the size of the neighborhoods and the

partitioning capabilities of the software, we anticipate bussing groups of

vectorized signals into and out of larger functional blocks with high

efficiency, and with few switching matrix delays.

Abundant routing implies larger die size. Is this true? What are the
tradeoffs?

Routing congestion can be avoided by exceptionally efficient partitioning,

placement and routing algorithms processing exceptionally condensed multilevel

logic data structures for exceptionally efficient hierarchical routing

resources.  We believe our co-design strategy can assure abundant routing

while using less silicon area for routing than conventional reconfigurable

hardware.  The most sensitive trade-offs are defined by the statistical

analysis of average user configurations in order to maximize the potential

hardware design efficiency across a broad possible customer base.

The 300MHz performance number is related to what chip density?  How would such
performance degrade with density?

300 MHz refers to the minimum time a signal takes to enter a CoMesh block,

traverse five levels of logic, settle into a register, and then transfer to

any other block on the CoMesh chip consisting of up to approximately 36 block-

neighborhoods (about 180K gates at 100% utilization), based on a .18 micron

process geometry.  Performance degradation is described about under

scalability.
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Why is the CoMesh architecture excellent for embedded reconfigurable
processing? Which part of the architecture makes it more suitable for embedded
applications?

The primary advantages of the CoMesh architecture are in the block and block-

neighborhood designs, as co-designed with the software capabilities.  These

fully reconfigurable logic cores can be embedded on chips with other silicon

features without effecting their performance.  The block design can be highly

customizable for prespecified applications.  For example, speed can be

increased by using fewer logic levels or narrower blocks, and density can be

increased by using deeper but slower blocks.  As well, the block architecture

has been designed to accommodate embedded shift registers, FIFOs, arithmetic

functions, counters, and the like without negative impact on the performance

of the reconfigurable block.

Technology

Please explain how boundary logic works and how the technology helps achieve
better logic and die area optimization?

This question is probably best answered in person.  Boundary logic can be

thought of as a mathematical system that is "underneath" Boolean logic.  It

has a simple mapping to conventional logic, but also has simple and powerful

transformations that are not available to conventional logic.  Boundary logic

is an algebraic system with one operator and one ground value.  The operator

is variary, taking any number of arguments, and spatially disjoint in that

associativity and commutativity are not relevant concepts.  Boundary logic is

a rigorous formal system, so  it "works" from an axiomatic basis.  A formal

system that is structurally more powerful and more compact than logic yet can

be interpreted as logic confers optimization benefits upon all areas of logic,

including the minimization of logical expressions and their embodiment in

hardware.

In particular, the boundary logic formalism combines logic functionality and

wiring into a single concept.  This makes partitioning for logic and routing

resources particularly easy.  Since the formalism is algebraic, simple match-

and-substitute algorithms are all that are needed for circuit transformation.

Match-and-substitute algorithms are well understood, and all are of polynomial

complexity, so that the implementation is both efficient and scalable.

Because there is only one operator, parsing and keeping track of different

types of gates is not necessary.  Having no grouping or ordering concepts

makes moving wires and changing fan-in and fan-out relations particularly

easy.  Since every step is formal, the functionality of the circuit is never

changed by transformations, and equivalence checking is not needed.  Since

every formal step is characterized by a specific structural trade-off, each

transformation achieves a specific known design objective.  Since the

formalism is compact, there are only five transformations in total, each one

sharply delineating the effect of moving around the design space of circuits
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with fixed functionality.  Because there is always a simple map between

boundary logic and Boolean logic, it is always easy to move between the

abstract data structure and an actual circuit netlist.  And perhaps most

importantly, boundary logic maps one-to-many into conventional logic, making

it always smaller and simpler than any existing conventional EDA approach.  In
technology mapping from boundary logic to a target architecture, for example,

a single boundary logic data structure represents a family of equivalent

circuit configurations; choosing between them is simply a matter of reading

the boundary logic structure using a different interpretation.

In sum, boundary logic tools do the same as any other EDA tools, using less

structure, less mechanism, and more powerful and succinct transformations in

all cases.


