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Some paths within a circuit are never traversed.  When these happen to be the
topologically longest paths, the timing of the circuit is not optimal.  Here
is an example of the kind of algebraic transformations we are doing to
optimize timing by eliminating don't-care paths.

Example:  two-bit carry by-pass adder

The carry-bypass adder is a ripple-carry adder with two extra gates that
bypass the ripple-carry chain when the carry bits are 1, thus shortening the
most critical path in the circuit.

The circuit algebraically:

inputs:  a0 a1 b0 b1 c0
outputs:  s0 s1 c1
gates are numbered in PUN format:

1 = ( (a0 b0) ((a0)(b0)) )         xor
2 = ((a0)(b0))                     and
3 = ( (a1 b1) ((a1)(b1)) )         xor
4 = ((a1)(b1))                     and
5 = ( (c0 1) ((c0)(1)) )           xor     s0
6 = ((c0)(1))                      and
7 = 2 6                            or
8 = ( (3 7) ((3)(7)) )             xor     s1
9 = ((3)(7))                       and
10= ((1)(3))                       and     bypass
11= 4 9                            or
12= ( (10 11) (c0 (10)) )          mux     c1   bypass

What follows is the Losp reduction and restructuring of this circuit.



COALESCE

A = (a0 b0)                        nor
B = (a1 b1)                        nor
2 = ((a0)(b0))                     and
4 = ((a1)(b1))                     and
6 = ((c0)(1))                      and

1 = ( A 2 )                        xor
3 = ( B 4 )                        xor
5 = ( (c0 1) 6 )                   xor     s0
7 = 2 6                            or
8 = ( (3 7) ((3)(7)) )             xor     s1
9 = ((3)(7))                       and
10= ((1)(3))                       and     bypass
11= 4 9                            or
12= ( (10 11) (c0 (10)) )          mux     c1   bypass

EXPAND (substitute 1,3,7,9,11)

A = (a0 b0)                        nor
B = (a1 b1)                        nor
2 = ((a0)(b0))                     and
4 = ((a1)(b1))                     and
6 = ((c0) A 2)                     and

5 = ( (c0 (A 2)) 6 )               xor     s0
8 = ( ((B 4) 2 6) (B 4 (2 6)) )    xor     s1
10= (A 2 B 4)                      and     bypass
12= ((10 4 (B 4 (2 6))) (c0 (10))) mux     c1   bypass

EXPAND (substitute 6,10)

A = (a0 b0)                        nor
B = (a1 b1)                        nor
2 = ((a0)(b0))                     and
4 = ((a1)(b1))                     and

5 = ( (c0 (A 2)) ((c0) A 2) )                           s0
8 = ( ((B 4) 2 ((c0) A 2)) (B 4 (2 ((c0) A 2))) )       s1
12= (((A 2 B 4) 4 (B 4 (2 ((c0) A 2)))) (c0 A 2 B 4))   c1



SIMPLIFY (8,12)

8 = ( ((B 4) 2 ((c0) A 2)) ( B 4 (2 ((c0) A 2))) )      s1
8 = ( ((B 4) 2 ((c0) A  )) ( B 4 (2 ((c0) A  ))) )      s1

12= (((A 2 B 4) 4 (B 4 (2 ((c0) A 2)))) (c0 A 2 B 4))   c1
12= (((A 2 B  ) 4 (B   (2 ((c0) A  )))) (c0 A 2 B 4))   c1

COALESCE

A = (a0 b0)                        nor
B = (a1 b1)                        nor
2 = ((a0)(b0))                     and
4 = ((a1)(b1))                     and
C = (A 2)                          nor
D = (A (c0))                       nor

5 = ( (c0 C) ((c0) (C)) )                               s0
8 = ( ((B 4) 2 D) ( B 4 (2 D)) )                        s1
12= ((((C) B) 4 (B (2 D))) (c0 (C) B 4))                c1

COALESCE

A = (a0 b0)                        nor
B = (a1 b1)                        nor
2 = ((a0)(b0))                     and
4 = ((a1)(b1))                     and
C = (A 2)                          nor
D = (A (c0))                       nor
E = (B 4)                          nor
F = (D 2)                          nor

5 = ( (c0 C) ((c0) (C)) )                               s0
8 = ( (E (F)) ((E) F) )                                 s1
12= ((((C) B) 4 (B F)) (c0 (C) (E)))                    c1

FLEX 8

8 = (E F) ((E)(F))



FACTOR 12

12 = ((((C) B) 4 (B F)) (c0 (C) B 4))
   = 4 ( (((C) B) (B F)) (c0 (C) B) )
   = 4 ( B (C (F)) (c0 (C) B) )
   = 4 ( B (C (F)) (c0 (C)  ) )
   = 4 ( B (C 2 D) (c0 (C)  ) )

   = 4 (B ((A 2) 2 (A (c0))) (c0 A 2) )
   = 4 (B ((A  ) 2 (A (c0))) (c0 A 2) )
   = 4 (B ((A  ) 2         ) (c0 A 2) )
   = 4 (B (2 (A (c0 A))) )
   = 4 (B (2 (A (c0  ))) )
   = 4 (B (2 D) )
   = 4 (B F)

READING THE RESULT

A = (a0 b0)                        nor
B = (a1 b1)                        nor
2 = ((a0)(b0))                     and
4 = ((a1)(b1))                     and
C = (A 2)                          nor
D = (A (c0))                       nor
E = (B 4)                          nor
F = (D 2)                          nor

5 = ( (c0 C) ((c0)(C)) )                          s0
8 = (E F) ((E)(F))                                s1
12= 4 (B F)                                       c1

A & 2:  a0 = b0
B & 4:  a1 = b1
C:      a0 ≠ b0
E:      a1 ≠ b1
5:      c0 ≠ C
8:       E = F

c1 = 4 (B (2 (A (c0)))) hierarchical dependencies


