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PROBABILISTIC TIMING OF COMBINATIONAL CIRCUITS
William Bricken
April, 1995

This memo contains notes on circuit configuration and timing as a function of
the probability of input values.  Motivation:  situated silicon

Consider circuitry that can alter its configuration dynamically depending on
the distribution of incoming signals/values, thus responding to input
circumstances with optimal layout.  Here are some preliminary notes on logic
structure which is sensitive to the probability distribution of the incoming
values.  The example of a full-adder follows general considerations of
propagation time through combinatorial distinction networks.

Time as Depth

Assume a parens expression is minimized by Extract.  Consider this expression:

E = ( ((a) (b)) ((a) (c)) ((b) (c (d (e)))) )

Each parens stands for a dnode in a dnet, with letters referring to signals
from arbitrary structures or subcircuits.  Here is the graph of the example:

E = ( ((a) (b)) ((a) (c)) ((b) (c (d (e)))) )      depth

    (                                       )        1
          |         |             |
      (       ) (       ) (               )          2
        |   |     |   |     |       |
       ( ) ( )   ( ) ( )   ( ) (         )           3
        |   |     |   |     |   |    |
        |   |     |   |     |   | (     )            4
        |   |     |   |     |   |  |  |
        |   |     |   |     |   |  | ( )             5
        |   |     |   |     |   |  |  |
a-------•---------•   |     |   |  |  |
b-----------•---------------•   |  |  |
c---------------------•---------•  |  |
d----------------------------------•  |
e-------------------------------------•

The DEPTH of a variable is the number of parens one must cross to reach the
outermost space.  Each crossing takes one dnode-time-tick.

The distribution of time ticks under all evaluations of each variable
represents the complete sequential evaluation-time of the expression.
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The BDD (binary decision diagram) of the above circuit is:

a=( ) E = (b c)
b=( ) E =
b= E= (c)

a= E = ((b) (c (d (e))))
b=( ) E = c (d (e))

c=( ) E = ( )
c= E = d (e)

d=( ) E = ( )
d= E = (e)

b= E =

Let the probability of each variable value be .5, indexed as (1/2)^n

binding         probability   index   value

a=b=()              .25         2       E =
a=b=                .25         2       E = ( )

a=(b)=()
    c=()           .125         3       E =
    c=             .125         3       E = ( )

a=(b)=
    c=()           .125         3       E =

    c=
    d=()           .0625        4       E = ( )

    d=
       e=()       .03125        5       E =
       e=         .03125        5       E = ( )

Totals for probability of output value;

E = () at  .46875
E =    at  .53125

Also associated with the evaluation of an expression is the time-probability
of evolution.  To count time, begin the initial cross at variable binding
time.
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In the example:

a=b=( )

Tick 0      ( ((a)  (b)) ((a) (c)) ((b) (c (d (e)))) )
Tick 1      ( ((())(())) ((())(c)) ((())(c (d (e)))) )
Tick 2      ( (        ) (    (c)) (    (c (d (e)))) )
Tick 3      <void>

(a)=(b)=( )

Tick 1      ( (( )  ( )) (( ) (c)) (( ) (c (d (e)))) )
Tick 2      (                                        )

a=(b)=c=( )

Tick 1      ( ((())( )) ((())(())) (() (() (d (e)))) )
Tick 2      (           (        )                   )
Tick 3      <void>

a=(b)=(c)=()

Tick 1      ( ((())( )) ((()) ( )) (( ) (  (d (e)))) )
Tick 2      (                                        )

(a)=b=c=()

Tick 1      ( (( )(())) (( )(())) ((()) (()(d (e)))) )
Tick 2      (                     (                ) )
Tick 3      <void>

(a)=b=(c)=d=()

Tick 1      ( (( )(())) (( ) ( )) ((()) (  (()(e)))) )
Tick 2      (                     (     (         )) )
Tick 3      (                                        )

(a)=b=(c)=(d)=e=()

Tick 1      ( (( )(())) (( ) ( )) ((()) (  ( (())))) )
Tick 2      (                     (     (  (     ))) )
Tick 3      (                     (                ) )
Tick 4      <void>

(a)=b=(c)=(d)=(e)=()

Tick 1      ( (( )(())) (( ) ( )) ((()) (  (  ( )))) )
Tick 2      (                     (     (         )) )
Tick 3      (                                        )
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Time of output:
2-ticks .375
3-ticks .59375
4-ticks .03125

Expectation:

2*3/8 + 3*19/32 + 4*1/32 = .75 + 1.78125 + .125 = 2.65625 ticks

[NOTE:  assigning probabilities to input values is stronger than "don't care"
since we can assign a degree of caring.]

