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After a brief introduction to Boundary Logic computation, the computational

architecture of several occlusion-based models is described.
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BOUNDARY LOGIC

Containment

Containment is constraint, it is the establishment of semantic boundaries.  A

container defines a limit which when crossed changes semantic value.

The relation of containment is one of distinction, one side of the container

is distinguished from the other by its ability to hold or contain.  That

which is distinguished is space itself, a space is distinguished when it is

in a container.

Containers can be impermeable (e.g. closed boxes and egg shells) or

semipermeable (e.g. cups and vacuum cleaners), but not permeable (e.g. doors

and glass).  With reference to a particular side of a container,

impermeability is opaqueness, permeability is transparency.  Thus, for a

semipermeable container, the side which can contain is opaque to its

contents, while the other side is transparent.  The semantics of containment

most usually adopts the convention that the outside is transparent, that you

can put things into containers without ressitence.  The inside is opaque, you

should not be able to take things out of containers without changing what is

meant by containment.

Boundary mathematics provides conceptual structures that can potentially

unite the various branches of foundational mathematics.  As is demonstrated

herein, logic is built upon semipermeable boundaries.  Sets are constructed

of impermeable boundaries.  Integers are also made of impermeable boundaries,

differing from sets in their treatment of the empty container.

The containment relation is antisymmetric;  if two containers contain each

other, they are the same container.  Containment is transitive; the container

of another container also contains the contents of the other container.  That

containers do not contain themselves makes containment irreflexive, and thus

different from both equivalence and partial ordering relations.

The containment relation is one to many:  a container can hold any number of

individual objects, but an object has only one container.  Replications of a

unique object can occupy multiple containers.

Parens Form

Containers can be represented in linear text by well-formed parentheses

(WFP).  When interpreted as containers, parentheses are called parens.  A

parens expression makes containment visually obvious: each parens contains

other parens forms, grounding in either an empty parens or a label.  Paired

delimiters in a linear space define the containment partitions of that space.  
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The varieties of WFPs are countable with the Catalan numbers, and are studied

under the technical name of Dyke languages.

A parens form represents a set of containment relations.  This set also

defines a graph, with spaces as nodes and distinctions as links.   In the

parens form below, the inside space of each delineated boundary is labeled

with a unique integer;  variables are their own labels and by convention

their own container boundaries.

     ( ( a) ( b) )
 0    1 2    3

The outermost boundary, labeled 0, is the edge of the typographical space.

This boundary is conventionally not represented for text, and often

represented as a line frame for diagrams.  In the above example, the

outermost boundary is implicit in the whitespace which defines the page

formatting.  

The example has the following six containment pairs:

reader [ 0
         0 ( 1
             1 ( 2
                 2 ( a
             1 ( 3
                 3 ( b

The left-parens represents a containment relation between two labeled

objects, locations, or spaces.  When a containment boundary is crossed

inwardly, the depth of nesting is incremented by one.  Note that variable

labels are implicit boundaries.

These containment relations can be more conventionally represented as a set

of ordered pairs:

x CONTAINS y: {<0 1>,<1 2>,<1 3>,<2 a>,<3 b>}

Similarly, these pairs could be ordered by the is-contained-by relation:

x IS-CONTAINED-BY y: {<a 2>,<b 3>,<2 1>,<3 1>,<1 0>}

Modeling Circuits

The relationship of containment is sufficient for the expression and

transformation of Boolean logic and for the gate-and-wire components of a

circuit.  Formally, there is a morphism between the inside/outside

distinction of containers, the antecedent/consequent distinction of logical

implication, the input/output relation of variary NOR gates, and the

parent/child distinction of directed graphs.
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Registers and feedback in circuits are simply principled and choreographed

breaking of containment;  the state contained inside a register is

transferred to the outside of the register (into the circuit as a whole) at

specified locations and times.

Void-Based Computation

The representational space within which a distinction is marked is initially

void;  it is a space with no contents, no structure, and no explicit

representation.  Computation in spatial models is void-based, in that all

transformations are with reference to the void, to the absence of marks.

Colloquially, void-based computation proceeds through erasure operations.

