

Two Types of Composition

A boundary form is a composition of non-intersecting closed curves.

Pattern-Variables and Pattern-Equations

Pattern-variables stand in place of any form (i.e. universal quantification), including

$$
\left.\begin{array}{lc}
\begin{array}{l}
\text { - an outer boundary and its contents } \\
\text { - forms sharing a apace } \\
\text { - the absence of a form }
\end{array} & A=(O(O))) \\
& A=\langle\text { void }
\end{array} \quad A=(O)(O)\right)
$$

Pattern-templates are forms (usually with variables) that identify an equivalence class.
Example: $(A((B)))$ matches $((O))(O))$, with $A=(()())$ and $B=$ croid as well as $((C(O)))(O)$, with $A=()$ and $B=()()$ but not () (O)))

Pattern-equations collapse specific equivalence classes

- transformation of patterns is based on substitution and replacement of equals
- pattern-equations can be applied in parallel when matches do not overlap structurally
- pattern-equations define the semantics of the boundary language

Example: $(A)(B)=(A B)$
$((())(0)()))$
$((O)(0)())$
(C() $($ (two parallel substitutions $((C)()))$
$((C))$

Copyight © 2006 William Bricken. All rights reserved

First Class Void Empty containers permit the semantic use of non-representation. () contains nothing on the inside
Void-equivalence $(A())=$ <void $>$ - forms and pattern-templates can be equated to <void>.
Void-based pattern transformation $\quad(B(A)))=(B)$ - substitution of <void> for a void-equivalent form is deletion of the form
Void-substitution $(B)=(A())(B(A O(A())))$ - void-equivalent forms can be deleted at will - void-equivalent forms can be constructed anywhere throughout a form
Copyrigh © 2006 William Bricken. All ights resered.

Two Interpretations

A (semantic) interpretation is a mapping of boundary forms to objects in a domain of interest, together with pattern-equations that specify the calculus of the domain.

Many interpretations of boundary mathematics have been developed, including knot theory, Boolean algebra, real numbers, and imaginary logic and numerics.*

Two interpretations follow, integer arithmetic and propositional logic.

Object mapping:	$0=<$ void $>, 1=()$	FALSE $=<$ void>, TRUE $=()$
Corresponding operations:	Addition is SHARING	Disjunction is SHARING
Multiplication is BOUNDING	Negation is BOUNDING	
Pattern-equations:	$(C))=()()$	()$=()(),(C))=<$ void

The syntactic varieties presented later apply to any interpretation.

Copyight © 2006 william Bricken. All rights reserved

BOUNDARY INTEGERS

\(\left.\begin{array}{l}Boundary Integer Arithmetic, Operations

Addition is sharing the same space:

A+\mathrm{B}==>\mathrm{A} B

Multiplication is unit substitution:

A * B==>substitute[\mathrm{B} for \bullet in \mathrm{A}]=substitute[\mathrm{A} for \bullet in B]\end{array}\right]\)| Addition occurs by placing forms in the same void-space |
| :--- |
| - no ordering, grouping, or arity in void-space |
| Multiplication occurs by placing replicate forms in \bullet-space |
| - no ordering, grouping, or arity in \bullet-space |
| Neither operation requires additional computation. |
| - no number facts, no "carrying" |
| All computation is form standardization. |

Boundary Integer Operations, Example
5: ((\cdot) $\quad 7:((\cdot) \cdot) \cdot \quad 7+5:((\cdot) \cdot) \cdot((\bullet)) \cdot$
5*7: $\begin{array}{lllllllllll}((& \bullet &) & \bullet & * & ((1) & \bullet & \bullet &) & \bullet \\ & ((& 7 &)) & 7 & = & ((1 & 5 &) & 5 &) \\ 5\end{array}$
$((((\bullet) \bullet) \cdot))((\bullet) \bullet) \bullet=((((\bullet)) \bullet)((\bullet)) \bullet)((\bullet)) \bullet$
Standardizing the results: ($\mathrm{D}=$ double $\mathrm{M}=$ merge $\mathrm{L}=$ linear artifact $)$
7+5: put 7 and 5 in space $\quad 5 * 7$: substitute 7 for \bullet in $5 \quad 7 * 5$: substitute 5 for \bullet in 7

