
LOSP OVERVIEW

William Bricken

December 1999

Losp is a suite of three hierarchical software tools. At the core, the

Boundary Logic Engine provides Boolean minimization of logic function

graphs. The CCircuit Graph Engine manipulates circuitry-specific

transformations on structure (such as technology library mapping). The outer

layer of functionality, the AApplication Interface, admits and generates

EDIF specifications, provides batch-mode processing, test-vector

verification, statistical analysis, and interfaces to CAD and other

interactive systems.

The main innovation in Losp is based on a representational credo: less is

better. Boundary Logic uses void-based techniques extensively, to reduce and

to simplify both representation and transformation of circuits expressed as

graphs.

Void-based techniques assign meaning to the absence of a representation, to

non-representation, essentially eliminating half of the representational

form. An example: it takes one label to differentiate two bags. Similarly,

the binary system can be represented with one explicit and one implicit

token: Let a mark represent 1 and the absence of a mark represent 0.

To make this work, the mark must have the ability to contain. The essential

idea is that an empty container can indirectly refer to an absence of

contents, to a void. Containing forms permit void reference without

introducing ambiguity. Containers are typographically represented by

delimiting pairs of tokens, such as (). Let the mark () = 1 and the

contents of the empty mark <void> = 0. The mark then negates (as well as

contains) the void.

The same void-based simplification can be applied to Boolean functions. Let

the absence of a connecting mark represent disjunction, OR. From this

infrastructure, a mark which contains two tokens, such as (a b), represents a

binary NOR gate with inputs a and b. Taking the disjointness of space

literally, we can let any spatial arrangement of any number of forms carry

the associativity, commutativity, and n-arity of OR.

The use of the void reduces the minimal basis for propositional logic from

two textual tokens {if, false} to one containing token {mark}, without loss

of expressability.

As well as providing a reduced notation, void-based forms have nice

transformational properties:

• Evaluation is through deletion, or erasure, of structure.

Generation of new facts (ala resolution) is replaced by erasure of irrelevant

forms.

• Forms which are in the equivalence class of the void can be freely

erased and freely inserted wherever desirable.

• Due to the pervasiveness of void within any representation,

transformations treat depth of nesting as transparent.

Here is the body of a small combinational circuit (ISCAS'89 c17), represented

as a logic function graph:

((8 (9 (d))) d and not 9

 (9 ((b) (c))) b and c

 (4 ((8 (9 (a))))) 8 or (a and not 9)

 (5 ((8 ((c) (e)))))) 8 or (c and e)

On each line, the left hand number identifies a logic node, the right hand

form is that logic. The right-hand forms encode logic in nested and adjoined

parens. (The conventional logic is written on the right.) These list data

structures are extremely easy to manipulate during pattern-matching. Three

axioms in a "boundary equational logic" define the computational rules:

Dominion: () A = ()

Involution: ((A)) = A

Pervasion: A (A B) = A (B) A (..(A B)) = A (..(B))

Capital letters stand for arbitrary logical or circuit forms. These rules

have nice substitution and convergence properties, a consequence of using

void-substitution, or erasure, as a primary transformation technique. An

example of a Boundary Logic proof follows:

Prove: A and (A or B) = A ((A)(A B)) = A transcribe

((A)((A) A B)) pervasion (A)

((A)(() A B)) pervasion A

((A)(())) dominion

((A)) involution

 A involution, QED

The Boundary Logic Engine applies these three transformation rules.

Pervasion is more complex than the others, since replicated forms can be

erased from any depth of nesting. Pervasion also provides an innovative

computational technique: virtual insertion. All outer forms (higher in the

graph/circuit) can be freely inserted into all lower branches. Virtual means

that the form is arbitrarily present or not, depending on its usefulness for

reduction. Once the virtual form and its context have been reduced, any

remaining parts of the virtual form can be freely erased, since (by virtue of

their void-equivalence) they can have no effect on the value of the logic

graph.

Due to the homogeneous representation, patterns in the circuit can be easily

identified. The Circuit Graph Engine identifies common gate patterns (XOR,

MUX), common structures which can be shared by increasing fanout (structure

sharing), and common patterns found in technology libraries (technology

mapping).

Losp has been applied to the ISCAS’89 benchmarks, for both combinational and

sequential circuitry. On about half of these circuits, the Losp minimization

algorithm produces world-class results.