Deletions are obviously more desirable that rearrangements, since deletion

removes structure, explicitly simplifying an expression.  Technically,

erasure is void-substitution, the void is substituted for a void-equivalent

expression.

The assertion

X = <void>

states that X is a void-equivalent.  Like the void, X can arbitrarily exist

in any location in a spatial form, that is, anywhere within the boundary

representation.

Void-equivalent forms cannot interact with the semantics of the

representation;  being essentially non-existent, they cannot effect the

validity of a computation.  However, void-equivalent forms can be used to

generate a diversity of structural, or syntactic, variants.  Structural

variants for a given logical function are usually due to incorporation of

forms which are void-equivalent.  Tautological complexity is simply the

tangling of void-equivalent forms.

Void-Based Ground

The essential idea is to use non-representation, the non-existence of an

indicator, to eliminate reference to one of the two logical ground values.

Thus

Circuitry Logic Parens

1 True  ( )

0 False <void>
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The empty container (a mark) is a ground value.  We associate the mark with

the concept True.  As is characteristic of void-based systems, the mark has a

dual interpretation as an operator, crossing a mark changes its value.   

An empty parens contains the void.  Empty space, the absence of a container

or of a mark, is the absence of True, i.e. it is False.  The technical

problems of reading and returning voids are easily addressed:

0 False (( ))

An empty container negates the void it contains, changing value from False to

True.  A container of an empty container negates the mark it contains,

returning the value to False.  The explicit representation of False is of use

only at output, it is not used or needed for computation.  

The two elementary forms of False (one existent and one not) define a void-

equivalence rule:

(( ))  =  <void> Crossing

Boundary Logic Arithmetic

In evaluating the parens form of a combinational logic circuit, all variables

are converted into grounds, that is, into empty parens or into the void.

Consider this parens form:

a AND b ((a)(b))

Let the variable bindings be {(a  0),(b  1)}

which expressed in boundaries is {(a   ),(b ())}

Substitution yields

((a)(b)) ==> (( )(( )))

In parens notation, when inputs/variables are bound, all logical forms

(including combinational circuits in general) reduce to a configuration of

well-formed parentheses (WFP).  Identification of WFPs is the simplest

problem which separates state-less representations (such as simple finite

state automata) from those requiring state (automata with stacks).

Variables become values when inputs are bound.  The value of a positive input

is indicated by an empty parens, ().  The value of a negative input is void

(i.e. it is a no-op, it is simply not recorded, it is erased).
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The axioms of boundary arithmetic interpreted as logic were defined in George

Spencer-Brown's 1967 book Laws of Form.

( ) ( ) = ( ) Calling

( ( ) ) = <void> Crossing

Boundary Logic Algebra

Boundary logic is axiomatized by two void-based axioms:

Occlusion provides an end condition for evaluation.

 (( ) A) = <void> Occlusion

The Pervasion axiom permits algebraic reduction of boundary forms:

{A} {B {A}} = {A} {B} Pervasion

The generalization of double-containment is the theorem of Involution:

((A)) = A Involution

Pervasion asserts that the parens boundary is semi-permeable, it is

transparent to outside forms, and, necessarily for the distinction of

containment, opaque to inside forms.

The unique aspect of this axiomatization is that the left-hand-side of each

equation is converted into the right-hand-side solely through a void-

substitution.  Occlusion erases all forms in a spatial context as well as

that context; Pervasion erases replications of nested forms; and Involution

erases double parens.

Occlusion

Algorithmic identification of a WFP (without variables or labels) is

equivalent to logical evaluation (without algebraic abstraction), using the

Occlusion theorem as the single reduction rule:

({A} ( )) = <void> Occlusion

An empty container erases (deletes, voids) its container and all contents.  
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There is a single terminal variant: when an empty parens remains in the

outermost space, a theorem based on Occlusion is needed.

 ( ) {A} = ( ) Dominion

The form on the left-hand-side of occlusion is a void-equivalent, it can

exist arbitrarily anywhere within any expression (including itself) any

number of times.  Increasing the size of an expression by manifesting void-

equivalents is rarely motivated.  Acknowledging the potential presence of

void-equivalents enables a quite powerful set of unique reduction tools.

Every evaluation algorithm herein describes the same mathematical operation,

that of Occlusion.  No other transformations are used during evaluation.

