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1 Extension to Predicate Calculus

To extend the representational utility of Losp to predicate calculus, mechanisms
for expressing quantification and for handling functional and relational terms
must be introduced.

1.1 Representation of Terms

The representation of both functions and relations is PROLOG-like:

function-label [argument1 ... argumentn]
relation-label [argument1 ... argumentn]

The square bracket is not a parens, it is a new token that contains a represen-
tational space with attributes such as arity, type and order of the contents. In
Losp, attributes normally associated with tokens are associated instead with the
space within which the tokens are embedded. These attributes are determined
by the dominant function or relation for the space.

The innovations of variarity and argument sets apply to functions and predi-
cates as well as to boundary logic operators. I will illustrate the Losp innovations
in representation and computation with the theory of equations.
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1.2 The Theory of Equality

The axioms that describe how we should interpret the equality sign are:

• Reflexivity, x = x:
An thing is equal to itself.

• Symmetry, (x = y) → (y = x): If a thing is equal to something else,
then that something else is equal to the thing.

• Transitivity, ((x = y)∧ (y = z))→ (x = z): Things that equal the same
thing are equal.

• Extensionality, (x = y) → (F (x) = F (y)): The same operation can be
performed on both sides of an equality without effecting the equality.

These axioms are quite simple, and are familiar from grade school arithmetic
and from high school algebra. As stated, however, they are computationally
misleading and inefficient. What is missing is the purpose, the computational
utility, of each axiom.

Reflexivity, for example, is more general than merely bringing to our atten-
tion the redundancy that an x is an x. Rather the reflexivity axiom establishes
the connection of equality to the computation of a logical truth. It is the defini-
tion as logically true that two recognizably identical things are equal. Usually,
the two things on either side of an equal sign are not represented by identical
tokens, as in the example 2 + 3 = 5, and are thus not symbolically identical.
We regard the statement 2+3 = 5 as true because we know an operation that
converts the left-hand-side to the right-hand-side. Reflexivity extends further
than things that are printed the same, it includes things that can be converted
to one another by following rules. The rules are usually furnished by a formal-
ization of the domain theory that defines the “things”. In the example, the
addition rule comes as part of the package of rules for “number things”. A
traditional mathematical notation looses this process information, that things
might not already be in their simplest form when compared for equality. A def-
inition of the reflexivity of equality that is extended to include computational
transformations might be:

simplified(X) = simplified(X) is true

where the variable X now refers to a class of things that may not look the same,
but can be made to look the same by permitted transformation rules. I will use
a capital letter variable to represent this notion of a reducable set of expressions
that form an equivalence class.1

The Losp rules for the theory of equality are identical in function to the
traditional rules, but they are in a notation that is more general. The generality
of the notation removes the computational complexity implied in traditional
sequences of deduction.

1Traditional logical connectives are not converted to boundary logic in this example in
order to avoid confounding innovations in logic with the relevant innovations in equality.
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An initial notational change that is common to all the axioms is the use of a
boundary to contain the arguments of the equality token. X = Y is written as
=[X Y]. The labelled boundary =[...] has properties of reflexivity, symmetry,
transitivity, and extensionality. Symmetry is subsumed under argument sets
and transitivity is subsumed by variarity.

• Reflexivity, =[ =[X X] true]: When two expressions reduce to the same
expression, their equality is true. Here the equal sign is used twice, once to
relate the two expressions that reduce to one, and once to declare the fact
that if two expressions reduce to the same expression, then their equalness
is logically true. This axiom now serves as an evaluation condition for
simplification. When the two expressions are simplified, if they look the
same, we can replace their equality with truth.

• Symmetry, =[X Y]: The arguments to the generalized equality sign are
unordered and ungrouped (set arguments), therefore which is written first
is irrelevant.