$((\cdot) \cdot) \cdot((\bullet))$	L	$((c(\bullet) \bullet \bullet \bullet)((\bullet) \bullet$ •	M	$(c(c(\bullet)) \bullet$)((\bullet)	$((\cdot)) \bullet$)(-))•	M
$(() \cdot \bullet)\left(\begin{array}{l}\text { (}\end{array}\right.$	D		M	(cc(c(e))	(\bullet)	-) 0	L
($(\bullet) \cdot(\bullet)$	$\stackrel{1}{ }$		M	(cc(e)	${ }_{0} 0^{\circ}$	$0_{0} 0 \cdot 0$	M
((\bullet) (0) ••)	D		D	(ccce	-) (\bullet		M
$((\cdot) \quad(\cdot)(\bullet))$	M		M	ccc(c)	(-)		D
$\left(\begin{array}{ll}((\bullet) & \bullet \bullet \\ (0)\end{array}\right.$	D	$\left(\begin{array}{l}((c(0 \bullet \bullet \\ ((c(0) \\ (0)\end{array}\right)$	D	cccco ccco	(\cdot)		${ }_{\text {M }}^{\text {M }}$
		(cc((-)))		cce ()	-) ${ }^{\text {(}}$		D

Copyight © 2006 william Bricken. All rights reserved.

The Evolution of Boundary Logic

Originated by the founders of formal logic

- 1879 Gottlob Frege --
network notation based on implication the German logician who invented formal mathematics
- 1896 Charles S. Peirce -- enclosure notation based on conjunction the American logician who invented semiotics

1890s C.S. Peirce
1963 I. Calvino \quad "A Sign in Space" (literature)
1967 G. Spencer Brown "Laws of Form" (mathematics)
1975 F. Varela (and L. Kauffman) "A Calculus for Self-reference" (imaginaries)
1982 W. Bricken
1985 First Sign/Space Conference
1992 R. Shoup
2001 L. Kauffman Losp Deductive Engine (computer science) (cybernetics)
"A Complex Logic for Computation with Simple Interpretations for Physics" (physics) "The Mathematics of Charles Sanders Peirce" (mathematics)
Copyight © 2006 William Bricken. All rights reserved

Boundary Logic Pattern-Equations
SHARING EVALUATION
(idempotency)
() () = ()
Call
composition on the outside is disjunction

BOUNDING EVALUATION

> (involution)

Each pattern-equation is implemented by pattern-matching and substitution. Each proceeds from left to right by void-substitution.

Copyight © 2006 william Bricken. All rights reserved

Transcribing Boolean and Boundary Logics

boolean	boundary
FALSE	<void>
TRUE	()
NOT a	(a)
$a \mathrm{OR} \mathrm{b}$	$a \mathrm{~b}$
NOT (a OR b)	(a b)
IF a THEN b	(a) b
a AND b	($(a)(b))$
a equivalent b	$(a \quad b)((a)(b))$
The boundary logic "constant" set: \{() \} The boundary logic "function" set: \{() \}	

Copyighti 02066 William Bricken. All rights reserved

Algebraic Pattern-Equations	
Axioms	remarkably succinct
$(\mathrm{A}())=$ vooid	Occlusion
$A\{A B\}=A\{B\}$	Pervasion
Curly braces refer to any deeper intervening structure. There is no analogy in conventional mathematical techniques.	
Useful Theorems	
$(C A))=A$	Involution
() $A=()$	Dominion
Each pattern-equation is implemented by pattern-matching and substitution. Each proceeds from left to right by void-substitution.	

Any form on the outside of a boundary pervades all inside spaces From the outside, boundaries are transparent (semipermeable).

$$
A\{A \quad B\}=A\{B\} \quad \text { Pervasion }
$$

Forms in an exterior space are arbitrarily present in every interior space.

