
DON'T-CARE OPTIMIZATION
William Bricken
October 1995

Some paths within a circuit are never traversed. When these happen to be the
topologically longest paths, the timing of the circuit is not optimal. Here
is an example of the kind of algebraic transformations we are doing to
optimize timing by eliminating don't-care paths.

Example: two-bit carry by-pass adder

The carry-bypass adder is a ripple-carry adder with two extra gates that
bypass the ripple-carry chain when the carry bits are 1, thus shortening the
most critical path in the circuit.

The circuit algebraically:

inputs: a0 a1 b0 b1 c0
outputs: s0 s1 c1
gates are numbered in PUN format:

1 = ((a0 b0) ((a0)(b0))) xor
2 = ((a0)(b0)) and
3 = ((a1 b1) ((a1)(b1))) xor
4 = ((a1)(b1)) and
5 = ((c0 1) ((c0)(1))) xor s0
6 = ((c0)(1)) and
7 = 2 6 or
8 = ((3 7) ((3)(7))) xor s1
9 = ((3)(7)) and
10= ((1)(3)) and bypass
11= 4 9 or
12= ((10 11) (c0 (10))) mux c1 bypass

What follows is the Losp reduction and restructuring of this circuit.

COALESCE

A = (a0 b0) nor
B = (a1 b1) nor
2 = ((a0)(b0)) and
4 = ((a1)(b1)) and
6 = ((c0)(1)) and

1 = (A 2) xor
3 = (B 4) xor
5 = ((c0 1) 6) xor s0
7 = 2 6 or
8 = ((3 7) ((3)(7))) xor s1
9 = ((3)(7)) and
10= ((1)(3)) and bypass
11= 4 9 or
12= ((10 11) (c0 (10))) mux c1 bypass

EXPAND (substitute 1,3,7,9,11)

A = (a0 b0) nor
B = (a1 b1) nor
2 = ((a0)(b0)) and
4 = ((a1)(b1)) and
6 = ((c0) A 2) and

5 = ((c0 (A 2)) 6) xor s0
8 = (((B 4) 2 6) (B 4 (2 6))) xor s1
10= (A 2 B 4) and bypass
12= ((10 4 (B 4 (2 6))) (c0 (10))) mux c1 bypass

EXPAND (substitute 6,10)

A = (a0 b0) nor
B = (a1 b1) nor
2 = ((a0)(b0)) and
4 = ((a1)(b1)) and

5 = ((c0 (A 2)) ((c0) A 2)) s0
8 = (((B 4) 2 ((c0) A 2)) (B 4 (2 ((c0) A 2)))) s1
12= (((A 2 B 4) 4 (B 4 (2 ((c0) A 2)))) (c0 A 2 B 4)) c1

SIMPLIFY (8,12)

8 = (((B 4) 2 ((c0) A 2)) (B 4 (2 ((c0) A 2)))) s1
8 = (((B 4) 2 ((c0) A)) (B 4 (2 ((c0) A)))) s1

12= (((A 2 B 4) 4 (B 4 (2 ((c0) A 2)))) (c0 A 2 B 4)) c1
12= (((A 2 B) 4 (B (2 ((c0) A)))) (c0 A 2 B 4)) c1

COALESCE

A = (a0 b0) nor
B = (a1 b1) nor
2 = ((a0)(b0)) and
4 = ((a1)(b1)) and
C = (A 2) nor
D = (A (c0)) nor

5 = ((c0 C) ((c0) (C))) s0
8 = (((B 4) 2 D) (B 4 (2 D))) s1
12= ((((C) B) 4 (B (2 D))) (c0 (C) B 4)) c1

COALESCE

A = (a0 b0) nor
B = (a1 b1) nor
2 = ((a0)(b0)) and
4 = ((a1)(b1)) and
C = (A 2) nor
D = (A (c0)) nor
E = (B 4) nor
F = (D 2) nor

5 = ((c0 C) ((c0) (C))) s0
8 = ((E (F)) ((E) F)) s1
12= ((((C) B) 4 (B F)) (c0 (C) (E))) c1

FLEX 8

8 = (E F) ((E)(F))

FACTOR 12

12 = ((((C) B) 4 (B F)) (c0 (C) B 4))
 = 4 ((((C) B) (B F)) (c0 (C) B))
 = 4 (B (C (F)) (c0 (C) B))
 = 4 (B (C (F)) (c0 (C)))
 = 4 (B (C 2 D) (c0 (C)))

 = 4 (B ((A 2) 2 (A (c0))) (c0 A 2))
 = 4 (B ((A) 2 (A (c0))) (c0 A 2))
 = 4 (B ((A) 2) (c0 A 2))
 = 4 (B (2 (A (c0 A))))
 = 4 (B (2 (A (c0))))
 = 4 (B (2 D))
 = 4 (B F)

READING THE RESULT

A = (a0 b0) nor
B = (a1 b1) nor
2 = ((a0)(b0)) and
4 = ((a1)(b1)) and
C = (A 2) nor
D = (A (c0)) nor
E = (B 4) nor
F = (D 2) nor

5 = ((c0 C) ((c0)(C))) s0
8 = (E F) ((E)(F)) s1
12= 4 (B F) c1

A & 2: a0 = b0
B & 4: a1 = b1
C: a0 ≠ b0
E: a1 ≠ b1
5: c0 ≠ C
8: E = F

c1 = 4 (B (2 (A (c0)))) hierarchical dependencies