When the representation (the data structure) varies, the evaluation

algorithms take on substantively different operational characteristics.

Virtual Insertion

Pervasion can occur in either direction.  When inserting, the inserted form

can be considered to be virtual.  Virtual forms can be placed arbitrarily

within other forms, and can be used to reduce logical complexity, depending

solely upon utility and objective.  However, virtual forms are void-

equivalent, they do not actually exist.  Thus virtual forms can be deleted by

choice when not useful.  They are thus similar to queries, questions asked by

the user which return answers but which do not impose a symbolic overhead.

Virtual insertion is based on the general principle of Pervasion, that all

forms in shallower spaces are arbitrarily in deeper spaces, that boundaries

are semipermeable.  Virtual insertion treats all inserted forms as void-

equivalents, as hypothetically, or virtually, inserted into the deeper

spaces.  Pervasion is an option rather than an operation:

A (... (N))  =  A (... (^A^ N)) Virtual Insertion

The inserted form, highlighted by carets, is treated as a query.  When it

returns a positive answer, the subform which defines its current context is

occluded.  Virtual insertion is not search, it is simply percolation of a

possibility down a graph form, with clear termination conditions at the leaf

nodes.  As the virtual form descends, it may itself be reduced due to

Pervasion of the subforms it passes.  That is, subforms in the form being

inserted into can Extract subforms of the virtual form.   
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One of three things may happen to the inserted form:

1) it vanishes (becomes void), in which case it has no reducing effect

2) it reduces to ( ), in which case its immediate context is erased by

Occlusion, or

3) it reaches the deepest space while still containing variables, in

which case it has no reducing effect.

A logic minimization problem using virtual insertion:

((a b) (a d (b c)))  =?=

((a b) (a d (b c))) Initial form

((a b) (a d (b c) ^(a b)^)) Query (a b)

((a b) (a d (b c) ^(  b)^)) Extract ^a^

((a b) (a d (b c ^(b)^))) Query (b) deeper

((a b) (a d (b c ^( )^))) Extract ^b^

((a b) (a d)) Occlude (b c)

Therefore ((a b) (a d (b c)))  ==>  ((a b) (a d))

DISTINCTION NETWORKS

A distinction is a minimal difference.  In this paper, distinctions and

containers are synonymous, both refer to a minimal difference.  Containment

is a more physical concept, in that physical objects can embody containment

relations.  Distinction is a more abstract concept, it refers to the pure

notion of difference.  Here, networks of distinctions (dnets) are interpreted

as logic circuits.

Configurations of distinctions can be represented by well-formed parenthesis

structures, by nested containment relations.  These configurations can also

be expressed as graphs, called distinction networks, in which nodes represent

distinguished spaces and arcs represent the is-contained-by relation.

Distinction networks map onto logic networks (combinational circuits), with

the distinction being interpreted as a variary NOR.  However, distinction

networks can be interpreted in a spatial mathematics which is simpler than

the logical interpretation embodied in circuit configurations.  

Spatial models are inherently more succinct than textual models.  The

functional morphism remains, but spatial languages require less

representational mechanism.  Computational effort is also effected, spatial

representations require fewer transformations to arrive at the same result.  
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Using distinctions (or containers) to represent the syntax and semantics of

logic is called Boundary Logic.

Distinction networks are directed acyclic graphs.  When interpreted as logic,

links represent logical implication and dnodes are distributed autonomous

control centers.  Each dnode represents a container which implements the

Occlusion transformation.  Asynchronous communication between dnodes of local

decisions produces global computational results without global coordination.

Distinction networks differ from conventional circuitry in that the logical

operation:

•  is singular

•  is associated with wires rather than with gates

•  is independent and autonomous

•  operates by disconnection rather than by signal propagation

Algorithm

Each dnode has a local memory which stores the identifier (location) of its

upper connections (UPPERS) and its lower connections (LOWERS).

1.  At initialization, each dnode polls its lowers.  If there are none, the

dnode sends an DELETE message to each of its uppers.

2.  Receiving DELETE causes a dnode to disconnect itself from each of its

uppers.  This is achieved by sending a DISCONNECT message.

3.  Each dnode which receives DISCONNECT deletes the source of the message,

and then polls its lowers, returning to step 1.

