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The application of rules to achieve transformation of forms can be achieved

using may different implementation techniques.  For example, the evaluation

of a form can be accomplished by using procedural methods such as those

embodied in assembly languages for vonNeumann processors, by using

declarative methods such as pattern-matching, by using functional methods

such as implementations of lambda calculus, by using object-oriented methods

of message passing, by using graph restructuring methods, by using parallel

processing methods such as vector processing, and by using a variety of

methods specific to container-based forms such as map transformation, 3D

block manipulation, path rearrangement, and several other approaches, both

specific to container-based forms and general as computational techniques.

It is important to recognize that each of these methods and techniques can be

expressed as an abstract method independent of computational implementation,

as a software method independent of hardware substrate, and as a hardware

method that defines a particular hardware architecture and machine

configuration.  

With regard to hardware organization, boundary-based computation is equally

well realized in stack-based procedural machines, functional lambda calculus

machines, container-based LISP machines, and other architectures.  The

predominant type of machine available today is based on a vonNeumann

architecture.  What follows are outlines of two boundary-based techniques for

instruction-set vonNeumann CPU architectures.

Bit-stream Method

The three primary atomic rules for container-based evaluation can be

expressed as bit-stream transformations of non-evaluated forms.  This adds

larger computational steps to the bit-stream process at the cost of recursive

subroutines.  Figure I shows a simple encoding scheme for parens forms

without atoms.  The figure also extends this encoding scheme to bit-streams

with atoms.  The essential difference is that the addition of atoms requires

more unique bit-codes to encode the unique atoms.  Figure I shows that

example of 12 unique atoms, requiring twelve unique codes.  Adding two codes

for the open and close parentheses, the number of bits required to encode

these 14 items is 4, providing 2^4 different codes.  The bit-stream then

consists of 4-bit packets, called nibbles by the technical community.  Figure

II presents the three primary deletion-reduction rules as bit-stream

transformations.

Algebraic Pervasion requires a pattern builder to get a copy of X as a

template, and then using the constructed pattern as a pattern mask to

identify X for Pervasion deletion.  Even pattern-rearrangement can be handled
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using a bit-stream, as is indicated in Figure II by the Distribution rule.

The result is an efficient bit-stream universal Turing machine.  The

information entropy is included in for each bit-stream rule in Figure II.

Assembly Language Method

As well as being implemented in hardware as a bit-stream and as a containment

graph, a container-based circuit model can be implemented in assembly

language, as a set of machine instructions for a general purpose or a

specialized microprocessor.  A customized microprocessor for container-based

circuits would operate as an extreme RISC (reduced instruction set computer)

processor, requiring only two instructions for computation, two for reading

and writing to memory, and one to terminate.  Such an implementation would

have all the benefits of the bit-stream hardware implementation, except that

rather than existing as hardware that processes a bit-stream, it would exist

as hardware that processes an instruction set.  The advantages include

extremely rapid function evaluation, general programmability, extremely small

hardware implementation, and fine-grain parallel processing capability.  In

contrast to the bit-stream method, the parens-microprocessor method would be

able to take full advantage of partial evaluation, skipping instructions

given some input bindings.  The bit-stream approach must read the entire bit-

stream.  The same contrast exists compared to conventional circuitry, the

parens-microprocessor would have all the benefits of the asynchronous

containment graph approach, except that asynchronous termination would not

require any sort of coordination, the processor would simply finish its

current task faster.  Thus, for example, should an 8-bit comparator circuit

implemented in parens assembly language discover that the first bits do not

match, the processor would immediately return a result, jumping over all

other instructions to the END instruction.  In conventional hardware, all

gates would continue parallel processing.  Thus the parens-microprocessor

method can be both very fast and very low power consumption.