Example:
$a(b(a c(d(a b e))))$
$a(b(c(d) \quad b e))) \quad$ pervasion a
$a(b(c(d(e))))$ pervasion b
Therefore: $a(b(a c(d(a b e))))=a(b(c(d(e))))$
Copyight © 2006 William Bricken. All rights reserved

Boundary Logic Proof of Modus Ponens
Transcribe

(a AND (a IMPLIES b)) IMPLIES b	modus ponens
(a AND (a IMPLIES b)) IMPLIES b	a IMPLIES $\mathrm{b} \rightarrow$ (a$) \mathrm{b}$
(a AND (a) b) IMPLIES b	a AND $X \rightarrow->((a)(X))$
((a) ((a) b)) IMPLIES b	X IMPLIES $\mathrm{b} \rightarrow(\mathrm{X}) \mathrm{b}$
$((a)($ (a) b))) b	

Reduce

$(((a)((a)$	$b)))$	b
$(a)((a)$	$b)$	b
$(a)(\quad)$	b	
$($	$)$	

$$
\begin{array}{ll}
\text { transcription } & \\
\text { involution } & ((A))=\Rightarrow A \\
\text { pervasion } & A(A B)==>A(B)
\end{array}
$$

$(((a)((a) b))) b$

Interpret TRUE

Copyigh © 2006 William Bricken. All rights reserved

Alpha Existential Graphs

Peirce's five rules for Alpha Graphs* map directly to boundary logic pattern-equations:

Boundary logic provides a more modern algebraic transformation system, uniting pairs of asymmetrical implicative rules into symmetrical equations.

The Erase and Insert rules of AEG fail to provide a clear termination goal. Boundary logic uses a single void-equivalence rule, Occlusion, as a termination condition.

SYNTACTIC VARIETY: TRANSFORMATION

Modus Ponens: Paths and Rooms

Copyright © 2006 william Bricken All rights reserved

In Conclusion

Boundary logic is an efficient, scalable, robust diagrammatic logic based on pattern-substitution.

Boundary integers exchange the effort of addition and multiplication for a single standardization process.

Both are interpretations of the same simple diagrammatic language of non-intersecting spatial enclosures.

Boundary languages have unique syntactic varieties generated by topological and geometric transformation of structure.

This presentation is available at www.wbricken.com/01bm/0103notate
I'll be available throughout the conference to demonstrate an implementation of boundary logic used for minimization of commercial semiconductor circuits.

Copyight © 2006 william Bricken. All rights reserved.

Presentation Notes
Boundary mathematics is a fundamental innovation in mathematics (!).
The entertaining challenge:
- do not force-fit these ideas into pre-existing conceptual structures
- very easy to understand on its own ground
- somewhat difficult to understand using conventional concepts
These mathematical techniques have been extensively tested.
- implemented in literally dozens of programming languages
- applied to SAT problems, theorem proving, expert systems industrial strength problems in semiconductor minimization

SUMMARIES

Copyright © 2006 william Bricken All inghts reserved

Non-Conventional Mathematics Warning

If a concept or a representation is not explicitly permitted, it is forbidden.
Void space means with no pre-assumed mathematical or structural concepts.

- the space of representation is unstructured
- drawing a mark introduces a distinction; it does not introduce
a topology (no points) or a geometry (no metric)
In specific, absence of the concept of arity implies
- absence of the capability to count
- no conventional functions or relations
- associativity and commutativity are not relevant structural concepts
- the inside/outside distinction made by boundaries is not relational
(boundaries are not set objects)
In general, these mathematical concepts have not been explicitly introduced:
- sets
- points $\quad\{a, b\}$
- points
- functions and relation
- logic
- group theory
- categories
$1,2,3, \ldots{ }_{f(a)} r(a, b)$
a AND b $\quad a \oslash a^{-1}=i$
$\mathrm{f}(\mathrm{a}) \nabla \mathrm{f}(\mathrm{b})=\mathrm{f}(\mathrm{a} \nabla \mathrm{b})$

Novel Concepts

Semantic void/single constant
Void is everywhere; boundaries distinguish their contents. Nothing more.
Inside and outside of forms
Enclosure has an interpretation as a partial order
Void-equivalence
Void-equivalent structure is semantically irrelevant and semantically inert
Semipermeable boundaries/operational transparency Boundaries are barriers to their contents, but can be transparent to their context.