Examples Of Distinction Networks

Three versions of the same simple circuit follow.  The circuit's function is

to add two two-bit binary numbers.  

The architecture for this adder is called carry-bypass, because it optimizes

computation of certain cases of the carry from a sum.  Below, the binary

numbers are (a1 a0) and (b1 b0);  the carry from a previous addition is c0.

The sum consists of two bits (s1 s0) and a carry c1.  This adder has been

converted from logic gates to distinction nodes (the circles).  
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A two-bit carry-bypass adder expressed as a distinction network
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After Losp/Pun optimization, the distinction network looks like this:

Optimized two-bit carry-bypass adder

The original adder consists of 39 distinction gates and 65 wires, with a

depth (path delay) of 9.  The optimized adder has 23 gates and 40 wires, with

a depth of 6.

Note:  in minimizing this adder, the carry-bypass feature is removed.

Although this circuit is simpler, it may not be as fast as the original.

The final version of this circuit consists of a slight structural

modification to the optimized circuit that highlights the structural

patterns.  This structure is not perceivable in the two other diagrams.

Each large circular loop is an if-then-else logic function.  The labeled

nodes A through E are the identical nodes labeled respectively -A through -E.   
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They have been visually separated again to highlight patterns and to

unclutter the presentation.

This version has 19 nodes, 38 wires, and a depth of 6

The two-bit carry-bypass adder

configured to emphasize its logical structure
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OCCLUSION ARRAYS

An Occlusion Array is a modified read-only memory attached to void-based

reading hardware.  

All types of circuits are accommodated by the Occlusion Array:

•  multiple output circuits

•  sequential circuits with registers

•  pipelined circuits

•  parallel array circuits

•  limited fanin and fanout circuits

•  programmable logic array AND/OR circuits

The hardware "reads" the output of the soft-hardware circuit in its memory

array by successively masking (or deleting) the irrelevant parts of memory,

those parts which are void-equivalent.  What remains (the output) is written

onto the output screen.  The memory is never altered, except when changing

the functionality of the Occlusion Array.  All deletions are achieved by a

mask vector, which together with the output screen are the only dynamic parts

of the array.  Filters identify input and output rows.

     MEMORY       SUPPORTING HARDWARE

     circuit      masks filters screen

----------------  -----  -----  ---
|       1 1    |  | | |  |1| |  | |
|       1   1  |  | | |  |1| |  | |
|         1 1  |  | | |  |1| |  | |
|             1|  | | |  | | |  | |
|             1|  | | |  | | |  | |
|             1|  | | |  | | |  | |
|              |  | | |  | |1|  | |
----------------  -----  -----  ---

This circuit computes the combinational function 2-out-of-3 majority.  The

top three rows are three inputs;  the bottom row is the output.

The array is square, having identical indices in each dimension.  In the

array, rows and columns identify specific variables (inputs) and containers

(parens).  A mark in the array identifies a relation between forms, the

column form contains the row form.  Rows identify contents; columns identify

containers.
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The Void-Based Mechanism

Void-equivalent parts of memory are identified using the Occlusion rule:

(A ( )) ==> <void> Occlusion

The rule implemented by the supporting hardware locates empty parens by

identifying empty columns, i.e. those containers without contents.  It then

masks the context of the empty container.

When an identified empty parens happens to be an output, a positive value (1)

is written on the output screen.

Masking continues until the entire memory is masked.  At that time the output

screen contains all positive outputs from the circuit.  Outputs not

identified with a positive mark are negative.

The void-based mechanism differs from conventional computation in these ways:

•  Computational progress is by elimination of irrelevant containers

rather than by accumulation of logical transformations.

•  Signals are not propagated through a network of logic gates, rather

a single question is asked of memory:  Is this column both non-masked and

empty?

•  Void-based computation is unary rather than binary.  Only positive

outputs are computed, negative outputs are inferred.

•  Time (clocked structural loops which store transient results in

register states) is not used as a mechanism for reuse of circuit structure.

Computational time for arrays is nearly independent of circuit size and

complexity, similar to pipelining in conventional circuitry.  The

computational delay in an array scales logarithmically to circuit size, and

is thus very close to constant,  

•  An implicit difference is embodied in the parens form itself:

computation is over containers rather than values.