Container-based languages are context-free.  Thus the implementation of a

parens-encoded circuit in assembly language is a straight-line program, that

is, one without loops and branches.  Thus combinational circuits can be

implemented and evaluated in a parens-microprocessor without complex control

structures embedded in either the representation language of the circuit or

the machine instructions of the microprocessor, even though the circuit

itself can be arbitrarily complex.  As a matter of pragmatism, the

instruction set would include JUMP statements in order to skip unnecessary

processing.  The straight-line property here translates into the behavior

that all jumps skip some later instructions and thus move more rapidly toward

termination.  Looping would never occur.

Figure III shows a pseudo-instruction set of a parens-microprocessor.  This

instruction set is indicative, without the detail of a functional instruction
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set.  The parens assembly language in the figure consists of triples,

<label, instruction, arguments>

Labels give names to memory locations, instructions direct the microprocessor

controller, and arguments provide specifics about what the control unit is

acting upon.  Instruction sequences can be constructed automatically by a

compiler for parens forms; parens forms can be constructed automatically from

either netlists as hardware descriptions or high-level programs as software

descriptions.  The parens-microprocessor instruction set controls memory

access only, no processing instructions are used.   

The number of machine level instructions for a process is a direct measure of

the efficiency of a microprocessor.  It is not uncommon for simple

computational instructions expressed in a software language to expand into

hundreds of machine instructions.  These machine instructions are processed

very rapidly, perhaps one instruction for every Hz of processor speed, that

is, around a billion instructions each second.  However, microprocessors are

still hundreds of times slower than an ASIC implementation.  Comparatively,

the parens-microprocessor requires on average two or three instructions for

each gate in a circuit model.  Again on average, less than half of these

instructions would be executed for a given input binding.  Thus a quite

realistic estimate of performance for a parens-microprocessor is one

instruction per netlist gate.

The parens-microprocessor is unusual since the instruction set does not

include arithmetic, logical, shift, compare, or move instructions as do

conventional instruction sets.  Thus, no ALU is required or needed.  Rather

the entire process is carried out solely by the microprocessor control unit

and the load/store memory instructions.  This processor should require no

more than 8-bit wide data and control paths, and perhaps less with proper

memory organization.

Although each parens form generates only one bit of information, that bit

represents the entire process of an ASIC circuit.  Importantly, the parens-

microprocessor, due to its extremely small size and to the extreme ease of

parallelizing parens forms, is inherently a massively parallel processor

system.  Rather than implementing vonNeumann-style computation, with wide

instructions being completed one-at-a-time in sequence, the parens-

microprocessor architecture would be a collection of perhaps thousands of

replicated small units, each reducing a small fragment of the entire parens

form of the specified functionality in parallel.  This, again, is similar to

the bit-stream processor described earlier herein.

Another unique aspect of the parens-microprocessor is that it is essentially

a hardware emulator, the machine instructions encoding a physical circuit

netlist.  However, in any custom implementation, the instruction set could be

extended to include conventional processing, such as a multiply-accumulator.
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This hybrid approach unites high-level software programming with low-level

hardware logic networks by by-passing the idea and the use of Hardware

Description Languages (HDLs).  Thus, some benefits of this aspect of the

inventions include making hardware design accessible to microprocessor

software programmers, making software description and abstraction available

to netlist specifications, and eliminating several layers of the Tower of

Babel that currently unites functional specification with semiconductor

behavior.  An advantage of this simplification is to potentially speed-up

microprocessor performance by an order of magnitude, while both creating

compatibility between hardware and software specification and design

techniques, and maintaining current design practices.

The hierarchical abstraction and vectorization capabilities of container-

based techniques play an important role in the design and performance of the

parens parallel microprocessor.  Specifically a vectorized parens form is

strictly analogous to the wide bit-width of a conventional microprocessor.

Rather than processing, say, 64 bits as a long word, 64 parallel processors

compute the results of a wide word as 64 single instruction streams.

Vectorization of the circuit netlist provides specifications for the dynamic

configuration of the parallel processors.  An advantage of this approach is

that bit-width is entirely flexible and programmable, thus avoiding the

limitations of fixed bit-width architectures that for any particular process

may be either squanderous of hardware resources, or in the other extreme,

drastically inadequate for the functionality being computed.

