
1

ASPECTS OF BOUNDARY LOGIC

William Bricken

December 2001

I've enclosed some supplementary notes and examples to help to describe the

BTC intellectual property and the Boundary Logic (BL) foundations for these

tools.  The small examples emphasize comparisons between iconic and

traditional approaches to problems presented in Contemporary Logic Design

(CLD).

The Nature of Boundary Logic

Boundary Logic is a calculus of containers (mathematically, partially ordered

lattices).  A container can be interpreted as a conventional NOR gate with an

arbitrary number of inputs. Although BL therefore can be read as conventional

circuitry, to do so obscures the powerful transformations which arise only

from a container-based interpretation.  Formally, BL is more succinct than

logic, the mapping from logical forms to containers is many-to-one.

BL is utterly simple, once a few perspective changes have been accepted.

These are simply stated:

• Rather than 1 and 0, BL uses presence and absence.  Absence permits

half of a binary system to simply not exist.  Note the similarity to

switching networks where absence of a connection has meaning.

• To manipulate presence and absence, basic objects require an inside

and an outside, thus containers.  Conventional variables lack an inside while

conventional pointers lack an outside.

• Textually, a parenthesis (called parens) is a container.  The

following parens contains the objects A and B:  (A B).  This parens contains

nothing:  ( ).  All combinational circuit structures are simply well-balanced

parens. Sequential registers with reentry undermine specific inside/outside

distinctions in a principled manner.

• Containers are spatial objects which do not possess ordering,

grouping, or cardinality properties (commutativity, associativity, arity).

• Parens forms are transformed and simplified by deletion (erasure)

operations rather than by rearrangement.

• Transformational rules rely on the transparency property of parens:

everything inside a nest of parens containers is transparent to the outside.

This permits multilevel operations independent of path length.



2

Note that nesting of parens is equivalent to multiple levels of logic.  In

general, well-formed parens are trees which are graphs, so that the parens

form is also a succinct representation of a logic graph or network.

The Map from Parens to Gates

NOR is containment:

NOR[a, b, c] (a b c)

From the single mapping of NOR to parens, the parens form of other simple

gates is easily deduced.  The NOR of a single argument is NOT:

NOT[a] (a)

The NOR of no arguments is TRUE:

TRUE ( )

Since a parens negates its inside, the TRUE empty parens is the negation of

nothing.  That is, FALSE has no representation, it is absence:

FALSE

OR is sharing space:

OR[a, b, c]  a b c

In BL, forms are disjoint in that space provides no connective or relational

structure.  Sharing space is defined solely as being the contents of the same

container. Forms sharing the same space can be processed in parallel.

Finally, AND is formed by containing a space and every object within that

space:

AND[a, b, c] ((a)(b)(c))

Therefore any combinational form can be expressed as a well-formed parens

form.  It is illustrative to transform DeMorgan into parens notation:

AND[a, b] = NOT[ OR[ NOT[a],NOT[b] ]]

((a)(b)) = ((a)(b))



3

Other examples:

XNOR[a,b] (a b) ((a)(b))

2/3MAJORITY[a,b,c] ((a b)(a c)(b c))

HALF-ADDER[a,b] Sum   = ((a b) ((a)(b)))

Carry = ((a)(b))

FULL-ADDER[a,b,ci] Sum   = ((hsum ci) ((hsum)(ci)))

Carry = ((a)(b)) ((hsum)(ci))

hsum  = ((a b) ((a)(b)))

BL is an algebraic system, function composition is achieved by substitution.

Concepts such as "don't cares", incomplete specification, and Boolean cubes

are irrelevant to the algebraic process.  I'll return to the full-adder after

introducing the transformation rules.

All of the mechanism for two-level and multilevel Boolean simplification

reduces to three deletion equations:

(A ( ))  =  <void> Occlusion

((A))    =  A Involution

A {A B}  =  A {B} Pervasion

Capital letters refer to any form regardless of complexity.  Each equation

proceeds from left to right via deletion of structure.  The curly braces in

Pervasion convey the transparency rule, they stand in place of any

intervening content at the same or a deeper level of nesting.  Pervasion is

thus a multilevel simplification rule, some examples:

a (a b)  =  a (b)

a (b (c (a d))) = a (b (c (d)))

(a b) (c (d (e (a b))) = (a b) (c (d (e)))

For illustration, here is the BL approach to a Boolean simplification problem

in CLD (2.13e, p.105). Spacing is used to emphasize which structures have

been deleted:



4

f[w,x,y,z] = x + xyz + x'yz + x'y + wx + w'x

x ((x)(y)(z)) (((x))(y)(z)) (((x))(y)) ((w)(x)) (((w))(x)) Transcribe

x ((x)(y)(z)) (  x  (y)(z)) (  x  (y)) ((w)(x)) (  w  (x)) Involution

x (( )(y)(z)) (     (y)(z)) (     (y)) ((w)( )) (  w  ( )) Pervasion

x             (     (y)(z)) (     (y))                    Occlusion

x             (     (y)(z))        y                      Involution

x             (     ( )(z))        y                      Pervasion

x                                  y                      Occlusion

f = x + y Transcribe

Figure I and FFigure II provide circuit schematic views of two BL multilevel

simplification steps.  Each schematic identifies a generic pattern and a

deletion of wires and/or gates which maintains functional equivalence.  Note

that a schematic which maps to a parens representation consists only of NOR

gates.  Unused pins in each schematic represent arbitrary inputs.