• Transitivity, =[ (=[X Y] ∧ =[Y Z]) =[X Y Z]]: Arguments can form a
set of any number. If two things are both equal to a third, the three are
equal. This generalization permits the specification of a collection of equal
things.2 Note the permissability of logical structures in the arguments to
the top level equality.

• Extensionality, =[ =[X Y] =[F[X] F[Y]]]: This rule remains unchanged
except the implication is replaced by a bi-directional equality.

The motivation for generalizing the concept of equality is to make computation
efficient. The Losp theory of equality does this by two important techniques:
substitution of simpler expressions and using equality as a semantics for logical
expressions.

1.2.1 Simplification by Substitution

Things that are equal can replace one another. Always choose to replace a more
complex expression by a simpler expression. Simplicity is determined by the size
of the expression, by the inability to apply simplification rules and definition
expansion rules. Thus, the axioms might be considered to be ways to replace a
complex expression of a problem by a simpler expression. The arrow indicates
an appropriate replacement:

2Traditional transitivity is simplified by the notion of subsumption. In the definition, the
collection of three equal things subsumes, or is more general than, the collections of two equal
things, and thus the collections of two can be deleted during simplification of the top level
equal.
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• Simplification: X =⇒ simplify(X)

• Reflexivity: =[X X] =⇒ true

• Symmetry: =[X Y]

• Transitivity: =[X Y] ∧ =[Y Z] =⇒ =[X Y Z]

• Extensionality: =[F[X] F[Y]] =⇒ =[X Y]

1.2.2 Equality of logical expressions

The arguments of an equality can be complex logical expressions. This permits
an easy integration of logical and equational approaches. At the top level, all
expressions are equated either to a truth value or to another expression. That
is, all expressions are expressions of equality. The variable X is actually the
equality =[X true]. Since X is variable, we do not know it is true, but we can
adopt the convention that representing X at least permits the possibility that it
is true. Mixing the theory of equality with the theory of logic permits powerful
simplification theorems.

1.3 Clausal Form Algorithm

The algorithm for conversion of logical expressions to clausal form serves as
an example of the utility of boundary notation. This conversion is required by
resolution theorem proving systems, since the resolution rule requires a stan-
dardized form when deducing over arbitrary logical expressions. The sequence
of transformations is from logical sentence to prenex matrix to Skolem normal
form to conjunctive normal form to clausal form. When applying the Losp
proof method, conversion to conjunctive normal form (and therefore to clausal
form) is unnecessary since extract penetrates any depth of nested boundaries.

Clausal Form Conversion Algorithm

1. Transcribe the logical sentence into boundary notation and clarify. Re-
name all quantification variables using unique labels.

2. To create the prenex matrix from the expression, erase all quantifiers from
the expression, recording their depth of nesting. clarify. Quantifiers
with even recorded depths are universal; quantifiers with odd depths are
existential. The depth of the outermost context is 0.

3. To create the Skolem normal form of the prenex matrix, replace existen-
tially quantified variables with a unique function whose arguments are
those quantifiers with even depths less than the depth of the Skolemized
variable. Discard all quantifiers.
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4. To convert the Skolemized prenex matrix to conjunctive normal form, If
any term in the matrix is at a depth n, n > 3, distribute the contents at
depth n− 2 into the context of that term.

5. Finally, each set of expressions at depth 2 is a clause.

To illustrate the process of conversion to clausal form, consider this example
from Robinson [2]:

∀x(Px ≡ ∃y(Rxy ∧ ∀zRzy))

Transcribe. Numerals refer to variables standardized apart:

[1](((P1) ([2](R12) ([3]R32))) ([4](R14) ([5]R54) P1))

Erase the quantifiers to get the prenex matrix. Record their depths for the
Skolemization step.