Figure IV shows an example assembly language program for the parens form

consisting of four two-input logic gates.  The subroutine is generic,

implementing the functionality with any inputs.  The five memory locations

store the specific bindings for the four inputs and the one output.  A

compiler converts, assembles, optimizes and links the netlist specification

of a circuit to construct the assembly level program stored in memory.

Parens forms are used as an intermediate language for logic and control

stream optimization.  Each instruction is stored in the control portion of

memory.  The result is a software defined and reconfigurable circuit emulator

that can be used for both input evaluation and abstract synthesis and

optimization.
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FIGURES

============================================================================

Encoding containers into bit-streams

(  =  1

)  =  0

x  =  x -- multiple bits required

Example of twelve unique atoms

)  =  0000

a  =  0001

b  =  0010

c  =  0011

d  =  0100

e  =  0101

f  =  0110

g  =  0111

h  =  1000

i  =  1001

j  =  1010

k  =  1011

m  =  1100

(  =  1111

not used:   1101   

1110

Parsing example

(a (b ((c)(j k))))

 (    a    (    b    (    (    c    )    (    j    k    )    )    )    )

1111 0001 1111 0010 1111 1111 0011 0000 1111 1010 1011 0000 0000 0000 0000

============================================================================

Figure I: Encoding Parens Format into Bit-streams
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============================================================================

OCCLUSION ( ) A = ( )

Bit-stream transformation Entropy

                10X  => 10_ S => S+(1/2 length-of-X)

                X10  => _10

INVOLUTION  ((A)) = A

Bit-stream transformation Entropy

                11x00 => __x__  S => S+2

PERVASION (A (A)) = (A ( ))

Bit-stream transformation Entropy

                1X1X00 => 1X1_00   S => S+(1/2 length-of-X)

DISTRIBUTION ((A B)(A C)) = A ((B)(C))

Bit-stream transformation Entropy

                11XY01XZ00 => X11Y01Z00 S => S

============================================================================

Figure II: The Three Primary Reduction Rules as Bit-stream Transformations.
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============================================================================

Parens assembly-level encoding and instructions

instruction = (<memory-pointer> <instruction-code> <arguments>)

   instructions   function

  (id LOAD <memory-location>)   get bindings

  (id GOLO <register-value> <id>)   jump to instruction on 0 value

  (id GOHI <register-value> <id>)   jump to instruction on 1 value

  (id STOR <memory-location> <value>)   store results

  (id END)   terminate subroutine

============================================================================

Figure III:  Machine Instructions for a Container-based Microprocessor
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============================================================================

Input circuit (((m1)(m2 m3))(m1 (m4)))

Implementation

SUBROUTINE EXAMPLE

( 1  LOAD  m1)

( 2  GOLO  m1  9) -- jump m1=0

( 3  LOAD  m2)

( 4  GOHI  m2 11) -- jump m2=1

( 5  LOAD  m3)

( 6  GOHI  m3 11) -- jump m3=1

( 7  STOR  m5  1) -- output=1

( 8  GOLO   0 12) -- jump to END

( 9  LOAD  m4)

(10  GOLO  m4  7) -- jump m4=0

(11  STOR  m5  0) -- output=0

(12  END)

Evaluation

memory-location m1: 1 -- input value

memory-location m2: 0 -- input value

memory-location m3: 1 -- input value

memory-location m4: 1 -- input value

memory-location m5:  <result> -- output value

( 0  CALL EG)

( 1  LOAD  m1)

( 2  GOLO   1  9) -- <no-op>

( 3  LOAD  m2)

( 4  GOHI   1 11) -- <no-op>

( 5  LOAD  m3)

( 6  GOHI   1 11) -- jump m3=1

(11  STOR  m5  0) -- output=0

(12  END)

============================================================================

Figure IV:  An Example of

Container-based Microprocessor Machine Instructions and Evaluation