Returning to the full-adder,

Sum   = ((hsum ci) ((hsum)(ci)))

Carry = ((a)(b)) ((hsum)(ci))

hsum  = ((a b) ((a)(b)))

I'll first substitute the form of hsum for the label "hsum", then reduce the

resulting form:

Sum = ((((a b) ((a)(b))) ci) ((((a b) ((a)(b))))(ci)))

      ((((a b) ((a)(b))) ci) (  (a b) ((a)(b))  (ci))) Involution

Carry = ((a)(b)) ((((a b) ((a)(b))))(ci))

        ((a)(b)) (  (a b) ((a)(b))  (ci)) Involution

        ((a)(b)) (  (a b)           (ci)) Pervasion

Graph Form

To achieve network structure sharing and technology mapping, a slightly more

elaborate notation allows labels to be associated with any parens form.

Lists keep track of i/o and internal components. The list delimiters are

square brackets to avoid confusion with BL parens.  The graph form permits

decomposition and rearrangement of a logic network into nodes identified

solely by parens shapes.  As an example, the above form of the full-adder is

shown first, then successive decompositions are illustrated.  



5

[full-adder1 [[in1 a][in2 b][in3 ci]] [[sum 1][carry 2]]

 [[1   ((((a b) ((a)(b))) ci) ((a b) ((a)(b)) (ci)))   ]

  [2   ((a)(b)) ((a b)(ci))                            ]   ]]

Identifying and separately labeling repetitive parens patterns achieves

structure sharing:

[full-adder2 [[in1 a][in2 b][in3 ci]] [[sum 1][carry 2]]

 [[1   (((3 4) ci) (3 4 (ci)))   ]

  [2   4 (3 (ci))                ]

  [3   (a b)                     ]

  [4   ((a)(b))                  ]   ]]

Separating inverters reduces the complexity of each node, and is equivalent

to conventional bubble notation for gates:

[full-adder3 [[in1 a][in2 b][in3 ci]] [[sum 1][carry 2]]

 [[1   ((7 ci) (5 6))   ]

  [2   4 (3 6)          ]

  [3   (a b)            ]

  [4   ((a)(b))         ]

  [5   3 4              ]

  [6   (ci)             ]

  [7   (5)              ]   ]]

The circuit is next technology mapped to simple 2-input gates by decomposing

parens patterns:

[full-adder4 [[in1 a][in2 b][in3 ci]] [[sum 1][carry 2]]

 [[1   (8 9)      ] NOR

  [2   4 10       ] OR

  [3   (a b)      ] NOR

  [4   ((a)(b))   ] AND

  [5   3 4        ] OR

  [6   (ci)       ] NOT

  [7   (5)        ] NOT

  [8   (7 ci)     ] NOR

  [9   (5 6)      ] NOR

  [10  (3 6)      ]   ]] NOR

Alternative mappings are visually apparent and are achieved by simple

algebraic matching and substitution.  The misII full-adder in Figure 3.22 of

CLD has the following parens form in which the parens pattern of each MSU

gate primitive is easily recognized:



6

[full-adder5 [[in1 a][in2 b][in3 ci]] [[sum 1][carry 2]]

 [[1   ((a 3) ((a)(3)))     ] 2310

  [2   ((4)) ((b)(ci))      ] 1890

  [3   ((b ci) ((b)(ci)))   ] 2310

  [4   (a) (b ci)           ] 1890

  [5   (b)                  ] 1310

  [6   (ci)                 ]   ]] 1310

Surprisingly, all BL algorithms are low degree polynomial, basically sorting

and pattern-matching.  Yes, all interesting Boolean transformations are still

intractable, however BL removes sufficient complexity that only rare

pathological forms require the extra effort. The BTC algorithms produce

world-class minimization without exponential processes. BL is a tractable

multilevel calculus for Boolean minimization.

Developed Hardware

We have developed several architectures which take advantage of BL forms.

The computational mesh is essentially a ROM which can be wired for multilevel

logic.  The BILD architecture is dynamically reconfigurable, using FlashRAM

cells for function specification and a small engine which evaluates the

spatial configuration in memory.  This architecture has fully predictable

wiring and process delays.  Parens functions expressed as bit-streams permit

an extremely efficient single-pass simulator using standard CPUs.  All

architectures are blind to circuit structure and complexity, accommodating

sequential as well as combinational forms.



7

Figure I:  Subsumption

AFTER

BEFORE

Arbitrary
Logic

Bl k

Arbitrary
Logic

Bl k

Arbitrary
Logic

Bl k

Arbitrary
Logic

Bl k

Arbitrary
Logic

Bl k

Arbitrary
Logic

Bl k

Arbitrary
Logic

Block

Arbitrary
Logic

Bl k



8

Figure II: Cancellation

AFTER

BEFORE

Arbitrary

Logic Block

Arbitrary

Logic Block

Arbitrary

Logic Block

Arbitrary

Logic Block

Arbitrary

Logic Block

Arbitrary

Logic Block