(((P1) ((R12)(R32))) ((R14)(R54) P1))

The table of substitutions for this problem follows:

Quantifier Depth Prenex Type
[1] 0 universal
[2] 3 existential
[3] 4 universal
[4] 2 universal
[5] 3 existential

Skolemization requires these substitutions:

Variable 2 becomes g[1 4]
Variable 5 becomes h[1 4]

The resulting expression (which does not simplify) completes the normal form
conversion:

( ((P1) ((R1g[14]) (R3g[14]))) ((R14) (Rh[14]4) P1) )

Conjunctive normal form requires (P1) to be distributed (Skolem substitutions
have been omitted for readability):

( ((P1) R12) ((P1) R32) ((R14)(R54) P1) )

The clauses and their equivalent traditional forms are nested within the and
template:

( (clause1) (clause2) (clause3) )
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Universal ∀x.E[x] =⇒ [x] E[x]

Existential ∃x.E[x] =⇒ ([x] (E[x]))

Irrelevant Quantification [x]a =⇒ a

Table 1: The Map from Quantifiers to Losp

The Losp and conventional notations for each of the three clauses is:

Losp Form Resolution Form
(P1) R12 (¬P1 ∨R12)
(P1) R32 (¬P1 ∨R32)
(R14)(R54) P1 (¬R14 ∨ ¬R54 ∨ P1)

1.4 Quantification

Table 1 contains the map from quantifiers to Losp. The unlabelled square
bracket identifies a quantification variable. The token E[x] is shorthand for any
expression containing x.

Quantification indicators, [x], at even depths are universal; quantification
indicators at odd depths are existential.

This representation obsoletes quantifier transformation rules such as the
quantifier negation equivalencies. The square bracket containing quantification
variables is treated as any other token except when it is irrelevant: a quantifi-
cation environment may be erased from a context which does not refer to the
contents of that environment. For example, consider the transformation rule:

∃x(p → Ax) ≡ (p → ∃xAx)

The Losp transcription is:

([x] ((p) Ax)) ⇐⇒ (p) ([x] (Ax))

This equivalence is a case of Transposition. These steps convert the left-hand-
side to the right-hand-side:

([x] ((p) Ax ) )
=⇒ (( ([x] p) ([x] (Ax)) )) distribute [x]
=⇒ ([x] p) ([x] (Ax)) clarify
=⇒ ( p) ([x] (Ax)) irrelevant [x]

When a quantification environment is distributed across terms that do use its
bound variables, variable renaming is necessary:

[x] ((Ax)(Bx))⇐⇒ (([x] Ax) ([y] By))
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Extract A (A B) =⇒ A (B)

Extract-and-Unify A1 (A2 B) =⇒ g[A] (g[B])

Table 2: Combined Pervasion and Unification

Transitivity (((A) B)((B) C)) =⇒ (A) C

Unifying Transitivity (((A) B1)((B2) C)) =⇒ (g[A]) g[C]

Table 3: Combined Transitivity and Unification

1.5 Unification Proofs

To generalize the Losp proof method to predicate calculus, the only modification
necessary is to combine Pervasion with unification. In Table 2, g[s] represents
the most general unifier of A1 and A2. In the case of Extract-and-Unify, the
extraction of a term must be accompanied by the substitutions resulting from
the unification of the extracting and the extracted term.

The selection of which terms to extract in complex expressions with multi-
ple extraction possibilities is the source of the computational complexity asso-
ciated with searching proof spaces for solutions. The Losp extraction process
is opportunistic since the parens operator partitions the problem into dominant
(shallower) and extractable (deeper) spaces.

Extract-and-Unify requires a generalization to be fully equivalent to res-
olution. In Table 3, g[s] represents the most general unifier of the terms B1 and
B2. Transitivity is very similar to resolution. To generate the right-hand-side,
the clauses (A)B and (B)C in the CNF on the left-hand-side are combined in the
same context, while the literal B and its negation (B) are erased. An alternative
way to read this rule is Transitivity of Implication. From a → b and b → c, we
can conclude that a→ c. A generalization of Transitivity of Implication occurs
when the B terms are unified.
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