Time is a function of the configuration of the expression, which can be
transformed.  We want to minimize the EXPECTED TIME (Et) of evaluation,
relative to the number of variables and dnodes, and the expected value of
inputs (Ev).

Example of Full-adder

Flat (sum of products) sum:

((a) b c) ((b) a c) ((c) a b) ((a)(b)(c))

Flat carry:

((a)(b)) ((a)(c)) ((b)(c))

Flat, non-sharing full-adder:

sum:  12 input lines, 10 dnodes, Et = 2   Ev = .5

a=       ((b) c) ((c) b)
b=       c

                    E=        T=   P=
(a)=(b)=(c)=( )                2    3
(a)=(b)=c=( )       ( )        2    3
(a)=b=(c)=( )       ( )        2    3
(a)=b=c=( )                    2    3
a=(b)=(c)=( )       ( )        2    3
a=(b)=c=( )                    2    3
a=b=(c)=( )                    2    3
a=b=c=( )           ( )        2    3
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carry:  6 inviars, 9 dnodes, Et =  2.125  Ev = .5

                    E=        T=   P=
(a)=(b)=(c)=( )                2    3
(a)=(b)=c=( )                  2    3
(a)=b=(c)=( )                  2    3
(a)=b=c=( )         ( )        2    3
a=b=(c)=( )         ( )        2    3
a=(b)=c=( )         ( )        2    3
a=(b)=(c)=( )                  2    3
a=b=c=( )           ( )        3    3

[NOTE:  if both values are expected at the same time after eval, then the
slowest of the Ets determines the circuit time.

Probabilistically Reconfigured Full-adder

The flat adder works best when Ev =.5

But assume Ea=.25 and Eb=.25. and Pcarry=.0625

sum:  12 in-vars, 10 dnodes, Et = 2   Ev = .391

                                         Ea=.75   Ea=.25

                    E=        T=    P=
(a)=(b)=(c)=( )                2    .029     .526
(a)=(b)=c=( )       ( )        2    .035     .035
(a)=b=(c)=( )       ( )        2    .082     .176
(a)=b=c=(                      2    .105     .012
a=(b)=(c)=( )       ( )        2    .082     .176
a=(b)=c=( )                    2    .105     .012
a=b=(c)=( )                    2    .246     .059
a=b=c=( )           ( )        2    .316     .004

carry:  6 in-vars, 9 dnodes, Et =  2.125  Ev = .087

                    E=        T=    P=
(a)=(b)=(c)=( )                2    3
(a)=(b)=c=( )                  2    3
(a)=b=(c)=( )                  2    3
(a)=b=c=( )         ( )        2    3        .012
a=b=(c)=( )         ( )        2    3        .059
a=(b)=c=( )         ( )        2    3        .012
a=(b)=(c)=( )                  2    3
a=b=c=( )           ( )        3    3        .004
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Contrast with deeper version:

Deep sum:  6 in-vars, 6 dnodes,

( o (a b c) ) ((a)(b)(c))  =

( ((a)(b)) ((a)(c)) ((b)(c)) (a b c) ) ((a)(b)(c))

Deep carry:

o = ((a)(b)) ((a)(c)) ((b)(c))

Et-carry:  .996*2 + .004*3 = 2.04

and Et-sum = 2.47

                    E=        T=        P=
(a)=(b)=(c)=( )                2         .526
(a)=(b)=c=( )       ( )        3         .035
(a)=b=(c)=( )       ( )        3         .176
(a)=b=c=( )                    3         .012
a=(b)=(c)=( )       ( )        3         .176
a=(b)=c=( )                    3         .012
a=b=(c)=( )                    3         .059
a=b=c=( )           ( )        3         .004

Summary of results for adder

Configuration   Prob-of-HI-input   sum-time   carry-time

flat            .5              2          2.125

flat            .25             2          2.125

deep            .25             2.47       2.04

Summary:  The probability distribution of input values is related to the
average timing of a circuit.  When this distribution is known (or can be
dynamically computed), circuit layout can be specifically optimized.