Generic Occlusion Algorithm  

The reductive power of the occlusion theorem comes from its identification of

a void-equivalent.  

The generic occlusion algorithm reduces any parens form which contains an
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empty mark, ( ).  Since forms are assembled in space, without associative or

commutative structure, the appropriate implementation is strongly parallel.

Parallelism can be simulated by looping over all items within a particular

space, since forms sharing a space are independent (not coupled).  In parens

forms, spaces are nested.  These are best addressed by recursion, or more

succinctly, a parallel mapping across all forms in a space.   

Recursive Algorithm

In this recursive mapping algorithm, "the form" is the input.

English description

if the form is empty or an atom
  then return the form
  else if the form contains a mark
    then delete the form
    else apply occlusion to each subform in the form.

Pseudo-English code

(if the-form-is (a-mark or an-atom)
  then return-the-form
  else (if (the-form-contains a-mark)
         then delete-the-form
         else (map occlusion over-each-subform)))

LISP code

(defun generic-occlusion (pf)
  (cond
    ((or (null pf) (atom pf)) pf)
    ((member mark pf) <no-op>)
    (T (map occlusion pf))))



16

BIT-STREAM SIMULATORS

Through a simple encoding, boundary logic can express Boolean functionality

in bit-streams.  This permits a stack based algebraic simulation of circuit

functionality.  When input variables are bound, the bit-stream simulates the

running circuit.  As well, the reduction behavior of the simulator provides

measures of inherent parallelism and sequentially of the circuit logic.   

Initial estimates suggest that a hardware bit-stream simulator should be able

to simulate an ASIC within an order of magnitude of the speed of the actual

(non-pipelined) ASIC.

Algorithm

Encode parens form without variables as

(=1 and )=0.   

The bit-pattern matching engine uses these rules for evaluation:

(()) =         is  1100 => ____

()() = ()      is  1010 => 1__0  or alternatively 10__ or __10

A slightly more sophisticated algorithm is required to apply Occlusion

directly.

The algorithm is stack-based, using two accessor functions.

Accessor:   (get n) => get n values from bit-stream

Backtrack:  (pop n) => get top n values on processed-stack

Since all bits on the processed stack are 1s, the stack is implemented by a

counter.  When the first four bits do not match a reduction pattern, the top

1 is removed from the stream and the counter is incremented.

(pop n) decrements the counter by n while adding 1-bits to the front of the

stream.   

Three implementations of the scanning algorithm are available:

•  in software on a conventional multiprocessor

•  in customized assembly language on a multiprocessor

•  in hardware

Since the simulator can freely and opportunistically use both the signal and

the gate interpretation, it is both efficient and small. The current
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implementation of the simulator requires approximately 200 gates, or 40 4LUTs

in a FPGA.  The LUT delay path is maximally about 25 deep.  The larger and

deeper the circuit being simulated is, the more efficient the bit-engine

simulation is, relative to the actual circuit.

The simulator is most efficient for circuits expressed in the deeply nested

implicate form, since the length of the bit-stream circuit determines the

number of processing cycles (without parallel bit-processors) and this metric

decreases when depth increases.  A typical circuit transcribes into

 2*(gates + inputs) bits

prior to Losp optimization, with at least a factor of two decrease during

optimization.  Thus the number of bits is roughly equal to the number of

gates in a conventional notation.

Input can be made parallel at each parens boundary.  Since the bit-engine

uses a one-bit input stream, a 16bit input bus and a multiplexer-pair could

feed 16 bit-engines in parallel at little cost in load-balancing logic.  One

Xilinx XC4025 chip could comfortably hold 16 simulators together with the

parallelization logic to handle 16 bit-streams.

Here is a rough computation of the expected speed of this algorithm when

implemented on an ultra-wide input bus:  A 1000 bit-width input can encode

about 500 distinction gates after variable binding.  (This covers about 2/3

of the EDIF benchmarks.)  It will take an average of (log 1000/2) = 9 ticks

to evaluate.  A tick can be done in 4 machine cycles.  At 144MHz, this gives

us a simulation capability of  144M/32 = 4M test vectors per second.