Object/operator unification
Patterns are both objects and operators.
Spatial (non-linear) notation
Inherent computational parallelism,
Syntactic varieties are generated from spatial transformation of forms.

Copyightio 2006 William Bricken. All rights reserved

Why Isn't Boundary Logic Better Known?
Avoidance of the void
"roncepts must have symbelic

- non-existence cannot contribute to computation
- separate concepts must have unique representations
- computation occurs in discrete, unambiguous steps

The politics of symbolic mathematics
"diagrams cannot be computational objects"
Cartesian duality (17th century)

- Russell and Whitehead, Principia Mathematica (1910)

The danger of eccentrics

- 'just another Boolean algebra" (the isomorphism critique)
- "Just another Boolean algebra" (the isomorphism critique)
-the foundations of mathematics are well understood"

0110101100
-11_1_11--
-

Many misconceptions and misinterpretations

- representing <void> with a token
al structure
- some trade secrecy
$<$ void $>=\{ \}=\Phi$
$a b=a R b$

Copyright © 2006 William Bricken. All rights reserved

Boundary Logic Computation

An algebraic system

- primary semantics is equality
- primary process is pattern-matching and substitution
- axiomatized by two simple pattern-equations

A single concept system

- the primary object is the boundary
- the only structure is enclosure (inclusion)
- maps one-to-many onto Boolean techniques

A spatial system

- ordering, grouping and arity are not concepts within the system
- transformations within a space are in parallel

A void-based system

- deletion (void-substitution) rather than rearrangement
- boundaries are transparent from the outside
- forms sharing a space are independent

Copyight © 2006 william Bricken. All rights reserved

Different Interpretations of the Same Language
The semantics, or interpretation, of a boundary form is determined by the set of pattern-equations taken to be axiomatic.

Logic, under Occlusion and Pervasion
$(((a)((a) b))) b \Rightarrow()$
interpret () as TRUE

Integers, under Double and Merge $(((a)((a) b))) b=(((a \quad(a) b))) b$
interpret as $2 * 2 * 2(a+2 a+b)+b=24 a+9 b$

DIAGRAMMATIC REPRESENTATION

Copyrigh © 2006 William Bricken. All right rseserved

Wanted: A Theory of Representation
Variation in syntax is not addressed by mathematical morphism.
In Computer Science, data structures and algorithms that implement isomorphic structures vary profoundly, in succinctness, efficiency and understandability.

In Math Education, meaning is ignored in favor of manipulation of representations.
Semantic density (the amount of information carried by a representation) changes qualitatively with the dimension of a representation.

Representation alone can introduce new concepts. For example, the expression "4-7" is either invalid, or requires an extension of the positive integers. Operations are not independent of representation. How a positive integer is represented determines how addition and multiplication are performed.

Read/Operate Tradeoff: Positive Integers

SYstem	EXAMPLE	READ	Sta	AD	TIPLY
stroke	IIIIIIIIII IIIII II	very hard count result	trivial unique integers	trivial push together	easy substitute replicate for each stroke
Roman	XVII	moderate add groups	moderate collect, promote groups	trivial push together	very hard compound rules
decimal	17	easy place notation	easy fixed places, decimal point	hard 100 facts, carry	hard 100 facts, accumulate
binary	10001	easy place notation	trivial fixed places	moderate 4 facts, carry	moderate 4 facts, accumulate
boundary	((c(•)))) -	easy depth notation	moderate double, merge	trivial push together	easy substitute replicate for each -

BOUNDARY INTEGERS: GRAPH VARIETY

Boundary Integers, Network Add

Standardizing the result:

Copyright© 2006 William Bricken. All rights reserved

Boundary Integers, Network Multiply I

Structure is
replicated here
for reading ease

Copyight © 2006 william Bricken. All righs reserved.

