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PART I

Sequential circuits are directed cyclic graphs (DCGs) which maintain both a

logical semantics (the functionality of the combinatorial circuit) and a

temporal semantics (the effect of feedback of logical values on the

functionality of the circuit).  This memo presents an approach to the

representation and transformation of DCGs with these desirable properties:

•  logical and temporal invariants expressed as axioms and theorems

•  sequential circuits expressed as structured strings

•  DCG optimization implemented by string rewriting

String-based DCG transformation integrates tightly with existing Losp tools.

DCGs interpreted for logic can be represented as circuit diagrams and as

distinction networks.  To represent the process of circuits, the

representation must be animated.  There is a clear division between the

representational needs of the interface (design, interaction, understanding)

and the needs of the computational engine (evaluation, transformation,

optimization).  The focus here is on structural transformation of sequential

circuits at the engine level.

Applications of DCG axiomatic transformation include:

•  placement and rearrangement of registers and combinatorial blocks

•  optimization of structure and timing

•  hierarchical modularization.

The notes which follow explore the space of DCG structures, some elementary

reduction axioms, and some counting principles.  This work has not yet been

applied to practical circuits, although the interpretation for circuits is

clear.

DCG Notations

In the following, parens represent distinctions, with standard boundary logic

interpretations for combinatorial circuits.  Each parens (distinction node) is

labeled.

A circuit is expressed in PUN (parens unexpanded) form, as labeled subgraphs

with reentry.  [See the memo "Combinatorial Strategy" (8/95) for PUN

representation and transformation.]  For example, the elementary imaginary

circuit is expressed in PUN as:
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out = (in)

in = out

PUN can be expanded to cyclic string notation by substituting the algebraic

labels:

out = (out)

The temporal semantics of this structure can be expressed by indexing:

out0 = <init>

out1 = (out0)

...

outN = (outN-1)

A critical issue is the mixture between PUN and expanded forms.  Cyclic string

notation was developed to permit flexibility in shifting between levels of

expansion.

Example

For a more complex example, consider the naive counter in Shoup's Transition

Logic memo (notation is slightly modified but the techniques are strongly

associated):

0 = (in)

1 = (in 8)

2 = (in 7)

3 = (1 4)

4 = (2 3)

5 = (0 3)

6 = (0 4)

7 = (5 8)

8 = (6 7)

out = 7

This PUN form has plenty of reentry, but expansion/substitution steps both

simplify the representation and expose the symmetries.  Note that substitution

here has the semantics of tracing a signal through the entrant circuit.  Thus,

expansions/substitutions which do not force reentries in the same equality are

simply changing dnode *names* from explicit to implicit form.
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Eliminate {0, 1, 2, 5, 6}:

3 = ((in 8) 4)

4 = ((in 7) 3)

7 = (((in) 3) 8)

8 = (((in) 4) 7)

out = 7

Eliminate {4, 8}  [Flagg Resolution, must substitute for all occurrences]:

3 = ((in (((in) ((in 7) 3)) 7)) ((in 7) 3))

7 = (((in) 3) (((in) ((in 7) 3)) 7))

Further substitution now iterates the circuit temporally.  Note that no

information or structure or functionality is lost across these different

expansions.  Also note some choice of what basis nodes to use, for eg:

Eliminate {3, 8}

4 = ((in 7) ((in (((in) 4) 7)) 4))

7 = (((in) ((in (((in) 4) 7)) 4)) (((in) 4) 7))

The Cutting Edge

For simplification of the circuit, the important issue is now:  What are the

valid transformations, the axioms of reentry?

We have not yet studied this issue in depth, but both the Varela and the Shoup

systems are candidates.  As an example, the Varela calculus has the following

axioms:

((X) Y) X    = X

((X Y)(X Z)) = X ((Y)(Z))

(X i) X      = X i

where X can be high, low, or reentrant, and i is the elementary

oscillating/imaginary form.  By permitting variables to be reentrant, string

transformations on expanded circuits can be made without violation of

invariants.
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PART II

To explore cyclic string notation and DCGs in general, an exhaustive listing

of simple DCGs was generated and forms were counted.  Samples of this listing

follow:

All DCGs:

innermost parens is named i

outermost parens is named j

<void>

()

(i)

i()

i(i)

(())

((i))

(i())

i(())

((j))

(j())

j(())

(i(i))

i((i))

i(i())

(j(j))

j((j))

j(j())

(j(i))

j((i))

j(i())

(i(j))

i((j))

i(j())

((ij))

(ij())

ij(())

((()))

etc.
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The above listing incorporates some valid reentrant circuit reduction rules,

in particular,

i i = i duplicate feeds of the same signal do not change functionality

i j = j i ordering of feeds does not change functionality

The growth of forms is similar to that of the binomial expansion.  These forms

can be counted in respect to their length, counting parens pairs as length 1.

Table entry is number of possible cyclic circuits

v  Number of chars N \  Number of parens in expression:

              n        1        n-1      2        n-2

1             1

2             1        2

3             1        3         6

4             1        4        12       24

5             1        5        20       60       90

CASE of N chars, parens increase from 0 to N:

1 the <void>

/N\ * 1^(N-1) one paren

\1/

/N\ * 2^(N-2)

\2/

/N\ * 3^(N-3)

\3/

...

/N\ * i^(N-i) i parens

\i/

when N is even next term is identical

/ N \ * (N-i)^i

\N-i/

 ...

/ N \ * (N-2)^2

\N-2/
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/ N \ * (N-1)^1

\N-1/

1 N parens

Generally, the number of DCGs is:

SUM from i=1 to N of /N\ * i^(N-i)

\i/

where N is string length (counts reentries)

and i is number of dnodes.

This count decreases by the number of functionally invariant forms (as defined

by the axioms of the system).  For example:

A:  same parens cannot enter the same space more than once

B:  two or more different parens entering the same space do not have ordering

C:  entry at top level of self is spatial duplication (i.e. cardinality)

Summary:

This exploration represents, counts and classifies DCGs in preparation for

axiomatic transformation of sequential circuits.