Boundary Integers, Network Multiply II

Copyight © 2006 William Bricken. All rights reserved.

BOUNDARY LOGIC:

 SUPPORT MATERIAL
Reading Mark as Implication

In implicative logic, valid implications maintain the truth value of an expression. In algebraic logic, valid substitutions maintain the truth value of an equation. In boundary logic, void-substitutions cannot change the truth value of a form.

BooLean	Boundary			
FALSE IMPLIES FALSE $=$ TRUE	$[$	$]$		$=()$
FALSE IMPLIES TRUE $=$ TRUE	$[$	$]$	identity	
TRUE	$=()$	call		
TRULIES FALSE $=$ FALSE	$[()]$	$=$	cross	
TMPLIES TRUE $=$ TRUE	$[()]()$	$=()$	cross	

Deep Transformation Example
Minimize: ((NOT b) OR NOT(a OR (NOT c))) AND ($(a$ AND b AND c) OR NOT(a OR b)) $(-b \vee \neg(a \vee-c)) \wedge((a \wedge b \wedge c) \vee \neg(a \vee b))$
Transcribe: $\quad((b)(a(c)))(((a)(b)(c))(a b)))$
Boundary Reduction:

What if boundaries were interpreted as functions on their contents?

1. A compound function is added as an argument to an external boundary function.
2. An argument to the compound function is deleted, changing its arity

3 and 5 . Functional inverses created by the deleted argument cancel, creating two new simple arguments.
4. One of the simple arguments voids its containing function
6. One of the simple arguments voids the original compound function by voiding one of $i t s$ arguments. Copyight © 2006 William Bricken. All rights reserved.

Boundary Logic Is Unorthodox

Boundary logic is not isomorphic to Boolean logic

- one-to-many map
- absence of relational concepts
- absence of arity and countability
- first class void-equivalence
- one basis constant
- two types of composability
- operational transparency (no function/argument distinction)

Boundary logic is not group theoretic
Identity for SHARING
$\begin{array}{rlrl}a \diamond i & =i \diamond a=a & & \text { identity } \\ a \quad i & =i \quad a=a & & \diamond=\text { SHARING } \\ a & = & =a & i=\text { <void> }\end{array}$
Inverse for SHARING

$$
\begin{array}{rlrl}
a \diamond a^{-1} & =a^{-1} \diamond a=\mathrm{i}^{-1} & & \text { inverse } \\
a(a) & =(a) a=i^{-1} & & \diamond=\text { SHARING } \\
(C) & =() & =() & \\
\mathrm{i}^{-1}=(\mathrm{i})=()
\end{array}
$$

That is, the identity element, i, defined by the identity equations is the inverse of the identity element, i^{-1}, defined by the inverse equations.
Copyight © 2006 william Bricken All rights reserved

Circuit Structures in Boundary Logic

(a $((b)(c)))$
$((d)(a b c))$

$((b \quad c \quad d)((a)(b)(c)))$
sum $=($ carry (a b))
carry $=((a)(b))$

Copyight © 2006 William Bricken. All righs reserved


```
Abstraction and Management of Complexity
    Design abstractions can be constructed bottom-up
            by using parens pattern templates.
Abstraction types
    Functional modules, library cells
    Structural modules, library macros
    Dataflow modules, serial/parallel decomposition
    Input symmetries
    Parametric generation
    Bit-width vector abstraction
    Specialized technology maps (LUTs, FPGA cells)
Boundary logic transformations apply equal well to
    - simple inputs (signals)
    - compound boundary forms (subnets)
    - modules and vectors (black-box abstractions)
Copyrigh: 2006 William Brickn. All righs reserved
```


